(* Common code for ARM NEON header file, documentation and test case generators. Copyright (C) 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc. Contributed by CodeSourcery. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . *) (* Shorthand types for vector elements. *) type elts = S8 | S16 | S32 | S64 | F32 | U8 | U16 | U32 | U64 | P8 | P16 | I8 | I16 | I32 | I64 | B8 | B16 | B32 | B64 | Conv of elts * elts | Cast of elts * elts | NoElts type eltclass = Signed | Unsigned | Float | Poly | Int | Bits | ConvClass of eltclass * eltclass | NoType (* These vector types correspond directly to C types. *) type vectype = T_int8x8 | T_int8x16 | T_int16x4 | T_int16x8 | T_int32x2 | T_int32x4 | T_int64x1 | T_int64x2 | T_uint8x8 | T_uint8x16 | T_uint16x4 | T_uint16x8 | T_uint32x2 | T_uint32x4 | T_uint64x1 | T_uint64x2 | T_float32x2 | T_float32x4 | T_poly8x8 | T_poly8x16 | T_poly16x4 | T_poly16x8 | T_immediate of int * int | T_int8 | T_int16 | T_int32 | T_int64 | T_uint8 | T_uint16 | T_uint32 | T_uint64 | T_poly8 | T_poly16 | T_float32 | T_arrayof of int * vectype | T_ptrto of vectype | T_const of vectype | T_void | T_intQI | T_intHI | T_intSI | T_intDI | T_floatSF (* The meanings of the following are: TImode : "Tetra", two registers (four words). EImode : "hExa", three registers (six words). OImode : "Octa", four registers (eight words). CImode : "dodeCa", six registers (twelve words). XImode : "heXadeca", eight registers (sixteen words). *) type inttype = B_TImode | B_EImode | B_OImode | B_CImode | B_XImode type shape_elt = Dreg | Qreg | Corereg | Immed | VecArray of int * shape_elt | PtrTo of shape_elt | CstPtrTo of shape_elt (* These next ones are used only in the test generator. *) | Element_of_dreg (* Used for "lane" variants. *) | Element_of_qreg (* Likewise. *) | All_elements_of_dreg (* Used for "dup" variants. *) | Alternatives of shape_elt list (* Used for multiple valid operands *) type shape_form = All of int * shape_elt | Long | Long_noreg of shape_elt | Wide | Wide_noreg of shape_elt | Narrow | Long_imm | Narrow_imm | Binary_imm of shape_elt | Use_operands of shape_elt array | By_scalar of shape_elt | Unary_scalar of shape_elt | Wide_lane | Wide_scalar | Pair_result of shape_elt type arity = Arity0 of vectype | Arity1 of vectype * vectype | Arity2 of vectype * vectype * vectype | Arity3 of vectype * vectype * vectype * vectype | Arity4 of vectype * vectype * vectype * vectype * vectype type vecmode = V8QI | V4HI | V2SI | V2SF | DI | V16QI | V8HI | V4SI | V4SF | V2DI | QI | HI | SI | SF type opcode = (* Binary ops. *) Vadd | Vmul | Vmla | Vmls | Vsub | Vceq | Vcge | Vcgt | Vcle | Vclt | Vcage | Vcagt | Vcale | Vcalt | Vtst | Vabd | Vaba | Vmax | Vmin | Vpadd | Vpada | Vpmax | Vpmin | Vrecps | Vrsqrts | Vshl | Vshr_n | Vshl_n | Vsra_n | Vsri | Vsli (* Logic binops. *) | Vand | Vorr | Veor | Vbic | Vorn | Vbsl (* Ops with scalar. *) | Vmul_lane | Vmla_lane | Vmls_lane | Vmul_n | Vmla_n | Vmls_n | Vmull_n | Vmull_lane | Vqdmull_n | Vqdmull_lane | Vqdmulh_n | Vqdmulh_lane (* Unary ops. *) | Vabs | Vneg | Vcls | Vclz | Vcnt | Vrecpe | Vrsqrte | Vmvn (* Vector extract. *) | Vext (* Reverse elements. *) | Vrev64 | Vrev32 | Vrev16 (* Transposition ops. *) | Vtrn | Vzip | Vuzp (* Loads and stores (VLD1/VST1/VLD2...), elements and structures. *) | Vldx of int | Vstx of int | Vldx_lane of int | Vldx_dup of int | Vstx_lane of int (* Set/extract lanes from a vector. *) | Vget_lane | Vset_lane (* Initialize vector from bit pattern. *) | Vcreate (* Set all lanes to same value. *) | Vdup_n | Vmov_n (* Is this the same? *) (* Duplicate scalar to all lanes of vector. *) | Vdup_lane (* Combine vectors. *) | Vcombine (* Get quadword high/low parts. *) | Vget_high | Vget_low (* Convert vectors. *) | Vcvt | Vcvt_n (* Narrow/lengthen vectors. *) | Vmovn | Vmovl (* Table lookup. *) | Vtbl of int | Vtbx of int (* Reinterpret casts. *) | Vreinterp (* Features used for documentation, to distinguish between some instruction variants, and to signal special requirements (e.g. swapping arguments). *) type features = Halving | Rounding | Saturating | Dst_unsign | High_half | Doubling | Flipped of string (* Builtin name to use with flipped arguments. *) | InfoWord (* Pass an extra word for signage/rounding etc. (always passed for All _, Long, Wide, Narrow shape_forms. *) | ReturnPtr (* Pass explicit pointer to return value as first argument. *) (* A specification as to the shape of instruction expected upon disassembly, used if it differs from the shape used to build the intrinsic prototype. Multiple entries in the constructor's argument indicate that the intrinsic expands to more than one assembly instruction, each with a corresponding shape specified here. *) | Disassembles_as of shape_form list | Builtin_name of string (* Override the name of the builtin. *) (* Override the name of the instruction. If more than one name is specified, it means that the instruction can have any of those names. *) | Instruction_name of string list (* Mark that the intrinsic yields no instructions, or expands to yield behavior that the test generator cannot test. *) | No_op (* Mark that the intrinsic has constant arguments that cannot be set to the defaults (zero for pointers and one otherwise) in the test cases. The function supplied must return the integer to be written into the testcase for the argument number (0-based) supplied to it. *) | Const_valuator of (int -> int) | Fixed_return_reg exception MixedMode of elts * elts let rec elt_width = function S8 | U8 | P8 | I8 | B8 -> 8 | S16 | U16 | P16 | I16 | B16 -> 16 | S32 | F32 | U32 | I32 | B32 -> 32 | S64 | U64 | I64 | B64 -> 64 | Conv (a, b) -> let wa = elt_width a and wb = elt_width b in if wa = wb then wa else failwith "element width?" | Cast (a, b) -> raise (MixedMode (a, b)) | NoElts -> failwith "No elts" let rec elt_class = function S8 | S16 | S32 | S64 -> Signed | U8 | U16 | U32 | U64 -> Unsigned | P8 | P16 -> Poly | F32 -> Float | I8 | I16 | I32 | I64 -> Int | B8 | B16 | B32 | B64 -> Bits | Conv (a, b) | Cast (a, b) -> ConvClass (elt_class a, elt_class b) | NoElts -> NoType let elt_of_class_width c w = match c, w with Signed, 8 -> S8 | Signed, 16 -> S16 | Signed, 32 -> S32 | Signed, 64 -> S64 | Float, 32 -> F32 | Unsigned, 8 -> U8 | Unsigned, 16 -> U16 | Unsigned, 32 -> U32 | Unsigned, 64 -> U64 | Poly, 8 -> P8 | Poly, 16 -> P16 | Int, 8 -> I8 | Int, 16 -> I16 | Int, 32 -> I32 | Int, 64 -> I64 | Bits, 8 -> B8 | Bits, 16 -> B16 | Bits, 32 -> B32 | Bits, 64 -> B64 | _ -> failwith "Bad element type" (* Return unsigned integer element the same width as argument. *) let unsigned_of_elt elt = elt_of_class_width Unsigned (elt_width elt) let signed_of_elt elt = elt_of_class_width Signed (elt_width elt) (* Return untyped bits element the same width as argument. *) let bits_of_elt elt = elt_of_class_width Bits (elt_width elt) let non_signed_variant = function S8 -> I8 | S16 -> I16 | S32 -> I32 | S64 -> I64 | U8 -> I8 | U16 -> I16 | U32 -> I32 | U64 -> I64 | x -> x let poly_unsigned_variant v = let elclass = match elt_class v with Poly -> Unsigned | x -> x in elt_of_class_width elclass (elt_width v) let widen_elt elt = let w = elt_width elt and c = elt_class elt in elt_of_class_width c (w * 2) let narrow_elt elt = let w = elt_width elt and c = elt_class elt in elt_of_class_width c (w / 2) (* If we're trying to find a mode from a "Use_operands" instruction, use the last vector operand as the dominant mode used to invoke the correct builtin. We must stick to this rule in neon.md. *) let find_key_operand operands = let rec scan opno = match operands.(opno) with Qreg -> Qreg | Dreg -> Dreg | VecArray (_, Qreg) -> Qreg | VecArray (_, Dreg) -> Dreg | _ -> scan (opno-1) in scan ((Array.length operands) - 1) let rec mode_of_elt elt shape = let flt = match elt_class elt with Float | ConvClass(_, Float) -> true | _ -> false in let idx = match elt_width elt with 8 -> 0 | 16 -> 1 | 32 -> 2 | 64 -> 3 | _ -> failwith "Bad element width" in match shape with All (_, Dreg) | By_scalar Dreg | Pair_result Dreg | Unary_scalar Dreg | Binary_imm Dreg | Long_noreg Dreg | Wide_noreg Dreg -> [| V8QI; V4HI; if flt then V2SF else V2SI; DI |].(idx) | All (_, Qreg) | By_scalar Qreg | Pair_result Qreg | Unary_scalar Qreg | Binary_imm Qreg | Long_noreg Qreg | Wide_noreg Qreg -> [| V16QI; V8HI; if flt then V4SF else V4SI; V2DI |].(idx) | All (_, (Corereg | PtrTo _ | CstPtrTo _)) -> [| QI; HI; if flt then SF else SI; DI |].(idx) | Long | Wide | Wide_lane | Wide_scalar | Long_imm -> [| V8QI; V4HI; V2SI; DI |].(idx) | Narrow | Narrow_imm -> [| V16QI; V8HI; V4SI; V2DI |].(idx) | Use_operands ops -> mode_of_elt elt (All (0, (find_key_operand ops))) | _ -> failwith "invalid shape" (* Modify an element type dependent on the shape of the instruction and the operand number. *) let shapemap shape no = let ident = fun x -> x in match shape with All _ | Use_operands _ | By_scalar _ | Pair_result _ | Unary_scalar _ | Binary_imm _ -> ident | Long | Long_noreg _ | Wide_scalar | Long_imm -> [| widen_elt; ident; ident |].(no) | Wide | Wide_noreg _ -> [| widen_elt; widen_elt; ident |].(no) | Wide_lane -> [| widen_elt; ident; ident; ident |].(no) | Narrow | Narrow_imm -> [| narrow_elt; ident; ident |].(no) (* Register type (D/Q) of an operand, based on shape and operand number. *) let regmap shape no = match shape with All (_, reg) | Long_noreg reg | Wide_noreg reg -> reg | Long -> [| Qreg; Dreg; Dreg |].(no) | Wide -> [| Qreg; Qreg; Dreg |].(no) | Narrow -> [| Dreg; Qreg; Qreg |].(no) | Wide_lane -> [| Qreg; Dreg; Dreg; Immed |].(no) | Wide_scalar -> [| Qreg; Dreg; Corereg |].(no) | By_scalar reg -> [| reg; reg; Dreg; Immed |].(no) | Unary_scalar reg -> [| reg; Dreg; Immed |].(no) | Pair_result reg -> [| VecArray (2, reg); reg; reg |].(no) | Binary_imm reg -> [| reg; reg; Immed |].(no) | Long_imm -> [| Qreg; Dreg; Immed |].(no) | Narrow_imm -> [| Dreg; Qreg; Immed |].(no) | Use_operands these -> these.(no) let type_for_elt shape elt no = let elt = (shapemap shape no) elt in let reg = regmap shape no in let rec type_for_reg_elt reg elt = match reg with Dreg -> begin match elt with S8 -> T_int8x8 | S16 -> T_int16x4 | S32 -> T_int32x2 | S64 -> T_int64x1 | U8 -> T_uint8x8 | U16 -> T_uint16x4 | U32 -> T_uint32x2 | U64 -> T_uint64x1 | F32 -> T_float32x2 | P8 -> T_poly8x8 | P16 -> T_poly16x4 | _ -> failwith "Bad elt type" end | Qreg -> begin match elt with S8 -> T_int8x16 | S16 -> T_int16x8 | S32 -> T_int32x4 | S64 -> T_int64x2 | U8 -> T_uint8x16 | U16 -> T_uint16x8 | U32 -> T_uint32x4 | U64 -> T_uint64x2 | F32 -> T_float32x4 | P8 -> T_poly8x16 | P16 -> T_poly16x8 | _ -> failwith "Bad elt type" end | Corereg -> begin match elt with S8 -> T_int8 | S16 -> T_int16 | S32 -> T_int32 | S64 -> T_int64 | U8 -> T_uint8 | U16 -> T_uint16 | U32 -> T_uint32 | U64 -> T_uint64 | P8 -> T_poly8 | P16 -> T_poly16 | F32 -> T_float32 | _ -> failwith "Bad elt type" end | Immed -> T_immediate (0, 0) | VecArray (num, sub) -> T_arrayof (num, type_for_reg_elt sub elt) | PtrTo x -> T_ptrto (type_for_reg_elt x elt) | CstPtrTo x -> T_ptrto (T_const (type_for_reg_elt x elt)) (* Anything else is solely for the use of the test generator. *) | _ -> assert false in type_for_reg_elt reg elt (* Return size of a vector type, in bits. *) let vectype_size = function T_int8x8 | T_int16x4 | T_int32x2 | T_int64x1 | T_uint8x8 | T_uint16x4 | T_uint32x2 | T_uint64x1 | T_float32x2 | T_poly8x8 | T_poly16x4 -> 64 | T_int8x16 | T_int16x8 | T_int32x4 | T_int64x2 | T_uint8x16 | T_uint16x8 | T_uint32x4 | T_uint64x2 | T_float32x4 | T_poly8x16 | T_poly16x8 -> 128 | _ -> raise Not_found let inttype_for_array num elttype = let eltsize = vectype_size elttype in let numwords = (num * eltsize) / 32 in match numwords with 4 -> B_TImode | 6 -> B_EImode | 8 -> B_OImode | 12 -> B_CImode | 16 -> B_XImode | _ -> failwith ("no int type for size " ^ string_of_int numwords) (* These functions return pairs of (internal, external) types, where "internal" types are those seen by GCC, and "external" are those seen by the assembler. These types aren't necessarily the same, since the intrinsics can munge more than one C type into each assembler opcode. *) let make_sign_invariant func shape elt = let arity, elt' = func shape elt in arity, non_signed_variant elt' (* Don't restrict any types. *) let elts_same make_arity shape elt = let vtype = type_for_elt shape elt in make_arity vtype, elt (* As sign_invar_*, but when sign matters. *) let elts_same_io_lane = elts_same (fun vtype -> Arity4 (vtype 0, vtype 0, vtype 1, vtype 2, vtype 3)) let elts_same_io = elts_same (fun vtype -> Arity3 (vtype 0, vtype 0, vtype 1, vtype 2)) let elts_same_2_lane = elts_same (fun vtype -> Arity3 (vtype 0, vtype 1, vtype 2, vtype 3)) let elts_same_3 = elts_same_2_lane let elts_same_2 = elts_same (fun vtype -> Arity2 (vtype 0, vtype 1, vtype 2)) let elts_same_1 = elts_same (fun vtype -> Arity1 (vtype 0, vtype 1)) (* Use for signed/unsigned invariant operations (i.e. where the operation doesn't depend on the sign of the data. *) let sign_invar_io_lane = make_sign_invariant elts_same_io_lane let sign_invar_io = make_sign_invariant elts_same_io let sign_invar_2_lane = make_sign_invariant elts_same_2_lane let sign_invar_2 = make_sign_invariant elts_same_2 let sign_invar_1 = make_sign_invariant elts_same_1 (* Sign-sensitive comparison. *) let cmp_sign_matters shape elt = let vtype = type_for_elt shape elt and rtype = type_for_elt shape (unsigned_of_elt elt) 0 in Arity2 (rtype, vtype 1, vtype 2), elt (* Signed/unsigned invariant comparison. *) let cmp_sign_invar shape elt = let shape', elt' = cmp_sign_matters shape elt in let elt'' = match non_signed_variant elt' with P8 -> I8 | x -> x in shape', elt'' (* Comparison (VTST) where only the element width matters. *) let cmp_bits shape elt = let vtype = type_for_elt shape elt and rtype = type_for_elt shape (unsigned_of_elt elt) 0 and bits_only = bits_of_elt elt in Arity2 (rtype, vtype 1, vtype 2), bits_only let reg_shift shape elt = let vtype = type_for_elt shape elt and op2type = type_for_elt shape (signed_of_elt elt) 2 in Arity2 (vtype 0, vtype 1, op2type), elt (* Genericised constant-shift type-generating function. *) let const_shift mkimm ?arity ?result shape elt = let op2type = (shapemap shape 2) elt in let op2width = elt_width op2type in let op2 = mkimm op2width and op1 = type_for_elt shape elt 1 and r_elt = match result with None -> elt | Some restriction -> restriction elt in let rtype = type_for_elt shape r_elt 0 in match arity with None -> Arity2 (rtype, op1, op2), elt | Some mkarity -> mkarity rtype op1 op2, elt (* Use for immediate right-shifts. *) let shift_right shape elt = const_shift (fun imm -> T_immediate (1, imm)) shape elt let shift_right_acc shape elt = const_shift (fun imm -> T_immediate (1, imm)) ~arity:(fun dst op1 op2 -> Arity3 (dst, dst, op1, op2)) shape elt (* Use for immediate right-shifts when the operation doesn't care about signedness. *) let shift_right_sign_invar = make_sign_invariant shift_right (* Immediate right-shift; result is unsigned even when operand is signed. *) let shift_right_to_uns shape elt = const_shift (fun imm -> T_immediate (1, imm)) ~result:unsigned_of_elt shape elt (* Immediate left-shift. *) let shift_left shape elt = const_shift (fun imm -> T_immediate (0, imm - 1)) shape elt (* Immediate left-shift, unsigned result. *) let shift_left_to_uns shape elt = const_shift (fun imm -> T_immediate (0, imm - 1)) ~result:unsigned_of_elt shape elt (* Immediate left-shift, don't care about signs. *) let shift_left_sign_invar = make_sign_invariant shift_left (* Shift left/right and insert: only element size matters. *) let shift_insert shape elt = let arity, elt = const_shift (fun imm -> T_immediate (1, imm)) ~arity:(fun dst op1 op2 -> Arity3 (dst, dst, op1, op2)) shape elt in arity, bits_of_elt elt (* Get/set lane. *) let get_lane shape elt = let vtype = type_for_elt shape elt in Arity2 (vtype 0, vtype 1, vtype 2), (match elt with P8 -> U8 | P16 -> U16 | S32 | U32 | F32 -> B32 | x -> x) let set_lane shape elt = let vtype = type_for_elt shape elt in Arity3 (vtype 0, vtype 1, vtype 2, vtype 3), bits_of_elt elt let set_lane_notype shape elt = let vtype = type_for_elt shape elt in Arity3 (vtype 0, vtype 1, vtype 2, vtype 3), NoElts let create_vector shape elt = let vtype = type_for_elt shape U64 1 and rtype = type_for_elt shape elt 0 in Arity1 (rtype, vtype), elt let conv make_arity shape elt = let edest, esrc = match elt with Conv (edest, esrc) | Cast (edest, esrc) -> edest, esrc | _ -> failwith "Non-conversion element in conversion" in let vtype = type_for_elt shape esrc and rtype = type_for_elt shape edest 0 in make_arity rtype vtype, elt let conv_1 = conv (fun rtype vtype -> Arity1 (rtype, vtype 1)) let conv_2 = conv (fun rtype vtype -> Arity2 (rtype, vtype 1, vtype 2)) (* Operation has an unsigned result even if operands are signed. *) let dst_unsign make_arity shape elt = let vtype = type_for_elt shape elt and rtype = type_for_elt shape (unsigned_of_elt elt) 0 in make_arity rtype vtype, elt let dst_unsign_1 = dst_unsign (fun rtype vtype -> Arity1 (rtype, vtype 1)) let make_bits_only func shape elt = let arity, elt' = func shape elt in arity, bits_of_elt elt' (* Extend operation. *) let extend shape elt = let vtype = type_for_elt shape elt in Arity3 (vtype 0, vtype 1, vtype 2, vtype 3), bits_of_elt elt (* Table look-up operations. Operand 2 is signed/unsigned for signed/unsigned integer ops respectively, or unsigned for polynomial ops. *) let table mkarity shape elt = let vtype = type_for_elt shape elt in let op2 = type_for_elt shape (poly_unsigned_variant elt) 2 in mkarity vtype op2, bits_of_elt elt let table_2 = table (fun vtype op2 -> Arity2 (vtype 0, vtype 1, op2)) let table_io = table (fun vtype op2 -> Arity3 (vtype 0, vtype 0, vtype 1, op2)) (* Operations where only bits matter. *) let bits_1 = make_bits_only elts_same_1 let bits_2 = make_bits_only elts_same_2 let bits_3 = make_bits_only elts_same_3 (* Store insns. *) let store_1 shape elt = let vtype = type_for_elt shape elt in Arity2 (T_void, vtype 0, vtype 1), bits_of_elt elt let store_3 shape elt = let vtype = type_for_elt shape elt in Arity3 (T_void, vtype 0, vtype 1, vtype 2), bits_of_elt elt let make_notype func shape elt = let arity, _ = func shape elt in arity, NoElts let notype_1 = make_notype elts_same_1 let notype_2 = make_notype elts_same_2 let notype_3 = make_notype elts_same_3 (* Bit-select operations (first operand is unsigned int). *) let bit_select shape elt = let vtype = type_for_elt shape elt and itype = type_for_elt shape (unsigned_of_elt elt) in Arity3 (vtype 0, itype 1, vtype 2, vtype 3), NoElts (* Common lists of supported element types. *) let su_8_32 = [S8; S16; S32; U8; U16; U32] let su_8_64 = S64 :: U64 :: su_8_32 let su_16_64 = [S16; S32; S64; U16; U32; U64] let pf_su_8_32 = P8 :: P16 :: F32 :: su_8_32 let pf_su_8_64 = P8 :: P16 :: F32 :: su_8_64 let ops = [ (* Addition. *) Vadd, [], All (3, Dreg), "vadd", sign_invar_2, F32 :: su_8_64; Vadd, [], All (3, Qreg), "vaddQ", sign_invar_2, F32 :: su_8_64; Vadd, [], Long, "vaddl", elts_same_2, su_8_32; Vadd, [], Wide, "vaddw", elts_same_2, su_8_32; Vadd, [Halving], All (3, Dreg), "vhadd", elts_same_2, su_8_32; Vadd, [Halving], All (3, Qreg), "vhaddQ", elts_same_2, su_8_32; Vadd, [Instruction_name ["vrhadd"]; Rounding; Halving], All (3, Dreg), "vRhadd", elts_same_2, su_8_32; Vadd, [Instruction_name ["vrhadd"]; Rounding; Halving], All (3, Qreg), "vRhaddQ", elts_same_2, su_8_32; Vadd, [Saturating], All (3, Dreg), "vqadd", elts_same_2, su_8_64; Vadd, [Saturating], All (3, Qreg), "vqaddQ", elts_same_2, su_8_64; Vadd, [High_half], Narrow, "vaddhn", sign_invar_2, su_16_64; Vadd, [Instruction_name ["vraddhn"]; Rounding; High_half], Narrow, "vRaddhn", sign_invar_2, su_16_64; (* Multiplication. *) Vmul, [], All (3, Dreg), "vmul", sign_invar_2, P8 :: F32 :: su_8_32; Vmul, [], All (3, Qreg), "vmulQ", sign_invar_2, P8 :: F32 :: su_8_32; Vmul, [Saturating; Doubling; High_half], All (3, Dreg), "vqdmulh", elts_same_2, [S16; S32]; Vmul, [Saturating; Doubling; High_half], All (3, Qreg), "vqdmulhQ", elts_same_2, [S16; S32]; Vmul, [Saturating; Rounding; Doubling; High_half; Instruction_name ["vqrdmulh"]], All (3, Dreg), "vqRdmulh", elts_same_2, [S16; S32]; Vmul, [Saturating; Rounding; Doubling; High_half; Instruction_name ["vqrdmulh"]], All (3, Qreg), "vqRdmulhQ", elts_same_2, [S16; S32]; Vmul, [], Long, "vmull", elts_same_2, P8 :: su_8_32; Vmul, [Saturating; Doubling], Long, "vqdmull", elts_same_2, [S16; S32]; (* Multiply-accumulate. *) Vmla, [], All (3, Dreg), "vmla", sign_invar_io, F32 :: su_8_32; Vmla, [], All (3, Qreg), "vmlaQ", sign_invar_io, F32 :: su_8_32; Vmla, [], Long, "vmlal", elts_same_io, su_8_32; Vmla, [Saturating; Doubling], Long, "vqdmlal", elts_same_io, [S16; S32]; (* Multiply-subtract. *) Vmls, [], All (3, Dreg), "vmls", sign_invar_io, F32 :: su_8_32; Vmls, [], All (3, Qreg), "vmlsQ", sign_invar_io, F32 :: su_8_32; Vmls, [], Long, "vmlsl", elts_same_io, su_8_32; Vmls, [Saturating; Doubling], Long, "vqdmlsl", elts_same_io, [S16; S32]; (* Subtraction. *) Vsub, [], All (3, Dreg), "vsub", sign_invar_2, F32 :: su_8_64; Vsub, [], All (3, Qreg), "vsubQ", sign_invar_2, F32 :: su_8_64; Vsub, [], Long, "vsubl", elts_same_2, su_8_32; Vsub, [], Wide, "vsubw", elts_same_2, su_8_32; Vsub, [Halving], All (3, Dreg), "vhsub", elts_same_2, su_8_32; Vsub, [Halving], All (3, Qreg), "vhsubQ", elts_same_2, su_8_32; Vsub, [Saturating], All (3, Dreg), "vqsub", elts_same_2, su_8_64; Vsub, [Saturating], All (3, Qreg), "vqsubQ", elts_same_2, su_8_64; Vsub, [High_half], Narrow, "vsubhn", sign_invar_2, su_16_64; Vsub, [Instruction_name ["vrsubhn"]; Rounding; High_half], Narrow, "vRsubhn", sign_invar_2, su_16_64; (* Comparison, equal. *) Vceq, [], All (3, Dreg), "vceq", cmp_sign_invar, P8 :: F32 :: su_8_32; Vceq, [], All (3, Qreg), "vceqQ", cmp_sign_invar, P8 :: F32 :: su_8_32; (* Comparison, greater-than or equal. *) Vcge, [], All (3, Dreg), "vcge", cmp_sign_matters, F32 :: su_8_32; Vcge, [], All (3, Qreg), "vcgeQ", cmp_sign_matters, F32 :: su_8_32; (* Comparison, less-than or equal. *) Vcle, [Flipped "vcge"], All (3, Dreg), "vcle", cmp_sign_matters, F32 :: su_8_32; Vcle, [Instruction_name ["vcge"]; Flipped "vcgeQ"], All (3, Qreg), "vcleQ", cmp_sign_matters, F32 :: su_8_32; (* Comparison, greater-than. *) Vcgt, [], All (3, Dreg), "vcgt", cmp_sign_matters, F32 :: su_8_32; Vcgt, [], All (3, Qreg), "vcgtQ", cmp_sign_matters, F32 :: su_8_32; (* Comparison, less-than. *) Vclt, [Flipped "vcgt"], All (3, Dreg), "vclt", cmp_sign_matters, F32 :: su_8_32; Vclt, [Instruction_name ["vcgt"]; Flipped "vcgtQ"], All (3, Qreg), "vcltQ", cmp_sign_matters, F32 :: su_8_32; (* Compare absolute greater-than or equal. *) Vcage, [Instruction_name ["vacge"]], All (3, Dreg), "vcage", cmp_sign_matters, [F32]; Vcage, [Instruction_name ["vacge"]], All (3, Qreg), "vcageQ", cmp_sign_matters, [F32]; (* Compare absolute less-than or equal. *) Vcale, [Instruction_name ["vacge"]; Flipped "vcage"], All (3, Dreg), "vcale", cmp_sign_matters, [F32]; Vcale, [Instruction_name ["vacge"]; Flipped "vcageQ"], All (3, Qreg), "vcaleQ", cmp_sign_matters, [F32]; (* Compare absolute greater-than or equal. *) Vcagt, [Instruction_name ["vacgt"]], All (3, Dreg), "vcagt", cmp_sign_matters, [F32]; Vcagt, [Instruction_name ["vacgt"]], All (3, Qreg), "vcagtQ", cmp_sign_matters, [F32]; (* Compare absolute less-than or equal. *) Vcalt, [Instruction_name ["vacgt"]; Flipped "vcagt"], All (3, Dreg), "vcalt", cmp_sign_matters, [F32]; Vcalt, [Instruction_name ["vacgt"]; Flipped "vcagtQ"], All (3, Qreg), "vcaltQ", cmp_sign_matters, [F32]; (* Test bits. *) Vtst, [], All (3, Dreg), "vtst", cmp_bits, P8 :: su_8_32; Vtst, [], All (3, Qreg), "vtstQ", cmp_bits, P8 :: su_8_32; (* Absolute difference. *) Vabd, [], All (3, Dreg), "vabd", elts_same_2, F32 :: su_8_32; Vabd, [], All (3, Qreg), "vabdQ", elts_same_2, F32 :: su_8_32; Vabd, [], Long, "vabdl", elts_same_2, su_8_32; (* Absolute difference and accumulate. *) Vaba, [], All (3, Dreg), "vaba", elts_same_io, su_8_32; Vaba, [], All (3, Qreg), "vabaQ", elts_same_io, su_8_32; Vaba, [], Long, "vabal", elts_same_io, su_8_32; (* Max. *) Vmax, [], All (3, Dreg), "vmax", elts_same_2, F32 :: su_8_32; Vmax, [], All (3, Qreg), "vmaxQ", elts_same_2, F32 :: su_8_32; (* Min. *) Vmin, [], All (3, Dreg), "vmin", elts_same_2, F32 :: su_8_32; Vmin, [], All (3, Qreg), "vminQ", elts_same_2, F32 :: su_8_32; (* Pairwise add. *) Vpadd, [], All (3, Dreg), "vpadd", sign_invar_2, F32 :: su_8_32; Vpadd, [], Long_noreg Dreg, "vpaddl", elts_same_1, su_8_32; Vpadd, [], Long_noreg Qreg, "vpaddlQ", elts_same_1, su_8_32; (* Pairwise add, widen and accumulate. *) Vpada, [], Wide_noreg Dreg, "vpadal", elts_same_2, su_8_32; Vpada, [], Wide_noreg Qreg, "vpadalQ", elts_same_2, su_8_32; (* Folding maximum, minimum. *) Vpmax, [], All (3, Dreg), "vpmax", elts_same_2, F32 :: su_8_32; Vpmin, [], All (3, Dreg), "vpmin", elts_same_2, F32 :: su_8_32; (* Reciprocal step. *) Vrecps, [], All (3, Dreg), "vrecps", elts_same_2, [F32]; Vrecps, [], All (3, Qreg), "vrecpsQ", elts_same_2, [F32]; Vrsqrts, [], All (3, Dreg), "vrsqrts", elts_same_2, [F32]; Vrsqrts, [], All (3, Qreg), "vrsqrtsQ", elts_same_2, [F32]; (* Vector shift left. *) Vshl, [], All (3, Dreg), "vshl", reg_shift, su_8_64; Vshl, [], All (3, Qreg), "vshlQ", reg_shift, su_8_64; Vshl, [Instruction_name ["vrshl"]; Rounding], All (3, Dreg), "vRshl", reg_shift, su_8_64; Vshl, [Instruction_name ["vrshl"]; Rounding], All (3, Qreg), "vRshlQ", reg_shift, su_8_64; Vshl, [Saturating], All (3, Dreg), "vqshl", reg_shift, su_8_64; Vshl, [Saturating], All (3, Qreg), "vqshlQ", reg_shift, su_8_64; Vshl, [Instruction_name ["vqrshl"]; Saturating; Rounding], All (3, Dreg), "vqRshl", reg_shift, su_8_64; Vshl, [Instruction_name ["vqrshl"]; Saturating; Rounding], All (3, Qreg), "vqRshlQ", reg_shift, su_8_64; (* Vector shift right by constant. *) Vshr_n, [], Binary_imm Dreg, "vshr_n", shift_right, su_8_64; Vshr_n, [], Binary_imm Qreg, "vshrQ_n", shift_right, su_8_64; Vshr_n, [Instruction_name ["vrshr"]; Rounding], Binary_imm Dreg, "vRshr_n", shift_right, su_8_64; Vshr_n, [Instruction_name ["vrshr"]; Rounding], Binary_imm Qreg, "vRshrQ_n", shift_right, su_8_64; Vshr_n, [], Narrow_imm, "vshrn_n", shift_right_sign_invar, su_16_64; Vshr_n, [Instruction_name ["vrshrn"]; Rounding], Narrow_imm, "vRshrn_n", shift_right_sign_invar, su_16_64; Vshr_n, [Saturating], Narrow_imm, "vqshrn_n", shift_right, su_16_64; Vshr_n, [Instruction_name ["vqrshrn"]; Saturating; Rounding], Narrow_imm, "vqRshrn_n", shift_right, su_16_64; Vshr_n, [Saturating; Dst_unsign], Narrow_imm, "vqshrun_n", shift_right_to_uns, [S16; S32; S64]; Vshr_n, [Instruction_name ["vqrshrun"]; Saturating; Dst_unsign; Rounding], Narrow_imm, "vqRshrun_n", shift_right_to_uns, [S16; S32; S64]; (* Vector shift left by constant. *) Vshl_n, [], Binary_imm Dreg, "vshl_n", shift_left_sign_invar, su_8_64; Vshl_n, [], Binary_imm Qreg, "vshlQ_n", shift_left_sign_invar, su_8_64; Vshl_n, [Saturating], Binary_imm Dreg, "vqshl_n", shift_left, su_8_64; Vshl_n, [Saturating], Binary_imm Qreg, "vqshlQ_n", shift_left, su_8_64; Vshl_n, [Saturating; Dst_unsign], Binary_imm Dreg, "vqshlu_n", shift_left_to_uns, [S8; S16; S32; S64]; Vshl_n, [Saturating; Dst_unsign], Binary_imm Qreg, "vqshluQ_n", shift_left_to_uns, [S8; S16; S32; S64]; Vshl_n, [], Long_imm, "vshll_n", shift_left, su_8_32; (* Vector shift right by constant and accumulate. *) Vsra_n, [], Binary_imm Dreg, "vsra_n", shift_right_acc, su_8_64; Vsra_n, [], Binary_imm Qreg, "vsraQ_n", shift_right_acc, su_8_64; Vsra_n, [Instruction_name ["vrsra"]; Rounding], Binary_imm Dreg, "vRsra_n", shift_right_acc, su_8_64; Vsra_n, [Instruction_name ["vrsra"]; Rounding], Binary_imm Qreg, "vRsraQ_n", shift_right_acc, su_8_64; (* Vector shift right and insert. *) Vsri, [], Use_operands [| Dreg; Dreg; Immed |], "vsri_n", shift_insert, P8 :: P16 :: su_8_64; Vsri, [], Use_operands [| Qreg; Qreg; Immed |], "vsriQ_n", shift_insert, P8 :: P16 :: su_8_64; (* Vector shift left and insert. *) Vsli, [], Use_operands [| Dreg; Dreg; Immed |], "vsli_n", shift_insert, P8 :: P16 :: su_8_64; Vsli, [], Use_operands [| Qreg; Qreg; Immed |], "vsliQ_n", shift_insert, P8 :: P16 :: su_8_64; (* Absolute value. *) Vabs, [], All (2, Dreg), "vabs", elts_same_1, [S8; S16; S32; F32]; Vabs, [], All (2, Qreg), "vabsQ", elts_same_1, [S8; S16; S32; F32]; Vabs, [Saturating], All (2, Dreg), "vqabs", elts_same_1, [S8; S16; S32]; Vabs, [Saturating], All (2, Qreg), "vqabsQ", elts_same_1, [S8; S16; S32]; (* Negate. *) Vneg, [], All (2, Dreg), "vneg", elts_same_1, [S8; S16; S32; F32]; Vneg, [], All (2, Qreg), "vnegQ", elts_same_1, [S8; S16; S32; F32]; Vneg, [Saturating], All (2, Dreg), "vqneg", elts_same_1, [S8; S16; S32]; Vneg, [Saturating], All (2, Qreg), "vqnegQ", elts_same_1, [S8; S16; S32]; (* Bitwise not. *) Vmvn, [], All (2, Dreg), "vmvn", notype_1, P8 :: su_8_32; Vmvn, [], All (2, Qreg), "vmvnQ", notype_1, P8 :: su_8_32; (* Count leading sign bits. *) Vcls, [], All (2, Dreg), "vcls", elts_same_1, [S8; S16; S32]; Vcls, [], All (2, Qreg), "vclsQ", elts_same_1, [S8; S16; S32]; (* Count leading zeros. *) Vclz, [], All (2, Dreg), "vclz", sign_invar_1, su_8_32; Vclz, [], All (2, Qreg), "vclzQ", sign_invar_1, su_8_32; (* Count number of set bits. *) Vcnt, [], All (2, Dreg), "vcnt", bits_1, [P8; S8; U8]; Vcnt, [], All (2, Qreg), "vcntQ", bits_1, [P8; S8; U8]; (* Reciprocal estimate. *) Vrecpe, [], All (2, Dreg), "vrecpe", elts_same_1, [U32; F32]; Vrecpe, [], All (2, Qreg), "vrecpeQ", elts_same_1, [U32; F32]; (* Reciprocal square-root estimate. *) Vrsqrte, [], All (2, Dreg), "vrsqrte", elts_same_1, [U32; F32]; Vrsqrte, [], All (2, Qreg), "vrsqrteQ", elts_same_1, [U32; F32]; (* Get lanes from a vector. *) Vget_lane, [InfoWord; Disassembles_as [Use_operands [| Corereg; Element_of_dreg |]]; Instruction_name ["vmov"]], Use_operands [| Corereg; Dreg; Immed |], "vget_lane", get_lane, pf_su_8_32; Vget_lane, [InfoWord; Disassembles_as [Use_operands [| Corereg; Corereg; Dreg |]]; Instruction_name ["vmov"]; Const_valuator (fun _ -> 0)], Use_operands [| Corereg; Dreg; Immed |], "vget_lane", notype_2, [S64; U64]; Vget_lane, [InfoWord; Disassembles_as [Use_operands [| Corereg; Element_of_dreg |]]; Instruction_name ["vmov"]], Use_operands [| Corereg; Qreg; Immed |], "vgetQ_lane", get_lane, pf_su_8_32; Vget_lane, [InfoWord; Disassembles_as [Use_operands [| Corereg; Corereg; Dreg |]]; Instruction_name ["vmov"]; Const_valuator (fun _ -> 0)], Use_operands [| Corereg; Qreg; Immed |], "vgetQ_lane", notype_2, [S64; U64]; (* Set lanes in a vector. *) Vset_lane, [Disassembles_as [Use_operands [| Element_of_dreg; Corereg |]]; Instruction_name ["vmov"]], Use_operands [| Dreg; Corereg; Dreg; Immed |], "vset_lane", set_lane, pf_su_8_32; Vset_lane, [Disassembles_as [Use_operands [| Dreg; Corereg; Corereg |]]; Instruction_name ["vmov"]; Const_valuator (fun _ -> 0)], Use_operands [| Dreg; Corereg; Dreg; Immed |], "vset_lane", set_lane_notype, [S64; U64]; Vset_lane, [Disassembles_as [Use_operands [| Element_of_dreg; Corereg |]]; Instruction_name ["vmov"]], Use_operands [| Qreg; Corereg; Qreg; Immed |], "vsetQ_lane", set_lane, pf_su_8_32; Vset_lane, [Disassembles_as [Use_operands [| Dreg; Corereg; Corereg |]]; Instruction_name ["vmov"]; Const_valuator (fun _ -> 0)], Use_operands [| Qreg; Corereg; Qreg; Immed |], "vsetQ_lane", set_lane_notype, [S64; U64]; (* Create vector from literal bit pattern. *) Vcreate, [No_op], (* Not really, but it can yield various things that are too hard for the test generator at this time. *) Use_operands [| Dreg; Corereg |], "vcreate", create_vector, pf_su_8_64; (* Set all lanes to the same value. *) Vdup_n, [Disassembles_as [Use_operands [| Dreg; Alternatives [ Corereg; Element_of_dreg ] |]]], Use_operands [| Dreg; Corereg |], "vdup_n", bits_1, pf_su_8_32; Vdup_n, [Instruction_name ["vmov"]; Disassembles_as [Use_operands [| Dreg; Corereg; Corereg |]]], Use_operands [| Dreg; Corereg |], "vdup_n", notype_1, [S64; U64]; Vdup_n, [Disassembles_as [Use_operands [| Qreg; Alternatives [ Corereg; Element_of_dreg ] |]]], Use_operands [| Qreg; Corereg |], "vdupQ_n", bits_1, pf_su_8_32; Vdup_n, [Instruction_name ["vmov"]; Disassembles_as [Use_operands [| Dreg; Corereg; Corereg |]; Use_operands [| Dreg; Corereg; Corereg |]]], Use_operands [| Qreg; Corereg |], "vdupQ_n", notype_1, [S64; U64]; (* These are just aliases for the above. *) Vmov_n, [Builtin_name "vdup_n"; Disassembles_as [Use_operands [| Dreg; Alternatives [ Corereg; Element_of_dreg ] |]]], Use_operands [| Dreg; Corereg |], "vmov_n", bits_1, pf_su_8_32; Vmov_n, [Builtin_name "vdup_n"; Instruction_name ["vmov"]; Disassembles_as [Use_operands [| Dreg; Corereg; Corereg |]]], Use_operands [| Dreg; Corereg |], "vmov_n", notype_1, [S64; U64]; Vmov_n, [Builtin_name "vdupQ_n"; Disassembles_as [Use_operands [| Qreg; Alternatives [ Corereg; Element_of_dreg ] |]]], Use_operands [| Qreg; Corereg |], "vmovQ_n", bits_1, pf_su_8_32; Vmov_n, [Builtin_name "vdupQ_n"; Instruction_name ["vmov"]; Disassembles_as [Use_operands [| Dreg; Corereg; Corereg |]; Use_operands [| Dreg; Corereg; Corereg |]]], Use_operands [| Qreg; Corereg |], "vmovQ_n", notype_1, [S64; U64]; (* Duplicate, lane version. We can't use Use_operands here because the rightmost register (always Dreg) would be picked up by find_key_operand, when we want the leftmost register to be used in this case (otherwise the modes are indistinguishable in neon.md, etc. *) Vdup_lane, [Disassembles_as [Use_operands [| Dreg; Element_of_dreg |]]], Unary_scalar Dreg, "vdup_lane", bits_2, pf_su_8_32; Vdup_lane, [No_op; Const_valuator (fun _ -> 0)], Unary_scalar Dreg, "vdup_lane", bits_2, [S64; U64]; Vdup_lane, [Disassembles_as [Use_operands [| Qreg; Element_of_dreg |]]], Unary_scalar Qreg, "vdupQ_lane", bits_2, pf_su_8_32; Vdup_lane, [No_op; Const_valuator (fun _ -> 0)], Unary_scalar Qreg, "vdupQ_lane", bits_2, [S64; U64]; (* Combining vectors. *) Vcombine, [No_op], Use_operands [| Qreg; Dreg; Dreg |], "vcombine", notype_2, pf_su_8_64; (* Splitting vectors. *) Vget_high, [No_op], Use_operands [| Dreg; Qreg |], "vget_high", notype_1, pf_su_8_64; Vget_low, [Instruction_name ["vmov"]; Disassembles_as [Use_operands [| Dreg; Dreg |]]; Fixed_return_reg], Use_operands [| Dreg; Qreg |], "vget_low", notype_1, pf_su_8_32; Vget_low, [No_op], Use_operands [| Dreg; Qreg |], "vget_low", notype_1, [S64; U64]; (* Conversions. *) Vcvt, [InfoWord], All (2, Dreg), "vcvt", conv_1, [Conv (S32, F32); Conv (U32, F32); Conv (F32, S32); Conv (F32, U32)]; Vcvt, [InfoWord], All (2, Qreg), "vcvtQ", conv_1, [Conv (S32, F32); Conv (U32, F32); Conv (F32, S32); Conv (F32, U32)]; Vcvt_n, [InfoWord], Use_operands [| Dreg; Dreg; Immed |], "vcvt_n", conv_2, [Conv (S32, F32); Conv (U32, F32); Conv (F32, S32); Conv (F32, U32)]; Vcvt_n, [InfoWord], Use_operands [| Qreg; Qreg; Immed |], "vcvtQ_n", conv_2, [Conv (S32, F32); Conv (U32, F32); Conv (F32, S32); Conv (F32, U32)]; (* Move, narrowing. *) Vmovn, [Disassembles_as [Use_operands [| Dreg; Qreg |]]], Narrow, "vmovn", sign_invar_1, su_16_64; Vmovn, [Disassembles_as [Use_operands [| Dreg; Qreg |]]; Saturating], Narrow, "vqmovn", elts_same_1, su_16_64; Vmovn, [Disassembles_as [Use_operands [| Dreg; Qreg |]]; Saturating; Dst_unsign], Narrow, "vqmovun", dst_unsign_1, [S16; S32; S64]; (* Move, long. *) Vmovl, [Disassembles_as [Use_operands [| Qreg; Dreg |]]], Long, "vmovl", elts_same_1, su_8_32; (* Table lookup. *) Vtbl 1, [Instruction_name ["vtbl"]; Disassembles_as [Use_operands [| Dreg; VecArray (1, Dreg); Dreg |]]], Use_operands [| Dreg; Dreg; Dreg |], "vtbl1", table_2, [U8; S8; P8]; Vtbl 2, [Instruction_name ["vtbl"]], Use_operands [| Dreg; VecArray (2, Dreg); Dreg |], "vtbl2", table_2, [U8; S8; P8]; Vtbl 3, [Instruction_name ["vtbl"]], Use_operands [| Dreg; VecArray (3, Dreg); Dreg |], "vtbl3", table_2, [U8; S8; P8]; Vtbl 4, [Instruction_name ["vtbl"]], Use_operands [| Dreg; VecArray (4, Dreg); Dreg |], "vtbl4", table_2, [U8; S8; P8]; (* Extended table lookup. *) Vtbx 1, [Instruction_name ["vtbx"]; Disassembles_as [Use_operands [| Dreg; VecArray (1, Dreg); Dreg |]]], Use_operands [| Dreg; Dreg; Dreg |], "vtbx1", table_io, [U8; S8; P8]; Vtbx 2, [Instruction_name ["vtbx"]], Use_operands [| Dreg; VecArray (2, Dreg); Dreg |], "vtbx2", table_io, [U8; S8; P8]; Vtbx 3, [Instruction_name ["vtbx"]], Use_operands [| Dreg; VecArray (3, Dreg); Dreg |], "vtbx3", table_io, [U8; S8; P8]; Vtbx 4, [Instruction_name ["vtbx"]], Use_operands [| Dreg; VecArray (4, Dreg); Dreg |], "vtbx4", table_io, [U8; S8; P8]; (* Multiply, lane. (note: these were undocumented at the time of writing). *) Vmul_lane, [], By_scalar Dreg, "vmul_lane", sign_invar_2_lane, [S16; S32; U16; U32; F32]; Vmul_lane, [], By_scalar Qreg, "vmulQ_lane", sign_invar_2_lane, [S16; S32; U16; U32; F32]; (* Multiply-accumulate, lane. *) Vmla_lane, [], By_scalar Dreg, "vmla_lane", sign_invar_io_lane, [S16; S32; U16; U32; F32]; Vmla_lane, [], By_scalar Qreg, "vmlaQ_lane", sign_invar_io_lane, [S16; S32; U16; U32; F32]; Vmla_lane, [], Wide_lane, "vmlal_lane", elts_same_io_lane, [S16; S32; U16; U32]; Vmla_lane, [Saturating; Doubling], Wide_lane, "vqdmlal_lane", elts_same_io_lane, [S16; S32]; (* Multiply-subtract, lane. *) Vmls_lane, [], By_scalar Dreg, "vmls_lane", sign_invar_io_lane, [S16; S32; U16; U32; F32]; Vmls_lane, [], By_scalar Qreg, "vmlsQ_lane", sign_invar_io_lane, [S16; S32; U16; U32; F32]; Vmls_lane, [], Wide_lane, "vmlsl_lane", elts_same_io_lane, [S16; S32; U16; U32]; Vmls_lane, [Saturating; Doubling], Wide_lane, "vqdmlsl_lane", elts_same_io_lane, [S16; S32]; (* Long multiply, lane. *) Vmull_lane, [], Wide_lane, "vmull_lane", elts_same_2_lane, [S16; S32; U16; U32]; (* Saturating doubling long multiply, lane. *) Vqdmull_lane, [Saturating; Doubling], Wide_lane, "vqdmull_lane", elts_same_2_lane, [S16; S32]; (* Saturating doubling long multiply high, lane. *) Vqdmulh_lane, [Saturating; Halving], By_scalar Qreg, "vqdmulhQ_lane", elts_same_2_lane, [S16; S32]; Vqdmulh_lane, [Saturating; Halving], By_scalar Dreg, "vqdmulh_lane", elts_same_2_lane, [S16; S32]; Vqdmulh_lane, [Saturating; Halving; Rounding; Instruction_name ["vqrdmulh"]], By_scalar Qreg, "vqRdmulhQ_lane", elts_same_2_lane, [S16; S32]; Vqdmulh_lane, [Saturating; Halving; Rounding; Instruction_name ["vqrdmulh"]], By_scalar Dreg, "vqRdmulh_lane", elts_same_2_lane, [S16; S32]; (* Vector multiply by scalar. *) Vmul_n, [InfoWord; Disassembles_as [Use_operands [| Dreg; Dreg; Element_of_dreg |]]], Use_operands [| Dreg; Dreg; Corereg |], "vmul_n", sign_invar_2, [S16; S32; U16; U32; F32]; Vmul_n, [InfoWord; Disassembles_as [Use_operands [| Qreg; Qreg; Element_of_dreg |]]], Use_operands [| Qreg; Qreg; Corereg |], "vmulQ_n", sign_invar_2, [S16; S32; U16; U32; F32]; (* Vector long multiply by scalar. *) Vmull_n, [Instruction_name ["vmull"]; Disassembles_as [Use_operands [| Qreg; Dreg; Element_of_dreg |]]], Wide_scalar, "vmull_n", elts_same_2, [S16; S32; U16; U32]; (* Vector saturating doubling long multiply by scalar. *) Vqdmull_n, [Saturating; Doubling; Disassembles_as [Use_operands [| Qreg; Dreg; Element_of_dreg |]]], Wide_scalar, "vqdmull_n", elts_same_2, [S16; S32]; (* Vector saturating doubling long multiply high by scalar. *) Vqdmulh_n, [Saturating; Halving; InfoWord; Disassembles_as [Use_operands [| Qreg; Qreg; Element_of_dreg |]]], Use_operands [| Qreg; Qreg; Corereg |], "vqdmulhQ_n", elts_same_2, [S16; S32]; Vqdmulh_n, [Saturating; Halving; InfoWord; Disassembles_as [Use_operands [| Dreg; Dreg; Element_of_dreg |]]], Use_operands [| Dreg; Dreg; Corereg |], "vqdmulh_n", elts_same_2, [S16; S32]; Vqdmulh_n, [Saturating; Halving; Rounding; InfoWord; Instruction_name ["vqrdmulh"]; Disassembles_as [Use_operands [| Qreg; Qreg; Element_of_dreg |]]], Use_operands [| Qreg; Qreg; Corereg |], "vqRdmulhQ_n", elts_same_2, [S16; S32]; Vqdmulh_n, [Saturating; Halving; Rounding; InfoWord; Instruction_name ["vqrdmulh"]; Disassembles_as [Use_operands [| Dreg; Dreg; Element_of_dreg |]]], Use_operands [| Dreg; Dreg; Corereg |], "vqRdmulh_n", elts_same_2, [S16; S32]; (* Vector multiply-accumulate by scalar. *) Vmla_n, [InfoWord; Disassembles_as [Use_operands [| Dreg; Dreg; Element_of_dreg |]]], Use_operands [| Dreg; Dreg; Corereg |], "vmla_n", sign_invar_io, [S16; S32; U16; U32; F32]; Vmla_n, [InfoWord; Disassembles_as [Use_operands [| Qreg; Qreg; Element_of_dreg |]]], Use_operands [| Qreg; Qreg; Corereg |], "vmlaQ_n", sign_invar_io, [S16; S32; U16; U32; F32]; Vmla_n, [], Wide_scalar, "vmlal_n", elts_same_io, [S16; S32; U16; U32]; Vmla_n, [Saturating; Doubling], Wide_scalar, "vqdmlal_n", elts_same_io, [S16; S32]; (* Vector multiply subtract by scalar. *) Vmls_n, [InfoWord; Disassembles_as [Use_operands [| Dreg; Dreg; Element_of_dreg |]]], Use_operands [| Dreg; Dreg; Corereg |], "vmls_n", sign_invar_io, [S16; S32; U16; U32; F32]; Vmls_n, [InfoWord; Disassembles_as [Use_operands [| Qreg; Qreg; Element_of_dreg |]]], Use_operands [| Qreg; Qreg; Corereg |], "vmlsQ_n", sign_invar_io, [S16; S32; U16; U32; F32]; Vmls_n, [], Wide_scalar, "vmlsl_n", elts_same_io, [S16; S32; U16; U32]; Vmls_n, [Saturating; Doubling], Wide_scalar, "vqdmlsl_n", elts_same_io, [S16; S32]; (* Vector extract. *) Vext, [Const_valuator (fun _ -> 0)], Use_operands [| Dreg; Dreg; Dreg; Immed |], "vext", extend, pf_su_8_64; Vext, [Const_valuator (fun _ -> 0)], Use_operands [| Qreg; Qreg; Qreg; Immed |], "vextQ", extend, pf_su_8_64; (* Reverse elements. *) Vrev64, [], All (2, Dreg), "vrev64", bits_1, P8 :: P16 :: F32 :: su_8_32; Vrev64, [], All (2, Qreg), "vrev64Q", bits_1, P8 :: P16 :: F32 :: su_8_32; Vrev32, [], All (2, Dreg), "vrev32", bits_1, [P8; P16; S8; U8; S16; U16]; Vrev32, [], All (2, Qreg), "vrev32Q", bits_1, [P8; P16; S8; U8; S16; U16]; Vrev16, [], All (2, Dreg), "vrev16", bits_1, [P8; S8; U8]; Vrev16, [], All (2, Qreg), "vrev16Q", bits_1, [P8; S8; U8]; (* Bit selection. *) Vbsl, [Instruction_name ["vbsl"; "vbit"; "vbif"]; Disassembles_as [Use_operands [| Dreg; Dreg; Dreg |]]], Use_operands [| Dreg; Dreg; Dreg; Dreg |], "vbsl", bit_select, pf_su_8_64; Vbsl, [Instruction_name ["vbsl"; "vbit"; "vbif"]; Disassembles_as [Use_operands [| Qreg; Qreg; Qreg |]]], Use_operands [| Qreg; Qreg; Qreg; Qreg |], "vbslQ", bit_select, pf_su_8_64; (* Transpose elements. **NOTE** ReturnPtr goes some of the way towards generating good code for intrinsics which return structure types -- builtins work well by themselves (and understand that the values being stored on e.g. the stack also reside in registers, so can optimise the stores away entirely if the results are used immediately), but intrinsics are very much less efficient. Maybe something can be improved re: inlining, or tweaking the ABI used for intrinsics (a special call attribute?). *) Vtrn, [ReturnPtr], Pair_result Dreg, "vtrn", bits_2, pf_su_8_32; Vtrn, [ReturnPtr], Pair_result Qreg, "vtrnQ", bits_2, pf_su_8_32; (* Zip elements. *) Vzip, [ReturnPtr], Pair_result Dreg, "vzip", bits_2, pf_su_8_32; Vzip, [ReturnPtr], Pair_result Qreg, "vzipQ", bits_2, pf_su_8_32; (* Unzip elements. *) Vuzp, [ReturnPtr], Pair_result Dreg, "vuzp", bits_2, pf_su_8_32; Vuzp, [ReturnPtr], Pair_result Qreg, "vuzpQ", bits_2, pf_su_8_32; (* Element/structure loads. VLD1 variants. *) Vldx 1, [Disassembles_as [Use_operands [| VecArray (1, Dreg); CstPtrTo Corereg |]]], Use_operands [| Dreg; CstPtrTo Corereg |], "vld1", bits_1, pf_su_8_64; Vldx 1, [Disassembles_as [Use_operands [| VecArray (2, Dreg); CstPtrTo Corereg |]]], Use_operands [| Qreg; CstPtrTo Corereg |], "vld1Q", bits_1, pf_su_8_64; Vldx_lane 1, [Disassembles_as [Use_operands [| VecArray (1, Element_of_dreg); CstPtrTo Corereg |]]], Use_operands [| Dreg; CstPtrTo Corereg; Dreg; Immed |], "vld1_lane", bits_3, pf_su_8_32; Vldx_lane 1, [Disassembles_as [Use_operands [| VecArray (1, Dreg); CstPtrTo Corereg |]]; Const_valuator (fun _ -> 0)], Use_operands [| Dreg; CstPtrTo Corereg; Dreg; Immed |], "vld1_lane", bits_3, [S64; U64]; Vldx_lane 1, [Disassembles_as [Use_operands [| VecArray (1, Element_of_dreg); CstPtrTo Corereg |]]], Use_operands [| Qreg; CstPtrTo Corereg; Qreg; Immed |], "vld1Q_lane", bits_3, pf_su_8_32; Vldx_lane 1, [Disassembles_as [Use_operands [| VecArray (1, Dreg); CstPtrTo Corereg |]]], Use_operands [| Qreg; CstPtrTo Corereg; Qreg; Immed |], "vld1Q_lane", bits_3, [S64; U64]; Vldx_dup 1, [Disassembles_as [Use_operands [| VecArray (1, All_elements_of_dreg); CstPtrTo Corereg |]]], Use_operands [| Dreg; CstPtrTo Corereg |], "vld1_dup", bits_1, pf_su_8_32; Vldx_dup 1, [Disassembles_as [Use_operands [| VecArray (1, Dreg); CstPtrTo Corereg |]]], Use_operands [| Dreg; CstPtrTo Corereg |], "vld1_dup", bits_1, [S64; U64]; Vldx_dup 1, [Disassembles_as [Use_operands [| VecArray (2, All_elements_of_dreg); CstPtrTo Corereg |]]], Use_operands [| Qreg; CstPtrTo Corereg |], "vld1Q_dup", bits_1, pf_su_8_32; Vldx_dup 1, [Disassembles_as [Use_operands [| VecArray (2, Dreg); CstPtrTo Corereg |]]], Use_operands [| Qreg; CstPtrTo Corereg |], "vld1Q_dup", bits_1, [S64; U64]; (* VST1 variants. *) Vstx 1, [Disassembles_as [Use_operands [| VecArray (1, Dreg); PtrTo Corereg |]]], Use_operands [| PtrTo Corereg; Dreg |], "vst1", store_1, pf_su_8_64; Vstx 1, [Disassembles_as [Use_operands [| VecArray (2, Dreg); PtrTo Corereg |]]], Use_operands [| PtrTo Corereg; Qreg |], "vst1Q", store_1, pf_su_8_64; Vstx_lane 1, [Disassembles_as [Use_operands [| VecArray (1, Element_of_dreg); CstPtrTo Corereg |]]], Use_operands [| PtrTo Corereg; Dreg; Immed |], "vst1_lane", store_3, pf_su_8_32; Vstx_lane 1, [Disassembles_as [Use_operands [| VecArray (1, Dreg); CstPtrTo Corereg |]]; Const_valuator (fun _ -> 0)], Use_operands [| PtrTo Corereg; Dreg; Immed |], "vst1_lane", store_3, [U64; S64]; Vstx_lane 1, [Disassembles_as [Use_operands [| VecArray (1, Element_of_dreg); CstPtrTo Corereg |]]], Use_operands [| PtrTo Corereg; Qreg; Immed |], "vst1Q_lane", store_3, pf_su_8_32; Vstx_lane 1, [Disassembles_as [Use_operands [| VecArray (1, Dreg); CstPtrTo Corereg |]]], Use_operands [| PtrTo Corereg; Qreg; Immed |], "vst1Q_lane", store_3, [U64; S64]; (* VLD2 variants. *) Vldx 2, [], Use_operands [| VecArray (2, Dreg); CstPtrTo Corereg |], "vld2", bits_1, pf_su_8_32; Vldx 2, [Instruction_name ["vld1"]], Use_operands [| VecArray (2, Dreg); CstPtrTo Corereg |], "vld2", bits_1, [S64; U64]; Vldx 2, [Disassembles_as [Use_operands [| VecArray (2, Dreg); CstPtrTo Corereg |]; Use_operands [| VecArray (2, Dreg); CstPtrTo Corereg |]]], Use_operands [| VecArray (2, Qreg); CstPtrTo Corereg |], "vld2Q", bits_1, pf_su_8_32; Vldx_lane 2, [Disassembles_as [Use_operands [| VecArray (2, Element_of_dreg); CstPtrTo Corereg |]]], Use_operands [| VecArray (2, Dreg); CstPtrTo Corereg; VecArray (2, Dreg); Immed |], "vld2_lane", bits_3, P8 :: P16 :: F32 :: su_8_32; Vldx_lane 2, [Disassembles_as [Use_operands [| VecArray (2, Element_of_dreg); CstPtrTo Corereg |]]], Use_operands [| VecArray (2, Qreg); CstPtrTo Corereg; VecArray (2, Qreg); Immed |], "vld2Q_lane", bits_3, [P16; F32; U16; U32; S16; S32]; Vldx_dup 2, [Disassembles_as [Use_operands [| VecArray (2, All_elements_of_dreg); CstPtrTo Corereg |]]], Use_operands [| VecArray (2, Dreg); CstPtrTo Corereg |], "vld2_dup", bits_1, pf_su_8_32; Vldx_dup 2, [Instruction_name ["vld1"]; Disassembles_as [Use_operands [| VecArray (2, Dreg); CstPtrTo Corereg |]]], Use_operands [| VecArray (2, Dreg); CstPtrTo Corereg |], "vld2_dup", bits_1, [S64; U64]; (* VST2 variants. *) Vstx 2, [Disassembles_as [Use_operands [| VecArray (2, Dreg); PtrTo Corereg |]]], Use_operands [| PtrTo Corereg; VecArray (2, Dreg) |], "vst2", store_1, pf_su_8_32; Vstx 2, [Disassembles_as [Use_operands [| VecArray (2, Dreg); PtrTo Corereg |]]; Instruction_name ["vst1"]], Use_operands [| PtrTo Corereg; VecArray (2, Dreg) |], "vst2", store_1, [S64; U64]; Vstx 2, [Disassembles_as [Use_operands [| VecArray (2, Dreg); PtrTo Corereg |]; Use_operands [| VecArray (2, Dreg); PtrTo Corereg |]]], Use_operands [| PtrTo Corereg; VecArray (2, Qreg) |], "vst2Q", store_1, pf_su_8_32; Vstx_lane 2, [Disassembles_as [Use_operands [| VecArray (2, Element_of_dreg); CstPtrTo Corereg |]]], Use_operands [| PtrTo Corereg; VecArray (2, Dreg); Immed |], "vst2_lane", store_3, P8 :: P16 :: F32 :: su_8_32; Vstx_lane 2, [Disassembles_as [Use_operands [| VecArray (2, Element_of_dreg); CstPtrTo Corereg |]]], Use_operands [| PtrTo Corereg; VecArray (2, Qreg); Immed |], "vst2Q_lane", store_3, [P16; F32; U16; U32; S16; S32]; (* VLD3 variants. *) Vldx 3, [], Use_operands [| VecArray (3, Dreg); CstPtrTo Corereg |], "vld3", bits_1, pf_su_8_32; Vldx 3, [Instruction_name ["vld1"]], Use_operands [| VecArray (3, Dreg); CstPtrTo Corereg |], "vld3", bits_1, [S64; U64]; Vldx 3, [Disassembles_as [Use_operands [| VecArray (3, Dreg); CstPtrTo Corereg |]; Use_operands [| VecArray (3, Dreg); CstPtrTo Corereg |]]], Use_operands [| VecArray (3, Qreg); CstPtrTo Corereg |], "vld3Q", bits_1, P8 :: P16 :: F32 :: su_8_32; Vldx_lane 3, [Disassembles_as [Use_operands [| VecArray (3, Element_of_dreg); CstPtrTo Corereg |]]], Use_operands [| VecArray (3, Dreg); CstPtrTo Corereg; VecArray (3, Dreg); Immed |], "vld3_lane", bits_3, P8 :: P16 :: F32 :: su_8_32; Vldx_lane 3, [Disassembles_as [Use_operands [| VecArray (3, Element_of_dreg); CstPtrTo Corereg |]]], Use_operands [| VecArray (3, Qreg); CstPtrTo Corereg; VecArray (3, Qreg); Immed |], "vld3Q_lane", bits_3, [P16; F32; U16; U32; S16; S32]; Vldx_dup 3, [Disassembles_as [Use_operands [| VecArray (3, All_elements_of_dreg); CstPtrTo Corereg |]]], Use_operands [| VecArray (3, Dreg); CstPtrTo Corereg |], "vld3_dup", bits_1, pf_su_8_32; Vldx_dup 3, [Instruction_name ["vld1"]; Disassembles_as [Use_operands [| VecArray (3, Dreg); CstPtrTo Corereg |]]], Use_operands [| VecArray (3, Dreg); CstPtrTo Corereg |], "vld3_dup", bits_1, [S64; U64]; (* VST3 variants. *) Vstx 3, [Disassembles_as [Use_operands [| VecArray (4, Dreg); PtrTo Corereg |]]], Use_operands [| PtrTo Corereg; VecArray (3, Dreg) |], "vst3", store_1, pf_su_8_32; Vstx 3, [Disassembles_as [Use_operands [| VecArray (4, Dreg); PtrTo Corereg |]]; Instruction_name ["vst1"]], Use_operands [| PtrTo Corereg; VecArray (3, Dreg) |], "vst3", store_1, [S64; U64]; Vstx 3, [Disassembles_as [Use_operands [| VecArray (3, Dreg); PtrTo Corereg |]; Use_operands [| VecArray (3, Dreg); PtrTo Corereg |]]], Use_operands [| PtrTo Corereg; VecArray (3, Qreg) |], "vst3Q", store_1, pf_su_8_32; Vstx_lane 3, [Disassembles_as [Use_operands [| VecArray (3, Element_of_dreg); CstPtrTo Corereg |]]], Use_operands [| PtrTo Corereg; VecArray (3, Dreg); Immed |], "vst3_lane", store_3, P8 :: P16 :: F32 :: su_8_32; Vstx_lane 3, [Disassembles_as [Use_operands [| VecArray (3, Element_of_dreg); CstPtrTo Corereg |]]], Use_operands [| PtrTo Corereg; VecArray (3, Qreg); Immed |], "vst3Q_lane", store_3, [P16; F32; U16; U32; S16; S32]; (* VLD4/VST4 variants. *) Vldx 4, [], Use_operands [| VecArray (4, Dreg); CstPtrTo Corereg |], "vld4", bits_1, pf_su_8_32; Vldx 4, [Instruction_name ["vld1"]], Use_operands [| VecArray (4, Dreg); CstPtrTo Corereg |], "vld4", bits_1, [S64; U64]; Vldx 4, [Disassembles_as [Use_operands [| VecArray (4, Dreg); CstPtrTo Corereg |]; Use_operands [| VecArray (4, Dreg); CstPtrTo Corereg |]]], Use_operands [| VecArray (4, Qreg); CstPtrTo Corereg |], "vld4Q", bits_1, P8 :: P16 :: F32 :: su_8_32; Vldx_lane 4, [Disassembles_as [Use_operands [| VecArray (4, Element_of_dreg); CstPtrTo Corereg |]]], Use_operands [| VecArray (4, Dreg); CstPtrTo Corereg; VecArray (4, Dreg); Immed |], "vld4_lane", bits_3, P8 :: P16 :: F32 :: su_8_32; Vldx_lane 4, [Disassembles_as [Use_operands [| VecArray (4, Element_of_dreg); CstPtrTo Corereg |]]], Use_operands [| VecArray (4, Qreg); CstPtrTo Corereg; VecArray (4, Qreg); Immed |], "vld4Q_lane", bits_3, [P16; F32; U16; U32; S16; S32]; Vldx_dup 4, [Disassembles_as [Use_operands [| VecArray (4, All_elements_of_dreg); CstPtrTo Corereg |]]], Use_operands [| VecArray (4, Dreg); CstPtrTo Corereg |], "vld4_dup", bits_1, pf_su_8_32; Vldx_dup 4, [Instruction_name ["vld1"]; Disassembles_as [Use_operands [| VecArray (4, Dreg); CstPtrTo Corereg |]]], Use_operands [| VecArray (4, Dreg); CstPtrTo Corereg |], "vld4_dup", bits_1, [S64; U64]; Vstx 4, [Disassembles_as [Use_operands [| VecArray (4, Dreg); PtrTo Corereg |]]], Use_operands [| PtrTo Corereg; VecArray (4, Dreg) |], "vst4", store_1, pf_su_8_32; Vstx 4, [Disassembles_as [Use_operands [| VecArray (4, Dreg); PtrTo Corereg |]]; Instruction_name ["vst1"]], Use_operands [| PtrTo Corereg; VecArray (4, Dreg) |], "vst4", store_1, [S64; U64]; Vstx 4, [Disassembles_as [Use_operands [| VecArray (4, Dreg); PtrTo Corereg |]; Use_operands [| VecArray (4, Dreg); PtrTo Corereg |]]], Use_operands [| PtrTo Corereg; VecArray (4, Qreg) |], "vst4Q", store_1, pf_su_8_32; Vstx_lane 4, [Disassembles_as [Use_operands [| VecArray (4, Element_of_dreg); CstPtrTo Corereg |]]], Use_operands [| PtrTo Corereg; VecArray (4, Dreg); Immed |], "vst4_lane", store_3, P8 :: P16 :: F32 :: su_8_32; Vstx_lane 4, [Disassembles_as [Use_operands [| VecArray (4, Element_of_dreg); CstPtrTo Corereg |]]], Use_operands [| PtrTo Corereg; VecArray (4, Qreg); Immed |], "vst4Q_lane", store_3, [P16; F32; U16; U32; S16; S32]; (* Logical operations. And. *) Vand, [], All (3, Dreg), "vand", notype_2, su_8_64; Vand, [], All (3, Qreg), "vandQ", notype_2, su_8_64; (* Or. *) Vorr, [], All (3, Dreg), "vorr", notype_2, su_8_64; Vorr, [], All (3, Qreg), "vorrQ", notype_2, su_8_64; (* Eor. *) Veor, [], All (3, Dreg), "veor", notype_2, su_8_64; Veor, [], All (3, Qreg), "veorQ", notype_2, su_8_64; (* Bic (And-not). *) Vbic, [], All (3, Dreg), "vbic", notype_2, su_8_64; Vbic, [], All (3, Qreg), "vbicQ", notype_2, su_8_64; (* Or-not. *) Vorn, [], All (3, Dreg), "vorn", notype_2, su_8_64; Vorn, [], All (3, Qreg), "vornQ", notype_2, su_8_64; ] let reinterp = let elems = P8 :: P16 :: F32 :: su_8_64 in List.fold_right (fun convto acc -> let types = List.fold_right (fun convfrom acc -> if convfrom <> convto then Cast (convto, convfrom) :: acc else acc) elems [] in let dconv = Vreinterp, [No_op], Use_operands [| Dreg; Dreg |], "vreinterpret", conv_1, types and qconv = Vreinterp, [No_op], Use_operands [| Qreg; Qreg |], "vreinterpretQ", conv_1, types in dconv :: qconv :: acc) elems [] (* Output routines. *) let rec string_of_elt = function S8 -> "s8" | S16 -> "s16" | S32 -> "s32" | S64 -> "s64" | U8 -> "u8" | U16 -> "u16" | U32 -> "u32" | U64 -> "u64" | I8 -> "i8" | I16 -> "i16" | I32 -> "i32" | I64 -> "i64" | B8 -> "8" | B16 -> "16" | B32 -> "32" | B64 -> "64" | F32 -> "f32" | P8 -> "p8" | P16 -> "p16" | Conv (a, b) | Cast (a, b) -> string_of_elt a ^ "_" ^ string_of_elt b | NoElts -> failwith "No elts" let string_of_elt_dots elt = match elt with Conv (a, b) | Cast (a, b) -> string_of_elt a ^ "." ^ string_of_elt b | _ -> string_of_elt elt let string_of_vectype vt = let rec name affix = function T_int8x8 -> affix "int8x8" | T_int8x16 -> affix "int8x16" | T_int16x4 -> affix "int16x4" | T_int16x8 -> affix "int16x8" | T_int32x2 -> affix "int32x2" | T_int32x4 -> affix "int32x4" | T_int64x1 -> affix "int64x1" | T_int64x2 -> affix "int64x2" | T_uint8x8 -> affix "uint8x8" | T_uint8x16 -> affix "uint8x16" | T_uint16x4 -> affix "uint16x4" | T_uint16x8 -> affix "uint16x8" | T_uint32x2 -> affix "uint32x2" | T_uint32x4 -> affix "uint32x4" | T_uint64x1 -> affix "uint64x1" | T_uint64x2 -> affix "uint64x2" | T_float32x2 -> affix "float32x2" | T_float32x4 -> affix "float32x4" | T_poly8x8 -> affix "poly8x8" | T_poly8x16 -> affix "poly8x16" | T_poly16x4 -> affix "poly16x4" | T_poly16x8 -> affix "poly16x8" | T_int8 -> affix "int8" | T_int16 -> affix "int16" | T_int32 -> affix "int32" | T_int64 -> affix "int64" | T_uint8 -> affix "uint8" | T_uint16 -> affix "uint16" | T_uint32 -> affix "uint32" | T_uint64 -> affix "uint64" | T_poly8 -> affix "poly8" | T_poly16 -> affix "poly16" | T_float32 -> affix "float32" | T_immediate _ -> "const int" | T_void -> "void" | T_intQI -> "__builtin_neon_qi" | T_intHI -> "__builtin_neon_hi" | T_intSI -> "__builtin_neon_si" | T_intDI -> "__builtin_neon_di" | T_floatSF -> "__builtin_neon_sf" | T_arrayof (num, base) -> let basename = name (fun x -> x) base in affix (Printf.sprintf "%sx%d" basename num) | T_ptrto x -> let basename = name affix x in Printf.sprintf "%s *" basename | T_const x -> let basename = name affix x in Printf.sprintf "const %s" basename in name (fun x -> x ^ "_t") vt let string_of_inttype = function B_TImode -> "__builtin_neon_ti" | B_EImode -> "__builtin_neon_ei" | B_OImode -> "__builtin_neon_oi" | B_CImode -> "__builtin_neon_ci" | B_XImode -> "__builtin_neon_xi" let string_of_mode = function V8QI -> "v8qi" | V4HI -> "v4hi" | V2SI -> "v2si" | V2SF -> "v2sf" | DI -> "di" | V16QI -> "v16qi" | V8HI -> "v8hi" | V4SI -> "v4si" | V4SF -> "v4sf" | V2DI -> "v2di" | QI -> "qi" | HI -> "hi" | SI -> "si" | SF -> "sf" (* Use uppercase chars for letters which form part of the intrinsic name, but should be omitted from the builtin name (the info is passed in an extra argument, instead). *) let intrinsic_name name = String.lowercase name (* Allow the name of the builtin to be overridden by things (e.g. Flipped) found in the features list. *) let builtin_name features name = let name = List.fold_right (fun el name -> match el with Flipped x | Builtin_name x -> x | _ -> name) features name in let islower x = let str = String.make 1 x in (String.lowercase str) = str and buf = Buffer.create (String.length name) in String.iter (fun c -> if islower c then Buffer.add_char buf c) name; Buffer.contents buf (* Transform an arity into a list of strings. *) let strings_of_arity a = match a with | Arity0 vt -> [string_of_vectype vt] | Arity1 (vt1, vt2) -> [string_of_vectype vt1; string_of_vectype vt2] | Arity2 (vt1, vt2, vt3) -> [string_of_vectype vt1; string_of_vectype vt2; string_of_vectype vt3] | Arity3 (vt1, vt2, vt3, vt4) -> [string_of_vectype vt1; string_of_vectype vt2; string_of_vectype vt3; string_of_vectype vt4] | Arity4 (vt1, vt2, vt3, vt4, vt5) -> [string_of_vectype vt1; string_of_vectype vt2; string_of_vectype vt3; string_of_vectype vt4; string_of_vectype vt5] (* Suffixes on the end of builtin names that are to be stripped in order to obtain the name used as an instruction. They are only stripped if preceded immediately by an underscore. *) let suffixes_to_strip = [ "n"; "lane"; "dup" ] (* Get the possible names of an instruction corresponding to a "name" from the ops table. This is done by getting the equivalent builtin name and stripping any suffixes from the list at the top of this file, unless the features list presents with an Instruction_name entry, in which case that is used; or unless the features list presents with a Flipped entry, in which case that is used. If both such entries are present, the first in the list will be chosen. *) let get_insn_names features name = let names = try begin match List.find (fun feature -> match feature with Instruction_name _ -> true | Flipped _ -> true | _ -> false) features with Instruction_name names -> names | Flipped name -> [name] | _ -> assert false end with Not_found -> [builtin_name features name] in begin List.map (fun name' -> try let underscore = String.rindex name' '_' in let our_suffix = String.sub name' (underscore + 1) ((String.length name') - underscore - 1) in let rec strip remaining_suffixes = match remaining_suffixes with [] -> name' | s::ss when our_suffix = s -> String.sub name' 0 underscore | _::ss -> strip ss in strip suffixes_to_strip with (Not_found | Invalid_argument _) -> name') names end (* Apply a function to each element of a list and then comma-separate the resulting strings. *) let rec commas f elts acc = match elts with [] -> acc | [elt] -> acc ^ (f elt) | elt::elts -> commas f elts (acc ^ (f elt) ^ ", ") (* Given a list of features and the shape specified in the "ops" table, apply a function to each possible shape that the instruction may have. By default, this is the "shape" entry in "ops". If the features list contains a Disassembles_as entry, the shapes contained in that entry are mapped to corresponding outputs and returned in a list. If there is more than one Disassembles_as entry, only the first is used. *) let analyze_all_shapes features shape f = try match List.find (fun feature -> match feature with Disassembles_as _ -> true | _ -> false) features with Disassembles_as shapes -> List.map f shapes | _ -> assert false with Not_found -> [f shape]