;; GCC machine description for Tensilica's Xtensa architecture. ;; Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 ;; Free Software Foundation, Inc. ;; Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica. ;; This file is part of GCC. ;; GCC is free software; you can redistribute it and/or modify it ;; under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 3, or (at your option) ;; any later version. ;; GCC is distributed in the hope that it will be useful, but WITHOUT ;; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY ;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public ;; License for more details. ;; You should have received a copy of the GNU General Public License ;; along with GCC; see the file COPYING3. If not see ;; . (define_constants [ (A0_REG 0) (A1_REG 1) (A7_REG 7) (A8_REG 8) (UNSPEC_NOP 2) (UNSPEC_PLT 3) (UNSPEC_RET_ADDR 4) (UNSPEC_TPOFF 5) (UNSPEC_DTPOFF 6) (UNSPEC_TLS_FUNC 7) (UNSPEC_TLS_ARG 8) (UNSPEC_TLS_CALL 9) (UNSPEC_TP 10) (UNSPEC_MEMW 11) (UNSPECV_SET_FP 1) (UNSPECV_ENTRY 2) (UNSPECV_S32RI 4) (UNSPECV_S32C1I 5) (UNSPECV_EH_RETURN 6) (UNSPECV_SET_TP 7) ]) ;; This code iterator allows signed and unsigned widening multiplications ;; to use the same template. (define_code_iterator any_extend [sign_extend zero_extend]) ;; expands to an empty string when doing a signed operation and ;; "u" when doing an unsigned operation. (define_code_attr u [(sign_extend "") (zero_extend "u")]) ;; is like , but the signed form expands to "s" rather than "". (define_code_attr su [(sign_extend "s") (zero_extend "u")]) ;; This code iterator allows four integer min/max operations to be ;; generated from one template. (define_code_iterator any_minmax [smin umin smax umax]) ;; expands to the opcode name for any_minmax operations. (define_code_attr minmax [(smin "min") (umin "minu") (smax "max") (umax "maxu")]) ;; This code iterator is for floating-point comparisons. (define_code_iterator any_scc_sf [eq lt le uneq unlt unle unordered]) (define_code_attr scc_sf [(eq "oeq") (lt "olt") (le "ole") (uneq "ueq") (unlt "ult") (unle "ule") (unordered "un")]) ;; This iterator and attribute allow to combine most atomic operations. (define_code_iterator ATOMIC [and ior xor plus minus mult]) (define_code_attr atomic [(and "and") (ior "ior") (xor "xor") (plus "add") (minus "sub") (mult "nand")]) ;; This mode iterator allows the HI and QI patterns to be defined from ;; the same template. (define_mode_iterator HQI [HI QI]) ;; Attributes. (define_attr "type" "unknown,jump,call,load,store,move,arith,multi,nop,farith,fmadd,fdiv,fsqrt,fconv,fload,fstore,mul16,mul32,div32,mac16,rsr,wsr,entry" (const_string "unknown")) (define_attr "mode" "unknown,none,QI,HI,SI,DI,SF,DF,BL" (const_string "unknown")) (define_attr "length" "" (const_int 1)) ;; Describe a user's asm statement. (define_asm_attributes [(set_attr "type" "multi")]) ;; Pipeline model. ;; The Xtensa basically has simple 5-stage RISC pipeline. ;; Most instructions complete in 1 cycle, and it is OK to assume that ;; everything is fully pipelined. The exceptions have special insn ;; reservations in the pipeline description below. The Xtensa can ;; issue one instruction per cycle, so defining CPU units is unnecessary. (define_insn_reservation "xtensa_any_insn" 1 (eq_attr "type" "!load,fload,rsr,mul16,mul32,fmadd,fconv") "nothing") (define_insn_reservation "xtensa_memory" 2 (eq_attr "type" "load,fload") "nothing") (define_insn_reservation "xtensa_sreg" 2 (eq_attr "type" "rsr") "nothing") (define_insn_reservation "xtensa_mul16" 2 (eq_attr "type" "mul16") "nothing") (define_insn_reservation "xtensa_mul32" 2 (eq_attr "type" "mul32") "nothing") (define_insn_reservation "xtensa_fmadd" 4 (eq_attr "type" "fmadd") "nothing") (define_insn_reservation "xtensa_fconv" 2 (eq_attr "type" "fconv") "nothing") ;; Include predicates and constraints. (include "predicates.md") (include "constraints.md") ;; Addition. (define_insn "addsi3" [(set (match_operand:SI 0 "register_operand" "=D,D,a,a,a") (plus:SI (match_operand:SI 1 "register_operand" "%d,d,r,r,r") (match_operand:SI 2 "add_operand" "d,O,r,J,N")))] "" "@ add.n\t%0, %1, %2 addi.n\t%0, %1, %d2 add\t%0, %1, %2 addi\t%0, %1, %d2 addmi\t%0, %1, %x2" [(set_attr "type" "arith,arith,arith,arith,arith") (set_attr "mode" "SI") (set_attr "length" "2,2,3,3,3")]) (define_insn "*addx" [(set (match_operand:SI 0 "register_operand" "=a") (plus:SI (mult:SI (match_operand:SI 1 "register_operand" "r") (match_operand:SI 3 "addsubx_operand" "i")) (match_operand:SI 2 "register_operand" "r")))] "TARGET_ADDX" "addx%3\t%0, %1, %2" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "3")]) (define_insn "addsf3" [(set (match_operand:SF 0 "register_operand" "=f") (plus:SF (match_operand:SF 1 "register_operand" "%f") (match_operand:SF 2 "register_operand" "f")))] "TARGET_HARD_FLOAT" "add.s\t%0, %1, %2" [(set_attr "type" "fmadd") (set_attr "mode" "SF") (set_attr "length" "3")]) ;; Subtraction. (define_insn "subsi3" [(set (match_operand:SI 0 "register_operand" "=a") (minus:SI (match_operand:SI 1 "register_operand" "r") (match_operand:SI 2 "register_operand" "r")))] "" "sub\t%0, %1, %2" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "3")]) (define_insn "*subx" [(set (match_operand:SI 0 "register_operand" "=a") (minus:SI (mult:SI (match_operand:SI 1 "register_operand" "r") (match_operand:SI 3 "addsubx_operand" "i")) (match_operand:SI 2 "register_operand" "r")))] "TARGET_ADDX" "subx%3\t%0, %1, %2" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "3")]) (define_insn "subsf3" [(set (match_operand:SF 0 "register_operand" "=f") (minus:SF (match_operand:SF 1 "register_operand" "f") (match_operand:SF 2 "register_operand" "f")))] "TARGET_HARD_FLOAT" "sub.s\t%0, %1, %2" [(set_attr "type" "fmadd") (set_attr "mode" "SF") (set_attr "length" "3")]) ;; Multiplication. (define_expand "mulsidi3" [(set (match_operand:DI 0 "register_operand") (mult:DI (any_extend:DI (match_operand:SI 1 "register_operand")) (any_extend:DI (match_operand:SI 2 "register_operand"))))] "TARGET_MUL32_HIGH" { rtx temp = gen_reg_rtx (SImode); emit_insn (gen_mulsi3 (temp, operands[1], operands[2])); emit_insn (gen_mulsi3_highpart (gen_highpart (SImode, operands[0]), operands[1], operands[2])); emit_insn (gen_movsi (gen_lowpart (SImode, operands[0]), temp)); DONE; }) (define_insn "mulsi3_highpart" [(set (match_operand:SI 0 "register_operand" "=a") (truncate:SI (lshiftrt:DI (mult:DI (any_extend:DI (match_operand:SI 1 "register_operand" "%r")) (any_extend:DI (match_operand:SI 2 "register_operand" "r"))) (const_int 32))))] "TARGET_MUL32_HIGH" "mulh\t%0, %1, %2" [(set_attr "type" "mul32") (set_attr "mode" "SI") (set_attr "length" "3")]) (define_insn "mulsi3" [(set (match_operand:SI 0 "register_operand" "=a") (mult:SI (match_operand:SI 1 "register_operand" "%r") (match_operand:SI 2 "register_operand" "r")))] "TARGET_MUL32" "mull\t%0, %1, %2" [(set_attr "type" "mul32") (set_attr "mode" "SI") (set_attr "length" "3")]) (define_insn "mulhisi3" [(set (match_operand:SI 0 "register_operand" "=C,A") (mult:SI (sign_extend:SI (match_operand:HI 1 "register_operand" "%r,r")) (sign_extend:SI (match_operand:HI 2 "register_operand" "r,r"))))] "TARGET_MUL16 || TARGET_MAC16" "@ mul16s\t%0, %1, %2 mul.aa.ll\t%1, %2" [(set_attr "type" "mul16,mac16") (set_attr "mode" "SI") (set_attr "length" "3,3")]) (define_insn "umulhisi3" [(set (match_operand:SI 0 "register_operand" "=C,A") (mult:SI (zero_extend:SI (match_operand:HI 1 "register_operand" "%r,r")) (zero_extend:SI (match_operand:HI 2 "register_operand" "r,r"))))] "TARGET_MUL16 || TARGET_MAC16" "@ mul16u\t%0, %1, %2 umul.aa.ll\t%1, %2" [(set_attr "type" "mul16,mac16") (set_attr "mode" "SI") (set_attr "length" "3,3")]) (define_insn "muladdhisi" [(set (match_operand:SI 0 "register_operand" "=A") (plus:SI (mult:SI (sign_extend:SI (match_operand:HI 1 "register_operand" "%r")) (sign_extend:SI (match_operand:HI 2 "register_operand" "r"))) (match_operand:SI 3 "register_operand" "0")))] "TARGET_MAC16" "mula.aa.ll\t%1, %2" [(set_attr "type" "mac16") (set_attr "mode" "SI") (set_attr "length" "3")]) (define_insn "mulsubhisi" [(set (match_operand:SI 0 "register_operand" "=A") (minus:SI (match_operand:SI 1 "register_operand" "0") (mult:SI (sign_extend:SI (match_operand:HI 2 "register_operand" "%r")) (sign_extend:SI (match_operand:HI 3 "register_operand" "r")))))] "TARGET_MAC16" "muls.aa.ll\t%2, %3" [(set_attr "type" "mac16") (set_attr "mode" "SI") (set_attr "length" "3")]) (define_insn "mulsf3" [(set (match_operand:SF 0 "register_operand" "=f") (mult:SF (match_operand:SF 1 "register_operand" "%f") (match_operand:SF 2 "register_operand" "f")))] "TARGET_HARD_FLOAT" "mul.s\t%0, %1, %2" [(set_attr "type" "fmadd") (set_attr "mode" "SF") (set_attr "length" "3")]) (define_insn "muladdsf3" [(set (match_operand:SF 0 "register_operand" "=f") (plus:SF (mult:SF (match_operand:SF 1 "register_operand" "%f") (match_operand:SF 2 "register_operand" "f")) (match_operand:SF 3 "register_operand" "0")))] "TARGET_HARD_FLOAT && TARGET_FUSED_MADD" "madd.s\t%0, %1, %2" [(set_attr "type" "fmadd") (set_attr "mode" "SF") (set_attr "length" "3")]) (define_insn "mulsubsf3" [(set (match_operand:SF 0 "register_operand" "=f") (minus:SF (match_operand:SF 1 "register_operand" "0") (mult:SF (match_operand:SF 2 "register_operand" "%f") (match_operand:SF 3 "register_operand" "f"))))] "TARGET_HARD_FLOAT && TARGET_FUSED_MADD" "msub.s\t%0, %2, %3" [(set_attr "type" "fmadd") (set_attr "mode" "SF") (set_attr "length" "3")]) ;; Division. (define_insn "divsi3" [(set (match_operand:SI 0 "register_operand" "=a") (div:SI (match_operand:SI 1 "register_operand" "r") (match_operand:SI 2 "register_operand" "r")))] "TARGET_DIV32" "quos\t%0, %1, %2" [(set_attr "type" "div32") (set_attr "mode" "SI") (set_attr "length" "3")]) (define_insn "udivsi3" [(set (match_operand:SI 0 "register_operand" "=a") (udiv:SI (match_operand:SI 1 "register_operand" "r") (match_operand:SI 2 "register_operand" "r")))] "TARGET_DIV32" "quou\t%0, %1, %2" [(set_attr "type" "div32") (set_attr "mode" "SI") (set_attr "length" "3")]) (define_insn "divsf3" [(set (match_operand:SF 0 "register_operand" "=f") (div:SF (match_operand:SF 1 "register_operand" "f") (match_operand:SF 2 "register_operand" "f")))] "TARGET_HARD_FLOAT_DIV" "div.s\t%0, %1, %2" [(set_attr "type" "fdiv") (set_attr "mode" "SF") (set_attr "length" "3")]) (define_insn "*recipsf2" [(set (match_operand:SF 0 "register_operand" "=f") (div:SF (match_operand:SF 1 "const_float_1_operand" "") (match_operand:SF 2 "register_operand" "f")))] "TARGET_HARD_FLOAT_RECIP && flag_unsafe_math_optimizations" "recip.s\t%0, %2" [(set_attr "type" "fdiv") (set_attr "mode" "SF") (set_attr "length" "3")]) ;; Remainders. (define_insn "modsi3" [(set (match_operand:SI 0 "register_operand" "=a") (mod:SI (match_operand:SI 1 "register_operand" "r") (match_operand:SI 2 "register_operand" "r")))] "TARGET_DIV32" "rems\t%0, %1, %2" [(set_attr "type" "div32") (set_attr "mode" "SI") (set_attr "length" "3")]) (define_insn "umodsi3" [(set (match_operand:SI 0 "register_operand" "=a") (umod:SI (match_operand:SI 1 "register_operand" "r") (match_operand:SI 2 "register_operand" "r")))] "TARGET_DIV32" "remu\t%0, %1, %2" [(set_attr "type" "div32") (set_attr "mode" "SI") (set_attr "length" "3")]) ;; Square roots. (define_insn "sqrtsf2" [(set (match_operand:SF 0 "register_operand" "=f") (sqrt:SF (match_operand:SF 1 "register_operand" "f")))] "TARGET_HARD_FLOAT_SQRT" "sqrt.s\t%0, %1" [(set_attr "type" "fsqrt") (set_attr "mode" "SF") (set_attr "length" "3")]) (define_insn "*rsqrtsf2" [(set (match_operand:SF 0 "register_operand" "=f") (div:SF (match_operand:SF 1 "const_float_1_operand" "") (sqrt:SF (match_operand:SF 2 "register_operand" "f"))))] "TARGET_HARD_FLOAT_RSQRT && flag_unsafe_math_optimizations" "rsqrt.s\t%0, %2" [(set_attr "type" "fsqrt") (set_attr "mode" "SF") (set_attr "length" "3")]) ;; Absolute value. (define_insn "abssi2" [(set (match_operand:SI 0 "register_operand" "=a") (abs:SI (match_operand:SI 1 "register_operand" "r")))] "TARGET_ABS" "abs\t%0, %1" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "3")]) (define_insn "abssf2" [(set (match_operand:SF 0 "register_operand" "=f") (abs:SF (match_operand:SF 1 "register_operand" "f")))] "TARGET_HARD_FLOAT" "abs.s\t%0, %1" [(set_attr "type" "farith") (set_attr "mode" "SF") (set_attr "length" "3")]) ;; Min and max. (define_insn "si3" [(set (match_operand:SI 0 "register_operand" "=a") (any_minmax:SI (match_operand:SI 1 "register_operand" "%r") (match_operand:SI 2 "register_operand" "r")))] "TARGET_MINMAX" "\t%0, %1, %2" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "3")]) ;; Count leading/trailing zeros and find first bit. (define_insn "clzsi2" [(set (match_operand:SI 0 "register_operand" "=a") (clz:SI (match_operand:SI 1 "register_operand" "r")))] "TARGET_NSA" "nsau\t%0, %1" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "3")]) (define_expand "ctzsi2" [(set (match_operand:SI 0 "register_operand" "") (ctz:SI (match_operand:SI 1 "register_operand" "")))] "TARGET_NSA" { rtx temp = gen_reg_rtx (SImode); emit_insn (gen_negsi2 (temp, operands[1])); emit_insn (gen_andsi3 (temp, temp, operands[1])); emit_insn (gen_clzsi2 (temp, temp)); emit_insn (gen_negsi2 (temp, temp)); emit_insn (gen_addsi3 (operands[0], temp, GEN_INT (31))); DONE; }) (define_expand "ffssi2" [(set (match_operand:SI 0 "register_operand" "") (ffs:SI (match_operand:SI 1 "register_operand" "")))] "TARGET_NSA" { rtx temp = gen_reg_rtx (SImode); emit_insn (gen_negsi2 (temp, operands[1])); emit_insn (gen_andsi3 (temp, temp, operands[1])); emit_insn (gen_clzsi2 (temp, temp)); emit_insn (gen_negsi2 (temp, temp)); emit_insn (gen_addsi3 (operands[0], temp, GEN_INT (32))); DONE; }) ;; Negation and one's complement. (define_insn "negsi2" [(set (match_operand:SI 0 "register_operand" "=a") (neg:SI (match_operand:SI 1 "register_operand" "r")))] "" "neg\t%0, %1" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "3")]) (define_expand "one_cmplsi2" [(set (match_operand:SI 0 "register_operand" "") (not:SI (match_operand:SI 1 "register_operand" "")))] "" { rtx temp = gen_reg_rtx (SImode); emit_insn (gen_movsi (temp, constm1_rtx)); emit_insn (gen_xorsi3 (operands[0], temp, operands[1])); DONE; }) (define_insn "negsf2" [(set (match_operand:SF 0 "register_operand" "=f") (neg:SF (match_operand:SF 1 "register_operand" "f")))] "TARGET_HARD_FLOAT" "neg.s\t%0, %1" [(set_attr "type" "farith") (set_attr "mode" "SF") (set_attr "length" "3")]) ;; Logical instructions. (define_insn "andsi3" [(set (match_operand:SI 0 "register_operand" "=a,a") (and:SI (match_operand:SI 1 "register_operand" "%r,r") (match_operand:SI 2 "mask_operand" "P,r")))] "" "@ extui\t%0, %1, 0, %K2 and\t%0, %1, %2" [(set_attr "type" "arith,arith") (set_attr "mode" "SI") (set_attr "length" "3,3")]) (define_insn "iorsi3" [(set (match_operand:SI 0 "register_operand" "=a") (ior:SI (match_operand:SI 1 "register_operand" "%r") (match_operand:SI 2 "register_operand" "r")))] "" "or\t%0, %1, %2" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "3")]) (define_insn "xorsi3" [(set (match_operand:SI 0 "register_operand" "=a") (xor:SI (match_operand:SI 1 "register_operand" "%r") (match_operand:SI 2 "register_operand" "r")))] "" "xor\t%0, %1, %2" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "3")]) ;; Zero-extend instructions. (define_insn "zero_extendhisi2" [(set (match_operand:SI 0 "register_operand" "=a,a") (zero_extend:SI (match_operand:HI 1 "nonimmed_operand" "r,U")))] "" "@ extui\t%0, %1, 0, 16 l16ui\t%0, %1" [(set_attr "type" "arith,load") (set_attr "mode" "SI") (set_attr "length" "3,3")]) (define_insn "zero_extendqisi2" [(set (match_operand:SI 0 "register_operand" "=a,a") (zero_extend:SI (match_operand:QI 1 "nonimmed_operand" "r,U")))] "" "@ extui\t%0, %1, 0, 8 l8ui\t%0, %1" [(set_attr "type" "arith,load") (set_attr "mode" "SI") (set_attr "length" "3,3")]) ;; Sign-extend instructions. (define_expand "extendhisi2" [(set (match_operand:SI 0 "register_operand" "") (sign_extend:SI (match_operand:HI 1 "register_operand" "")))] "" { if (sext_operand (operands[1], HImode)) emit_insn (gen_extendhisi2_internal (operands[0], operands[1])); else xtensa_extend_reg (operands[0], operands[1]); DONE; }) (define_insn "extendhisi2_internal" [(set (match_operand:SI 0 "register_operand" "=B,a") (sign_extend:SI (match_operand:HI 1 "sext_operand" "r,U")))] "" "@ sext\t%0, %1, 15 l16si\t%0, %1" [(set_attr "type" "arith,load") (set_attr "mode" "SI") (set_attr "length" "3,3")]) (define_expand "extendqisi2" [(set (match_operand:SI 0 "register_operand" "") (sign_extend:SI (match_operand:QI 1 "register_operand" "")))] "" { if (TARGET_SEXT) emit_insn (gen_extendqisi2_internal (operands[0], operands[1])); else xtensa_extend_reg (operands[0], operands[1]); DONE; }) (define_insn "extendqisi2_internal" [(set (match_operand:SI 0 "register_operand" "=B") (sign_extend:SI (match_operand:QI 1 "register_operand" "r")))] "TARGET_SEXT" "sext\t%0, %1, 7" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "3")]) ;; Field extract instructions. (define_expand "extv" [(set (match_operand:SI 0 "register_operand" "") (sign_extract:SI (match_operand:SI 1 "register_operand" "") (match_operand:SI 2 "const_int_operand" "") (match_operand:SI 3 "const_int_operand" "")))] "TARGET_SEXT" { if (!sext_fldsz_operand (operands[2], SImode)) FAIL; /* We could expand to a right shift followed by SEXT but that's no better than the standard left and right shift sequence. */ if (!lsbitnum_operand (operands[3], SImode)) FAIL; emit_insn (gen_extv_internal (operands[0], operands[1], operands[2], operands[3])); DONE; }) (define_insn "extv_internal" [(set (match_operand:SI 0 "register_operand" "=a") (sign_extract:SI (match_operand:SI 1 "register_operand" "r") (match_operand:SI 2 "sext_fldsz_operand" "i") (match_operand:SI 3 "lsbitnum_operand" "i")))] "TARGET_SEXT" { int fldsz = INTVAL (operands[2]); operands[2] = GEN_INT (fldsz - 1); return "sext\t%0, %1, %2"; } [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "3")]) (define_expand "extzv" [(set (match_operand:SI 0 "register_operand" "") (zero_extract:SI (match_operand:SI 1 "register_operand" "") (match_operand:SI 2 "const_int_operand" "") (match_operand:SI 3 "const_int_operand" "")))] "" { if (!extui_fldsz_operand (operands[2], SImode)) FAIL; emit_insn (gen_extzv_internal (operands[0], operands[1], operands[2], operands[3])); DONE; }) (define_insn "extzv_internal" [(set (match_operand:SI 0 "register_operand" "=a") (zero_extract:SI (match_operand:SI 1 "register_operand" "r") (match_operand:SI 2 "extui_fldsz_operand" "i") (match_operand:SI 3 "const_int_operand" "i")))] "" { int shift; if (BITS_BIG_ENDIAN) shift = (32 - (INTVAL (operands[2]) + INTVAL (operands[3]))) & 0x1f; else shift = INTVAL (operands[3]) & 0x1f; operands[3] = GEN_INT (shift); return "extui\t%0, %1, %3, %2"; } [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "3")]) ;; Conversions. (define_insn "fix_truncsfsi2" [(set (match_operand:SI 0 "register_operand" "=a") (fix:SI (match_operand:SF 1 "register_operand" "f")))] "TARGET_HARD_FLOAT" "trunc.s\t%0, %1, 0" [(set_attr "type" "fconv") (set_attr "mode" "SF") (set_attr "length" "3")]) (define_insn "fixuns_truncsfsi2" [(set (match_operand:SI 0 "register_operand" "=a") (unsigned_fix:SI (match_operand:SF 1 "register_operand" "f")))] "TARGET_HARD_FLOAT" "utrunc.s\t%0, %1, 0" [(set_attr "type" "fconv") (set_attr "mode" "SF") (set_attr "length" "3")]) (define_insn "floatsisf2" [(set (match_operand:SF 0 "register_operand" "=f") (float:SF (match_operand:SI 1 "register_operand" "a")))] "TARGET_HARD_FLOAT" "float.s\t%0, %1, 0" [(set_attr "type" "fconv") (set_attr "mode" "SF") (set_attr "length" "3")]) (define_insn "floatunssisf2" [(set (match_operand:SF 0 "register_operand" "=f") (unsigned_float:SF (match_operand:SI 1 "register_operand" "a")))] "TARGET_HARD_FLOAT" "ufloat.s\t%0, %1, 0" [(set_attr "type" "fconv") (set_attr "mode" "SF") (set_attr "length" "3")]) ;; Data movement instructions. ;; 64-bit Integer moves (define_expand "movdi" [(set (match_operand:DI 0 "nonimmed_operand" "") (match_operand:DI 1 "general_operand" ""))] "" { if (CONSTANT_P (operands[1]) && !TARGET_CONST16) operands[1] = force_const_mem (DImode, operands[1]); if (!register_operand (operands[0], DImode) && !register_operand (operands[1], DImode)) operands[1] = force_reg (DImode, operands[1]); operands[1] = xtensa_copy_incoming_a7 (operands[1]); }) (define_insn_and_split "movdi_internal" [(set (match_operand:DI 0 "nonimmed_operand" "=a,W,a,a,U") (match_operand:DI 1 "move_operand" "r,i,T,U,r"))] "register_operand (operands[0], DImode) || register_operand (operands[1], DImode)" "#" "reload_completed" [(set (match_dup 0) (match_dup 2)) (set (match_dup 1) (match_dup 3))] { xtensa_split_operand_pair (operands, SImode); if (reg_overlap_mentioned_p (operands[0], operands[3])) { rtx tmp; tmp = operands[0], operands[0] = operands[1], operands[1] = tmp; tmp = operands[2], operands[2] = operands[3], operands[3] = tmp; } }) ;; 32-bit Integer moves (define_expand "movsi" [(set (match_operand:SI 0 "nonimmed_operand" "") (match_operand:SI 1 "general_operand" ""))] "" { if (xtensa_emit_move_sequence (operands, SImode)) DONE; }) (define_insn "movsi_internal" [(set (match_operand:SI 0 "nonimmed_operand" "=D,D,D,D,R,R,a,q,a,W,a,a,U,*a,*A") (match_operand:SI 1 "move_operand" "M,D,d,R,D,d,r,r,I,i,T,U,r,*A,*r"))] "xtensa_valid_move (SImode, operands)" "@ movi.n\t%0, %x1 mov.n\t%0, %1 mov.n\t%0, %1 %v1l32i.n\t%0, %1 %v0s32i.n\t%1, %0 %v0s32i.n\t%1, %0 mov\t%0, %1 movsp\t%0, %1 movi\t%0, %x1 const16\t%0, %t1\;const16\t%0, %b1 %v1l32r\t%0, %1 %v1l32i\t%0, %1 %v0s32i\t%1, %0 rsr\t%0, ACCLO wsr\t%1, ACCLO" [(set_attr "type" "move,move,move,load,store,store,move,move,move,move,load,load,store,rsr,wsr") (set_attr "mode" "SI") (set_attr "length" "2,2,2,2,2,2,3,3,3,6,3,3,3,3,3")]) ;; 16-bit Integer moves (define_expand "movhi" [(set (match_operand:HI 0 "nonimmed_operand" "") (match_operand:HI 1 "general_operand" ""))] "" { if (xtensa_emit_move_sequence (operands, HImode)) DONE; }) (define_insn "movhi_internal" [(set (match_operand:HI 0 "nonimmed_operand" "=D,D,a,a,a,U,*a,*A") (match_operand:HI 1 "move_operand" "M,d,r,I,U,r,*A,*r"))] "xtensa_valid_move (HImode, operands)" "@ movi.n\t%0, %x1 mov.n\t%0, %1 mov\t%0, %1 movi\t%0, %x1 %v1l16ui\t%0, %1 %v0s16i\t%1, %0 rsr\t%0, ACCLO wsr\t%1, ACCLO" [(set_attr "type" "move,move,move,move,load,store,rsr,wsr") (set_attr "mode" "HI") (set_attr "length" "2,2,3,3,3,3,3,3")]) ;; 8-bit Integer moves (define_expand "movqi" [(set (match_operand:QI 0 "nonimmed_operand" "") (match_operand:QI 1 "general_operand" ""))] "" { if (xtensa_emit_move_sequence (operands, QImode)) DONE; }) (define_insn "movqi_internal" [(set (match_operand:QI 0 "nonimmed_operand" "=D,D,a,a,a,U,*a,*A") (match_operand:QI 1 "move_operand" "M,d,r,I,U,r,*A,*r"))] "xtensa_valid_move (QImode, operands)" "@ movi.n\t%0, %x1 mov.n\t%0, %1 mov\t%0, %1 movi\t%0, %x1 %v1l8ui\t%0, %1 %v0s8i\t%1, %0 rsr\t%0, ACCLO wsr\t%1, ACCLO" [(set_attr "type" "move,move,move,move,load,store,rsr,wsr") (set_attr "mode" "QI") (set_attr "length" "2,2,3,3,3,3,3,3")]) ;; Sub-word reloads from the constant pool. (define_expand "reload_literal" [(parallel [(match_operand:HQI 0 "register_operand" "=r") (match_operand:HQI 1 "constantpool_operand" "") (match_operand:SI 2 "register_operand" "=&r")])] "" { rtx lit, scratch; unsigned word_off, byte_off; if (MEM_P (operands[1])) { lit = operands[1]; word_off = 0; byte_off = 0; } else { gcc_assert (GET_CODE (operands[1]) == SUBREG); lit = SUBREG_REG (operands[1]); word_off = SUBREG_BYTE (operands[1]) & ~(UNITS_PER_WORD - 1); byte_off = SUBREG_BYTE (operands[1]) - word_off; } lit = adjust_address (lit, SImode, word_off); scratch = operands[2]; emit_insn (gen_movsi (scratch, lit)); emit_insn (gen_mov (operands[0], gen_rtx_SUBREG (mode, scratch, byte_off))); DONE; }) ;; 32-bit floating point moves (define_expand "movsf" [(set (match_operand:SF 0 "nonimmed_operand" "") (match_operand:SF 1 "general_operand" ""))] "" { if (!TARGET_CONST16 && CONSTANT_P (operands[1])) operands[1] = force_const_mem (SFmode, operands[1]); if ((!register_operand (operands[0], SFmode) && !register_operand (operands[1], SFmode)) || (FP_REG_P (xt_true_regnum (operands[0])) && !(reload_in_progress | reload_completed) && (constantpool_mem_p (operands[1]) || CONSTANT_P (operands[1])))) operands[1] = force_reg (SFmode, operands[1]); operands[1] = xtensa_copy_incoming_a7 (operands[1]); }) (define_insn "movsf_internal" [(set (match_operand:SF 0 "nonimmed_operand" "=f,f,U,D,D,R,a,f,a,W,a,a,U") (match_operand:SF 1 "move_operand" "f,U,f,d,R,d,r,r,f,iF,T,U,r"))] "((register_operand (operands[0], SFmode) || register_operand (operands[1], SFmode)) && !(FP_REG_P (xt_true_regnum (operands[0])) && (constantpool_mem_p (operands[1]) || CONSTANT_P (operands[1]))))" "@ mov.s\t%0, %1 %v1lsi\t%0, %1 %v0ssi\t%1, %0 mov.n\t%0, %1 %v1l32i.n\t%0, %1 %v0s32i.n\t%1, %0 mov\t%0, %1 wfr\t%0, %1 rfr\t%0, %1 const16\t%0, %t1\;const16\t%0, %b1 %v1l32r\t%0, %1 %v1l32i\t%0, %1 %v0s32i\t%1, %0" [(set_attr "type" "farith,fload,fstore,move,load,store,move,farith,farith,move,load,load,store") (set_attr "mode" "SF") (set_attr "length" "3,3,3,2,2,2,3,3,3,6,3,3,3")]) (define_insn "*lsiu" [(set (match_operand:SF 0 "register_operand" "=f") (mem:SF (plus:SI (match_operand:SI 1 "register_operand" "+a") (match_operand:SI 2 "fpmem_offset_operand" "i")))) (set (match_dup 1) (plus:SI (match_dup 1) (match_dup 2)))] "TARGET_HARD_FLOAT" { if (TARGET_SERIALIZE_VOLATILE && volatile_refs_p (PATTERN (insn))) output_asm_insn ("memw", operands); return "lsiu\t%0, %1, %2"; } [(set_attr "type" "fload") (set_attr "mode" "SF") (set_attr "length" "3")]) (define_insn "*ssiu" [(set (mem:SF (plus:SI (match_operand:SI 0 "register_operand" "+a") (match_operand:SI 1 "fpmem_offset_operand" "i"))) (match_operand:SF 2 "register_operand" "f")) (set (match_dup 0) (plus:SI (match_dup 0) (match_dup 1)))] "TARGET_HARD_FLOAT" { if (TARGET_SERIALIZE_VOLATILE && volatile_refs_p (PATTERN (insn))) output_asm_insn ("memw", operands); return "ssiu\t%2, %0, %1"; } [(set_attr "type" "fstore") (set_attr "mode" "SF") (set_attr "length" "3")]) ;; 64-bit floating point moves (define_expand "movdf" [(set (match_operand:DF 0 "nonimmed_operand" "") (match_operand:DF 1 "general_operand" ""))] "" { if (CONSTANT_P (operands[1]) && !TARGET_CONST16) operands[1] = force_const_mem (DFmode, operands[1]); if (!register_operand (operands[0], DFmode) && !register_operand (operands[1], DFmode)) operands[1] = force_reg (DFmode, operands[1]); operands[1] = xtensa_copy_incoming_a7 (operands[1]); }) (define_insn_and_split "movdf_internal" [(set (match_operand:DF 0 "nonimmed_operand" "=a,W,a,a,U") (match_operand:DF 1 "move_operand" "r,iF,T,U,r"))] "register_operand (operands[0], DFmode) || register_operand (operands[1], DFmode)" "#" "reload_completed" [(set (match_dup 0) (match_dup 2)) (set (match_dup 1) (match_dup 3))] { xtensa_split_operand_pair (operands, SFmode); if (reg_overlap_mentioned_p (operands[0], operands[3])) { rtx tmp; tmp = operands[0], operands[0] = operands[1], operands[1] = tmp; tmp = operands[2], operands[2] = operands[3], operands[3] = tmp; } }) ;; Block moves (define_expand "movmemsi" [(parallel [(set (match_operand:BLK 0 "" "") (match_operand:BLK 1 "" "")) (use (match_operand:SI 2 "arith_operand" "")) (use (match_operand:SI 3 "const_int_operand" ""))])] "" { if (!xtensa_expand_block_move (operands)) FAIL; DONE; }) ;; Shift instructions. (define_expand "ashlsi3" [(set (match_operand:SI 0 "register_operand" "") (ashift:SI (match_operand:SI 1 "register_operand" "") (match_operand:SI 2 "arith_operand" "")))] "" { operands[1] = xtensa_copy_incoming_a7 (operands[1]); }) (define_insn "ashlsi3_internal" [(set (match_operand:SI 0 "register_operand" "=a,a") (ashift:SI (match_operand:SI 1 "register_operand" "r,r") (match_operand:SI 2 "arith_operand" "J,r")))] "" "@ slli\t%0, %1, %R2 ssl\t%2\;sll\t%0, %1" [(set_attr "type" "arith,arith") (set_attr "mode" "SI") (set_attr "length" "3,6")]) (define_insn "ashrsi3" [(set (match_operand:SI 0 "register_operand" "=a,a") (ashiftrt:SI (match_operand:SI 1 "register_operand" "r,r") (match_operand:SI 2 "arith_operand" "J,r")))] "" "@ srai\t%0, %1, %R2 ssr\t%2\;sra\t%0, %1" [(set_attr "type" "arith,arith") (set_attr "mode" "SI") (set_attr "length" "3,6")]) (define_insn "lshrsi3" [(set (match_operand:SI 0 "register_operand" "=a,a") (lshiftrt:SI (match_operand:SI 1 "register_operand" "r,r") (match_operand:SI 2 "arith_operand" "J,r")))] "" { if (which_alternative == 0) { if ((INTVAL (operands[2]) & 0x1f) < 16) return "srli\t%0, %1, %R2"; else return "extui\t%0, %1, %R2, %L2"; } return "ssr\t%2\;srl\t%0, %1"; } [(set_attr "type" "arith,arith") (set_attr "mode" "SI") (set_attr "length" "3,6")]) (define_insn "rotlsi3" [(set (match_operand:SI 0 "register_operand" "=a,a") (rotate:SI (match_operand:SI 1 "register_operand" "r,r") (match_operand:SI 2 "arith_operand" "J,r")))] "" "@ ssai\t%L2\;src\t%0, %1, %1 ssl\t%2\;src\t%0, %1, %1" [(set_attr "type" "multi,multi") (set_attr "mode" "SI") (set_attr "length" "6,6")]) (define_insn "rotrsi3" [(set (match_operand:SI 0 "register_operand" "=a,a") (rotatert:SI (match_operand:SI 1 "register_operand" "r,r") (match_operand:SI 2 "arith_operand" "J,r")))] "" "@ ssai\t%R2\;src\t%0, %1, %1 ssr\t%2\;src\t%0, %1, %1" [(set_attr "type" "multi,multi") (set_attr "mode" "SI") (set_attr "length" "6,6")]) ;; Comparisons. ;; Conditional branches. (define_expand "cbranchsi4" [(match_operator 0 "comparison_operator" [(match_operand:SI 1 "register_operand") (match_operand:SI 2 "nonmemory_operand")]) (match_operand 3 "")] "" { xtensa_expand_conditional_branch (operands, SImode); DONE; }) (define_expand "cbranchsf4" [(match_operator 0 "comparison_operator" [(match_operand:SF 1 "register_operand") (match_operand:SF 2 "register_operand")]) (match_operand 3 "")] "TARGET_HARD_FLOAT" { xtensa_expand_conditional_branch (operands, SFmode); DONE; }) ;; Branch patterns for standard integer comparisons (define_insn "*btrue" [(set (pc) (if_then_else (match_operator 3 "branch_operator" [(match_operand:SI 0 "register_operand" "r,r") (match_operand:SI 1 "branch_operand" "K,r")]) (label_ref (match_operand 2 "" "")) (pc)))] "" { return xtensa_emit_branch (false, which_alternative == 0, operands); } [(set_attr "type" "jump,jump") (set_attr "mode" "none") (set_attr "length" "3,3")]) (define_insn "*bfalse" [(set (pc) (if_then_else (match_operator 3 "branch_operator" [(match_operand:SI 0 "register_operand" "r,r") (match_operand:SI 1 "branch_operand" "K,r")]) (pc) (label_ref (match_operand 2 "" ""))))] "" { return xtensa_emit_branch (true, which_alternative == 0, operands); } [(set_attr "type" "jump,jump") (set_attr "mode" "none") (set_attr "length" "3,3")]) (define_insn "*ubtrue" [(set (pc) (if_then_else (match_operator 3 "ubranch_operator" [(match_operand:SI 0 "register_operand" "r,r") (match_operand:SI 1 "ubranch_operand" "L,r")]) (label_ref (match_operand 2 "" "")) (pc)))] "" { return xtensa_emit_branch (false, which_alternative == 0, operands); } [(set_attr "type" "jump,jump") (set_attr "mode" "none") (set_attr "length" "3,3")]) (define_insn "*ubfalse" [(set (pc) (if_then_else (match_operator 3 "ubranch_operator" [(match_operand:SI 0 "register_operand" "r,r") (match_operand:SI 1 "ubranch_operand" "L,r")]) (pc) (label_ref (match_operand 2 "" ""))))] "" { return xtensa_emit_branch (true, which_alternative == 0, operands); } [(set_attr "type" "jump,jump") (set_attr "mode" "none") (set_attr "length" "3,3")]) ;; Branch patterns for bit testing (define_insn "*bittrue" [(set (pc) (if_then_else (match_operator 3 "boolean_operator" [(zero_extract:SI (match_operand:SI 0 "register_operand" "r,r") (const_int 1) (match_operand:SI 1 "arith_operand" "J,r")) (const_int 0)]) (label_ref (match_operand 2 "" "")) (pc)))] "" { return xtensa_emit_bit_branch (false, which_alternative == 0, operands); } [(set_attr "type" "jump") (set_attr "mode" "none") (set_attr "length" "3")]) (define_insn "*bitfalse" [(set (pc) (if_then_else (match_operator 3 "boolean_operator" [(zero_extract:SI (match_operand:SI 0 "register_operand" "r,r") (const_int 1) (match_operand:SI 1 "arith_operand" "J,r")) (const_int 0)]) (pc) (label_ref (match_operand 2 "" ""))))] "" { return xtensa_emit_bit_branch (true, which_alternative == 0, operands); } [(set_attr "type" "jump") (set_attr "mode" "none") (set_attr "length" "3")]) (define_insn "*masktrue" [(set (pc) (if_then_else (match_operator 3 "boolean_operator" [(and:SI (match_operand:SI 0 "register_operand" "r") (match_operand:SI 1 "register_operand" "r")) (const_int 0)]) (label_ref (match_operand 2 "" "")) (pc)))] "" { switch (GET_CODE (operands[3])) { case EQ: return "bnone\t%0, %1, %2"; case NE: return "bany\t%0, %1, %2"; default: gcc_unreachable (); } } [(set_attr "type" "jump") (set_attr "mode" "none") (set_attr "length" "3")]) (define_insn "*maskfalse" [(set (pc) (if_then_else (match_operator 3 "boolean_operator" [(and:SI (match_operand:SI 0 "register_operand" "r") (match_operand:SI 1 "register_operand" "r")) (const_int 0)]) (pc) (label_ref (match_operand 2 "" ""))))] "" { switch (GET_CODE (operands[3])) { case EQ: return "bany\t%0, %1, %2"; case NE: return "bnone\t%0, %1, %2"; default: gcc_unreachable (); } } [(set_attr "type" "jump") (set_attr "mode" "none") (set_attr "length" "3")]) ;; Define the loop insns used by bct optimization to represent the ;; start and end of a zero-overhead loop (in loop.c). This start ;; template generates the loop insn; the end template doesn't generate ;; any instructions since loop end is handled in hardware. (define_insn "zero_cost_loop_start" [(set (pc) (if_then_else (eq (match_operand:SI 0 "register_operand" "a") (const_int 0)) (label_ref (match_operand 1 "" "")) (pc))) (set (reg:SI 19) (plus:SI (match_dup 0) (const_int -1)))] "" "loopnez\t%0, %l1" [(set_attr "type" "jump") (set_attr "mode" "none") (set_attr "length" "3")]) (define_insn "zero_cost_loop_end" [(set (pc) (if_then_else (ne (reg:SI 19) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc))) (set (reg:SI 19) (plus:SI (reg:SI 19) (const_int -1)))] "" { xtensa_emit_loop_end (insn, operands); return ""; } [(set_attr "type" "jump") (set_attr "mode" "none") (set_attr "length" "0")]) ;; Setting a register from a comparison. (define_expand "cstoresi4" [(match_operand:SI 0 "register_operand") (match_operator 1 "xtensa_cstoresi_operator" [(match_operand:SI 2 "register_operand") (match_operand:SI 3 "nonmemory_operand")])] "" { if (!xtensa_expand_scc (operands, SImode)) FAIL; DONE; }) (define_expand "cstoresf4" [(match_operand:SI 0 "register_operand") (match_operator:SI 1 "comparison_operator" [(match_operand:SF 2 "register_operand") (match_operand:SF 3 "register_operand")])] "TARGET_HARD_FLOAT" { if (!xtensa_expand_scc (operands, SFmode)) FAIL; DONE; }) ;; Conditional moves. (define_expand "movsicc" [(set (match_operand:SI 0 "register_operand" "") (if_then_else:SI (match_operand 1 "comparison_operator" "") (match_operand:SI 2 "register_operand" "") (match_operand:SI 3 "register_operand" "")))] "" { if (!xtensa_expand_conditional_move (operands, 0)) FAIL; DONE; }) (define_expand "movsfcc" [(set (match_operand:SF 0 "register_operand" "") (if_then_else:SF (match_operand 1 "comparison_operator" "") (match_operand:SF 2 "register_operand" "") (match_operand:SF 3 "register_operand" "")))] "" { if (!xtensa_expand_conditional_move (operands, 1)) FAIL; DONE; }) (define_insn "movsicc_internal0" [(set (match_operand:SI 0 "register_operand" "=a,a") (if_then_else:SI (match_operator 4 "branch_operator" [(match_operand:SI 1 "register_operand" "r,r") (const_int 0)]) (match_operand:SI 2 "register_operand" "r,0") (match_operand:SI 3 "register_operand" "0,r")))] "" { return xtensa_emit_movcc (which_alternative == 1, false, false, operands); } [(set_attr "type" "move,move") (set_attr "mode" "SI") (set_attr "length" "3,3")]) (define_insn "movsicc_internal1" [(set (match_operand:SI 0 "register_operand" "=a,a") (if_then_else:SI (match_operator 4 "boolean_operator" [(match_operand:CC 1 "register_operand" "b,b") (const_int 0)]) (match_operand:SI 2 "register_operand" "r,0") (match_operand:SI 3 "register_operand" "0,r")))] "TARGET_BOOLEANS" { return xtensa_emit_movcc (which_alternative == 1, false, true, operands); } [(set_attr "type" "move,move") (set_attr "mode" "SI") (set_attr "length" "3,3")]) (define_insn "movsfcc_internal0" [(set (match_operand:SF 0 "register_operand" "=a,a,f,f") (if_then_else:SF (match_operator 4 "branch_operator" [(match_operand:SI 1 "register_operand" "r,r,r,r") (const_int 0)]) (match_operand:SF 2 "register_operand" "r,0,f,0") (match_operand:SF 3 "register_operand" "0,r,0,f")))] "" { return xtensa_emit_movcc ((which_alternative & 1) == 1, which_alternative >= 2, false, operands); } [(set_attr "type" "move,move,move,move") (set_attr "mode" "SF") (set_attr "length" "3,3,3,3")]) (define_insn "movsfcc_internal1" [(set (match_operand:SF 0 "register_operand" "=a,a,f,f") (if_then_else:SF (match_operator 4 "boolean_operator" [(match_operand:CC 1 "register_operand" "b,b,b,b") (const_int 0)]) (match_operand:SF 2 "register_operand" "r,0,f,0") (match_operand:SF 3 "register_operand" "0,r,0,f")))] "TARGET_BOOLEANS" { return xtensa_emit_movcc ((which_alternative & 1) == 1, which_alternative >= 2, true, operands); } [(set_attr "type" "move,move,move,move") (set_attr "mode" "SF") (set_attr "length" "3,3,3,3")]) ;; Floating-point comparisons. (define_insn "s_sf" [(set (match_operand:CC 0 "register_operand" "=b") (any_scc_sf:CC (match_operand:SF 1 "register_operand" "f") (match_operand:SF 2 "register_operand" "f")))] "TARGET_HARD_FLOAT" ".s\t%0, %1, %2" [(set_attr "type" "farith") (set_attr "mode" "BL") (set_attr "length" "3")]) ;; Unconditional branches. (define_insn "jump" [(set (pc) (label_ref (match_operand 0 "" "")))] "" "j\t%l0" [(set_attr "type" "jump") (set_attr "mode" "none") (set_attr "length" "3")]) (define_expand "indirect_jump" [(set (pc) (match_operand 0 "register_operand" ""))] "" { rtx dest = operands[0]; if (GET_CODE (dest) != REG || GET_MODE (dest) != Pmode) operands[0] = copy_to_mode_reg (Pmode, dest); emit_jump_insn (gen_indirect_jump_internal (dest)); DONE; }) (define_insn "indirect_jump_internal" [(set (pc) (match_operand:SI 0 "register_operand" "r"))] "" "jx\t%0" [(set_attr "type" "jump") (set_attr "mode" "none") (set_attr "length" "3")]) (define_expand "tablejump" [(use (match_operand:SI 0 "register_operand" "")) (use (label_ref (match_operand 1 "" "")))] "" { rtx target = operands[0]; if (flag_pic) { /* For PIC, the table entry is relative to the start of the table. */ rtx label = gen_reg_rtx (SImode); target = gen_reg_rtx (SImode); emit_move_insn (label, gen_rtx_LABEL_REF (SImode, operands[1])); emit_insn (gen_addsi3 (target, operands[0], label)); } emit_jump_insn (gen_tablejump_internal (target, operands[1])); DONE; }) (define_insn "tablejump_internal" [(set (pc) (match_operand:SI 0 "register_operand" "r")) (use (label_ref (match_operand 1 "" "")))] "" "jx\t%0" [(set_attr "type" "jump") (set_attr "mode" "none") (set_attr "length" "3")]) ;; Function calls. (define_expand "sym_PLT" [(const (unspec [(match_operand:SI 0 "" "")] UNSPEC_PLT))] "" "") (define_expand "call" [(call (match_operand 0 "memory_operand" "") (match_operand 1 "" ""))] "" { rtx addr = XEXP (operands[0], 0); if (flag_pic && GET_CODE (addr) == SYMBOL_REF && (!SYMBOL_REF_LOCAL_P (addr) || SYMBOL_REF_EXTERNAL_P (addr))) addr = gen_sym_PLT (addr); if (!call_insn_operand (addr, VOIDmode)) XEXP (operands[0], 0) = copy_to_mode_reg (Pmode, addr); }) (define_insn "call_internal" [(call (mem (match_operand:SI 0 "call_insn_operand" "nir")) (match_operand 1 "" "i"))] "" { return xtensa_emit_call (0, operands); } [(set_attr "type" "call") (set_attr "mode" "none") (set_attr "length" "3")]) (define_expand "call_value" [(set (match_operand 0 "register_operand" "") (call (match_operand 1 "memory_operand" "") (match_operand 2 "" "")))] "" { rtx addr = XEXP (operands[1], 0); if (flag_pic && GET_CODE (addr) == SYMBOL_REF && (!SYMBOL_REF_LOCAL_P (addr) || SYMBOL_REF_EXTERNAL_P (addr))) addr = gen_sym_PLT (addr); if (!call_insn_operand (addr, VOIDmode)) XEXP (operands[1], 0) = copy_to_mode_reg (Pmode, addr); }) (define_insn "call_value_internal" [(set (match_operand 0 "register_operand" "=a") (call (mem (match_operand:SI 1 "call_insn_operand" "nir")) (match_operand 2 "" "i")))] "" { return xtensa_emit_call (1, operands); } [(set_attr "type" "call") (set_attr "mode" "none") (set_attr "length" "3")]) (define_insn "entry" [(set (reg:SI A1_REG) (unspec_volatile:SI [(match_operand:SI 0 "const_int_operand" "i")] UNSPECV_ENTRY))] "" "entry\tsp, %0" [(set_attr "type" "entry") (set_attr "mode" "SI") (set_attr "length" "3")]) (define_insn "return" [(return) (use (reg:SI A0_REG))] "reload_completed" { return (TARGET_DENSITY ? "retw.n" : "retw"); } [(set_attr "type" "jump") (set_attr "mode" "none") (set_attr "length" "2")]) ;; Miscellaneous instructions. (define_expand "prologue" [(const_int 0)] "" { xtensa_expand_prologue (); DONE; }) (define_expand "epilogue" [(return)] "" { emit_jump_insn (gen_return ()); DONE; }) (define_insn "nop" [(const_int 0)] "" { return (TARGET_DENSITY ? "nop.n" : "nop"); } [(set_attr "type" "nop") (set_attr "mode" "none") (set_attr "length" "3")]) (define_expand "nonlocal_goto" [(match_operand:SI 0 "general_operand" "") (match_operand:SI 1 "general_operand" "") (match_operand:SI 2 "general_operand" "") (match_operand:SI 3 "" "")] "" { xtensa_expand_nonlocal_goto (operands); DONE; }) ;; Stuff an address into the return address register along with the window ;; size in the high bits. Because we don't have the window size of the ;; previous frame, assume the function called out with a CALL8 since that ;; is what compilers always use. Note: __builtin_frob_return_addr has ;; already been applied to the handler, but the generic version doesn't ;; allow us to frob it quite enough, so we just frob here. (define_insn_and_split "eh_return" [(set (reg:SI A0_REG) (unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r")] UNSPECV_EH_RETURN)) (clobber (match_scratch:SI 1 "=r"))] "" "#" "reload_completed" [(set (match_dup 1) (ashift:SI (match_dup 0) (const_int 2))) (set (match_dup 1) (plus:SI (match_dup 1) (const_int 2))) (set (reg:SI A0_REG) (rotatert:SI (match_dup 1) (const_int 2)))] "") ;; Setting up a frame pointer is tricky for Xtensa because GCC doesn't ;; know if a frame pointer is required until the reload pass, and ;; because there may be an incoming argument value in the hard frame ;; pointer register (a7). If there is an incoming argument in that ;; register, the "set_frame_ptr" insn gets inserted immediately after ;; the insn that copies the incoming argument to a pseudo or to the ;; stack. This serves several purposes here: (1) it keeps the ;; optimizer from copy-propagating or scheduling the use of a7 as an ;; incoming argument away from the beginning of the function; (2) we ;; can use a post-reload splitter to expand away the insn if a frame ;; pointer is not required, so that the post-reload scheduler can do ;; the right thing; and (3) it makes it easy for the prologue expander ;; to search for this insn to determine whether it should add a new insn ;; to set up the frame pointer. (define_insn "set_frame_ptr" [(set (reg:SI A7_REG) (unspec_volatile:SI [(const_int 0)] UNSPECV_SET_FP))] "" { if (frame_pointer_needed) return "mov\ta7, sp"; return ""; } [(set_attr "type" "move") (set_attr "mode" "SI") (set_attr "length" "3")]) ;; Post-reload splitter to remove fp assignment when it's not needed. (define_split [(set (reg:SI A7_REG) (unspec_volatile:SI [(const_int 0)] UNSPECV_SET_FP))] "reload_completed && !frame_pointer_needed" [(unspec [(const_int 0)] UNSPEC_NOP)] "") ;; The preceding splitter needs something to split the insn into; ;; things start breaking if the result is just a "use" so instead we ;; generate the following insn. (define_insn "*unspec_nop" [(unspec [(const_int 0)] UNSPEC_NOP)] "" "" [(set_attr "type" "nop") (set_attr "mode" "none") (set_attr "length" "0")]) ;; TLS support (define_expand "sym_TPOFF" [(const (unspec [(match_operand:SI 0 "" "")] UNSPEC_TPOFF))] "" "") (define_expand "sym_DTPOFF" [(const (unspec [(match_operand:SI 0 "" "")] UNSPEC_DTPOFF))] "" "") (define_insn "load_tp" [(set (match_operand:SI 0 "register_operand" "=a") (unspec:SI [(const_int 0)] UNSPEC_TP))] "TARGET_THREADPTR" "rur\t%0, THREADPTR" [(set_attr "type" "rsr") (set_attr "mode" "SI") (set_attr "length" "3")]) (define_insn "set_tp" [(unspec_volatile [(match_operand:SI 0 "register_operand" "r")] UNSPECV_SET_TP)] "TARGET_THREADPTR" "wur\t%0, THREADPTR" [(set_attr "type" "wsr") (set_attr "mode" "SI") (set_attr "length" "3")]) (define_insn "tls_func" [(set (match_operand:SI 0 "register_operand" "=a") (unspec:SI [(match_operand:SI 1 "tls_symbol_operand" "")] UNSPEC_TLS_FUNC))] "TARGET_THREADPTR && HAVE_AS_TLS" "movi\t%0, %1@TLSFUNC" [(set_attr "type" "load") (set_attr "mode" "SI") (set_attr "length" "3")]) (define_insn "tls_arg" [(set (match_operand:SI 0 "register_operand" "=a") (unspec:SI [(match_operand:SI 1 "tls_symbol_operand" "")] UNSPEC_TLS_ARG))] "TARGET_THREADPTR && HAVE_AS_TLS" "movi\t%0, %1@TLSARG" [(set_attr "type" "load") (set_attr "mode" "SI") (set_attr "length" "3")]) (define_insn "tls_call" [(set (match_operand:SI 0 "register_operand" "=a") (call (mem:SI (unspec:SI [(match_operand:SI 1 "register_operand" "r") (match_operand:SI 2 "tls_symbol_operand" "")] UNSPEC_TLS_CALL)) (match_operand 3 "" "i")))] "TARGET_THREADPTR && HAVE_AS_TLS" "callx8.tls %1, %2@TLSCALL" [(set_attr "type" "call") (set_attr "mode" "none") (set_attr "length" "3")]) ;; Instructions for the Xtensa "boolean" option. (define_insn "*booltrue" [(set (pc) (if_then_else (match_operator 2 "boolean_operator" [(match_operand:CC 0 "register_operand" "b") (const_int 0)]) (label_ref (match_operand 1 "" "")) (pc)))] "TARGET_BOOLEANS" { if (GET_CODE (operands[2]) == EQ) return "bf\t%0, %1"; else return "bt\t%0, %1"; } [(set_attr "type" "jump") (set_attr "mode" "none") (set_attr "length" "3")]) (define_insn "*boolfalse" [(set (pc) (if_then_else (match_operator 2 "boolean_operator" [(match_operand:CC 0 "register_operand" "b") (const_int 0)]) (pc) (label_ref (match_operand 1 "" ""))))] "TARGET_BOOLEANS" { if (GET_CODE (operands[2]) == EQ) return "bt\t%0, %1"; else return "bf\t%0, %1"; } [(set_attr "type" "jump") (set_attr "mode" "none") (set_attr "length" "3")]) ;; Atomic operations (define_expand "memory_barrier" [(set (match_dup 0) (unspec:BLK [(match_dup 0)] UNSPEC_MEMW))] "" { operands[0] = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode)); MEM_VOLATILE_P (operands[0]) = 1; }) (define_insn "*memory_barrier" [(set (match_operand:BLK 0 "" "") (unspec:BLK [(match_dup 0)] UNSPEC_MEMW))] "" "memw" [(set_attr "type" "unknown") (set_attr "mode" "none") (set_attr "length" "3")]) ;; sync_lock_release is only implemented for SImode. ;; For other modes, just use the default of a store with a memory_barrier. (define_insn "sync_lock_releasesi" [(set (match_operand:SI 0 "mem_operand" "=U") (unspec_volatile:SI [(match_operand:SI 1 "register_operand" "r")] UNSPECV_S32RI))] "TARGET_RELEASE_SYNC" "s32ri\t%1, %0" [(set_attr "type" "store") (set_attr "mode" "SI") (set_attr "length" "3")]) (define_insn "sync_compare_and_swapsi" [(parallel [(set (match_operand:SI 0 "register_operand" "=a") (match_operand:SI 1 "mem_operand" "+U")) (set (match_dup 1) (unspec_volatile:SI [(match_dup 1) (match_operand:SI 2 "register_operand" "r") (match_operand:SI 3 "register_operand" "0")] UNSPECV_S32C1I))])] "TARGET_S32C1I" "wsr\t%2, SCOMPARE1\;s32c1i\t%3, %1" [(set_attr "type" "multi") (set_attr "mode" "SI") (set_attr "length" "6")]) (define_expand "sync_compare_and_swap" [(parallel [(set (match_operand:HQI 0 "register_operand" "") (match_operand:HQI 1 "mem_operand" "")) (set (match_dup 1) (unspec_volatile:HQI [(match_dup 1) (match_operand:HQI 2 "register_operand" "") (match_operand:HQI 3 "register_operand" "")] UNSPECV_S32C1I))])] "TARGET_S32C1I" { xtensa_expand_compare_and_swap (operands[0], operands[1], operands[2], operands[3]); DONE; }) (define_expand "sync_lock_test_and_set" [(match_operand:HQI 0 "register_operand") (match_operand:HQI 1 "memory_operand") (match_operand:HQI 2 "register_operand")] "TARGET_S32C1I" { xtensa_expand_atomic (SET, operands[0], operands[1], operands[2], false); DONE; }) (define_expand "sync_" [(set (match_operand:HQI 0 "memory_operand") (ATOMIC:HQI (match_dup 0) (match_operand:HQI 1 "register_operand")))] "TARGET_S32C1I" { xtensa_expand_atomic (, NULL_RTX, operands[0], operands[1], false); DONE; }) (define_expand "sync_old_" [(set (match_operand:HQI 0 "register_operand") (match_operand:HQI 1 "memory_operand")) (set (match_dup 1) (ATOMIC:HQI (match_dup 1) (match_operand:HQI 2 "register_operand")))] "TARGET_S32C1I" { xtensa_expand_atomic (, operands[0], operands[1], operands[2], false); DONE; }) (define_expand "sync_new_" [(set (match_operand:HQI 0 "register_operand") (ATOMIC:HQI (match_operand:HQI 1 "memory_operand") (match_operand:HQI 2 "register_operand"))) (set (match_dup 1) (ATOMIC:HQI (match_dup 1) (match_dup 2)))] "TARGET_S32C1I" { xtensa_expand_atomic (, operands[0], operands[1], operands[2], true); DONE; })