comparison gcc/match.pd @ 16:04ced10e8804

gcc 7
author kono
date Fri, 27 Oct 2017 22:46:09 +0900
parents
children 84e7813d76e9
comparison
equal deleted inserted replaced
15:561a7518be6b 16:04ced10e8804
1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
5 Copyright (C) 2014-2017 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25
26 /* Generic tree predicates we inherit. */
27 (define_predicates
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
31 zerop
32 CONSTANT_CLASS_P
33 tree_expr_nonnegative_p
34 tree_expr_nonzero_p
35 integer_valued_real_p
36 integer_pow2p
37 HONOR_NANS)
38
39 /* Operator lists. */
40 (define_operator_list tcc_comparison
41 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
42 (define_operator_list inverted_tcc_comparison
43 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
44 (define_operator_list inverted_tcc_comparison_with_nans
45 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
46 (define_operator_list swapped_tcc_comparison
47 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
48 (define_operator_list simple_comparison lt le eq ne ge gt)
49 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
50
51 #include "cfn-operators.pd"
52
53 /* Define operand lists for math rounding functions {,i,l,ll}FN,
54 where the versions prefixed with "i" return an int, those prefixed with
55 "l" return a long and those prefixed with "ll" return a long long.
56
57 Also define operand lists:
58
59 X<FN>F for all float functions, in the order i, l, ll
60 X<FN> for all double functions, in the same order
61 X<FN>L for all long double functions, in the same order. */
62 #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
63 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
64 BUILT_IN_L##FN##F \
65 BUILT_IN_LL##FN##F) \
66 (define_operator_list X##FN BUILT_IN_I##FN \
67 BUILT_IN_L##FN \
68 BUILT_IN_LL##FN) \
69 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
70 BUILT_IN_L##FN##L \
71 BUILT_IN_LL##FN##L)
72
73 DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
74 DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
75 DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
76 DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
77
78 /* As opposed to convert?, this still creates a single pattern, so
79 it is not a suitable replacement for convert? in all cases. */
80 (match (nop_convert @0)
81 (convert @0)
82 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
83 (match (nop_convert @0)
84 (view_convert @0)
85 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
86 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0))
87 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
88 /* This one has to be last, or it shadows the others. */
89 (match (nop_convert @0)
90 @0)
91
92 /* Simplifications of operations with one constant operand and
93 simplifications to constants or single values. */
94
95 (for op (plus pointer_plus minus bit_ior bit_xor)
96 (simplify
97 (op @0 integer_zerop)
98 (non_lvalue @0)))
99
100 /* 0 +p index -> (type)index */
101 (simplify
102 (pointer_plus integer_zerop @1)
103 (non_lvalue (convert @1)))
104
105 /* See if ARG1 is zero and X + ARG1 reduces to X.
106 Likewise if the operands are reversed. */
107 (simplify
108 (plus:c @0 real_zerop@1)
109 (if (fold_real_zero_addition_p (type, @1, 0))
110 (non_lvalue @0)))
111
112 /* See if ARG1 is zero and X - ARG1 reduces to X. */
113 (simplify
114 (minus @0 real_zerop@1)
115 (if (fold_real_zero_addition_p (type, @1, 1))
116 (non_lvalue @0)))
117
118 /* Simplify x - x.
119 This is unsafe for certain floats even in non-IEEE formats.
120 In IEEE, it is unsafe because it does wrong for NaNs.
121 Also note that operand_equal_p is always false if an operand
122 is volatile. */
123 (simplify
124 (minus @0 @0)
125 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
126 { build_zero_cst (type); }))
127
128 (simplify
129 (mult @0 integer_zerop@1)
130 @1)
131
132 /* Maybe fold x * 0 to 0. The expressions aren't the same
133 when x is NaN, since x * 0 is also NaN. Nor are they the
134 same in modes with signed zeros, since multiplying a
135 negative value by 0 gives -0, not +0. */
136 (simplify
137 (mult @0 real_zerop@1)
138 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
139 @1))
140
141 /* In IEEE floating point, x*1 is not equivalent to x for snans.
142 Likewise for complex arithmetic with signed zeros. */
143 (simplify
144 (mult @0 real_onep)
145 (if (!HONOR_SNANS (type)
146 && (!HONOR_SIGNED_ZEROS (type)
147 || !COMPLEX_FLOAT_TYPE_P (type)))
148 (non_lvalue @0)))
149
150 /* Transform x * -1.0 into -x. */
151 (simplify
152 (mult @0 real_minus_onep)
153 (if (!HONOR_SNANS (type)
154 && (!HONOR_SIGNED_ZEROS (type)
155 || !COMPLEX_FLOAT_TYPE_P (type)))
156 (negate @0)))
157
158 (for cmp (gt ge lt le)
159 outp (convert convert negate negate)
160 outn (negate negate convert convert)
161 /* Transform (X > 0.0 ? 1.0 : -1.0) into copysign(1, X). */
162 /* Transform (X >= 0.0 ? 1.0 : -1.0) into copysign(1, X). */
163 /* Transform (X < 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
164 /* Transform (X <= 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
165 (simplify
166 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep)
167 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
168 && types_match (type, TREE_TYPE (@0)))
169 (switch
170 (if (types_match (type, float_type_node))
171 (BUILT_IN_COPYSIGNF @1 (outp @0)))
172 (if (types_match (type, double_type_node))
173 (BUILT_IN_COPYSIGN @1 (outp @0)))
174 (if (types_match (type, long_double_type_node))
175 (BUILT_IN_COPYSIGNL @1 (outp @0))))))
176 /* Transform (X > 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
177 /* Transform (X >= 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
178 /* Transform (X < 0.0 ? -1.0 : 1.0) into copysign(1,X). */
179 /* Transform (X <= 0.0 ? -1.0 : 1.0) into copysign(1,X). */
180 (simplify
181 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1)
182 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
183 && types_match (type, TREE_TYPE (@0)))
184 (switch
185 (if (types_match (type, float_type_node))
186 (BUILT_IN_COPYSIGNF @1 (outn @0)))
187 (if (types_match (type, double_type_node))
188 (BUILT_IN_COPYSIGN @1 (outn @0)))
189 (if (types_match (type, long_double_type_node))
190 (BUILT_IN_COPYSIGNL @1 (outn @0)))))))
191
192 /* Transform X * copysign (1.0, X) into abs(X). */
193 (simplify
194 (mult:c @0 (COPYSIGN real_onep @0))
195 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
196 (abs @0)))
197
198 /* Transform X * copysign (1.0, -X) into -abs(X). */
199 (simplify
200 (mult:c @0 (COPYSIGN real_onep (negate @0)))
201 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
202 (negate (abs @0))))
203
204 /* Transform copysign (CST, X) into copysign (ABS(CST), X). */
205 (simplify
206 (COPYSIGN REAL_CST@0 @1)
207 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
208 (COPYSIGN (negate @0) @1)))
209
210 /* X * 1, X / 1 -> X. */
211 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
212 (simplify
213 (op @0 integer_onep)
214 (non_lvalue @0)))
215
216 /* (A / (1 << B)) -> (A >> B).
217 Only for unsigned A. For signed A, this would not preserve rounding
218 toward zero.
219 For example: (-1 / ( 1 << B)) != -1 >> B. */
220 (simplify
221 (trunc_div @0 (lshift integer_onep@1 @2))
222 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
223 && (!VECTOR_TYPE_P (type)
224 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
225 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar)))
226 (rshift @0 @2)))
227
228 /* Preserve explicit divisions by 0: the C++ front-end wants to detect
229 undefined behavior in constexpr evaluation, and assuming that the division
230 traps enables better optimizations than these anyway. */
231 (for div (trunc_div ceil_div floor_div round_div exact_div)
232 /* 0 / X is always zero. */
233 (simplify
234 (div integer_zerop@0 @1)
235 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
236 (if (!integer_zerop (@1))
237 @0))
238 /* X / -1 is -X. */
239 (simplify
240 (div @0 integer_minus_onep@1)
241 (if (!TYPE_UNSIGNED (type))
242 (negate @0)))
243 /* X / X is one. */
244 (simplify
245 (div @0 @0)
246 /* But not for 0 / 0 so that we can get the proper warnings and errors.
247 And not for _Fract types where we can't build 1. */
248 (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
249 { build_one_cst (type); }))
250 /* X / abs (X) is X < 0 ? -1 : 1. */
251 (simplify
252 (div:C @0 (abs @0))
253 (if (INTEGRAL_TYPE_P (type)
254 && TYPE_OVERFLOW_UNDEFINED (type))
255 (cond (lt @0 { build_zero_cst (type); })
256 { build_minus_one_cst (type); } { build_one_cst (type); })))
257 /* X / -X is -1. */
258 (simplify
259 (div:C @0 (negate @0))
260 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
261 && TYPE_OVERFLOW_UNDEFINED (type))
262 { build_minus_one_cst (type); })))
263
264 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
265 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
266 (simplify
267 (floor_div @0 @1)
268 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
269 && TYPE_UNSIGNED (type))
270 (trunc_div @0 @1)))
271
272 /* Combine two successive divisions. Note that combining ceil_div
273 and floor_div is trickier and combining round_div even more so. */
274 (for div (trunc_div exact_div)
275 (simplify
276 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
277 (with {
278 bool overflow_p;
279 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
280 TYPE_SIGN (type), &overflow_p);
281 }
282 (if (!overflow_p)
283 (div @0 { wide_int_to_tree (type, mul); })
284 (if (TYPE_UNSIGNED (type)
285 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
286 { build_zero_cst (type); })))))
287
288 /* Combine successive multiplications. Similar to above, but handling
289 overflow is different. */
290 (simplify
291 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
292 (with {
293 bool overflow_p;
294 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
295 TYPE_SIGN (type), &overflow_p);
296 }
297 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
298 otherwise undefined overflow implies that @0 must be zero. */
299 (if (!overflow_p || TYPE_OVERFLOW_WRAPS (type))
300 (mult @0 { wide_int_to_tree (type, mul); }))))
301
302 /* Optimize A / A to 1.0 if we don't care about
303 NaNs or Infinities. */
304 (simplify
305 (rdiv @0 @0)
306 (if (FLOAT_TYPE_P (type)
307 && ! HONOR_NANS (type)
308 && ! HONOR_INFINITIES (type))
309 { build_one_cst (type); }))
310
311 /* Optimize -A / A to -1.0 if we don't care about
312 NaNs or Infinities. */
313 (simplify
314 (rdiv:C @0 (negate @0))
315 (if (FLOAT_TYPE_P (type)
316 && ! HONOR_NANS (type)
317 && ! HONOR_INFINITIES (type))
318 { build_minus_one_cst (type); }))
319
320 /* PR71078: x / abs(x) -> copysign (1.0, x) */
321 (simplify
322 (rdiv:C (convert? @0) (convert? (abs @0)))
323 (if (SCALAR_FLOAT_TYPE_P (type)
324 && ! HONOR_NANS (type)
325 && ! HONOR_INFINITIES (type))
326 (switch
327 (if (types_match (type, float_type_node))
328 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
329 (if (types_match (type, double_type_node))
330 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
331 (if (types_match (type, long_double_type_node))
332 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
333
334 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
335 (simplify
336 (rdiv @0 real_onep)
337 (if (!HONOR_SNANS (type))
338 (non_lvalue @0)))
339
340 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
341 (simplify
342 (rdiv @0 real_minus_onep)
343 (if (!HONOR_SNANS (type))
344 (negate @0)))
345
346 (if (flag_reciprocal_math)
347 /* Convert (A/B)/C to A/(B*C) */
348 (simplify
349 (rdiv (rdiv:s @0 @1) @2)
350 (rdiv @0 (mult @1 @2)))
351
352 /* Convert A/(B/C) to (A/B)*C */
353 (simplify
354 (rdiv @0 (rdiv:s @1 @2))
355 (mult (rdiv @0 @1) @2)))
356
357 /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
358 (for div (trunc_div ceil_div floor_div round_div exact_div)
359 (simplify
360 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
361 (if (integer_pow2p (@2)
362 && tree_int_cst_sgn (@2) > 0
363 && tree_nop_conversion_p (type, TREE_TYPE (@0))
364 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
365 (rshift (convert @0)
366 { build_int_cst (integer_type_node,
367 wi::exact_log2 (wi::to_wide (@2))); }))))
368
369 /* If ARG1 is a constant, we can convert this to a multiply by the
370 reciprocal. This does not have the same rounding properties,
371 so only do this if -freciprocal-math. We can actually
372 always safely do it if ARG1 is a power of two, but it's hard to
373 tell if it is or not in a portable manner. */
374 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
375 (simplify
376 (rdiv @0 cst@1)
377 (if (optimize)
378 (if (flag_reciprocal_math
379 && !real_zerop (@1))
380 (with
381 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
382 (if (tem)
383 (mult @0 { tem; } )))
384 (if (cst != COMPLEX_CST)
385 (with { tree inverse = exact_inverse (type, @1); }
386 (if (inverse)
387 (mult @0 { inverse; } ))))))))
388
389 (for mod (ceil_mod floor_mod round_mod trunc_mod)
390 /* 0 % X is always zero. */
391 (simplify
392 (mod integer_zerop@0 @1)
393 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
394 (if (!integer_zerop (@1))
395 @0))
396 /* X % 1 is always zero. */
397 (simplify
398 (mod @0 integer_onep)
399 { build_zero_cst (type); })
400 /* X % -1 is zero. */
401 (simplify
402 (mod @0 integer_minus_onep@1)
403 (if (!TYPE_UNSIGNED (type))
404 { build_zero_cst (type); }))
405 /* X % X is zero. */
406 (simplify
407 (mod @0 @0)
408 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
409 (if (!integer_zerop (@0))
410 { build_zero_cst (type); }))
411 /* (X % Y) % Y is just X % Y. */
412 (simplify
413 (mod (mod@2 @0 @1) @1)
414 @2)
415 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
416 (simplify
417 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
418 (if (ANY_INTEGRAL_TYPE_P (type)
419 && TYPE_OVERFLOW_UNDEFINED (type)
420 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
421 TYPE_SIGN (type)))
422 { build_zero_cst (type); })))
423
424 /* X % -C is the same as X % C. */
425 (simplify
426 (trunc_mod @0 INTEGER_CST@1)
427 (if (TYPE_SIGN (type) == SIGNED
428 && !TREE_OVERFLOW (@1)
429 && wi::neg_p (wi::to_wide (@1))
430 && !TYPE_OVERFLOW_TRAPS (type)
431 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
432 && !sign_bit_p (@1, @1))
433 (trunc_mod @0 (negate @1))))
434
435 /* X % -Y is the same as X % Y. */
436 (simplify
437 (trunc_mod @0 (convert? (negate @1)))
438 (if (INTEGRAL_TYPE_P (type)
439 && !TYPE_UNSIGNED (type)
440 && !TYPE_OVERFLOW_TRAPS (type)
441 && tree_nop_conversion_p (type, TREE_TYPE (@1))
442 /* Avoid this transformation if X might be INT_MIN or
443 Y might be -1, because we would then change valid
444 INT_MIN % -(-1) into invalid INT_MIN % -1. */
445 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
446 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
447 (TREE_TYPE (@1))))))
448 (trunc_mod @0 (convert @1))))
449
450 /* X - (X / Y) * Y is the same as X % Y. */
451 (simplify
452 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
453 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
454 (convert (trunc_mod @0 @1))))
455
456 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
457 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
458 Also optimize A % (C << N) where C is a power of 2,
459 to A & ((C << N) - 1). */
460 (match (power_of_two_cand @1)
461 INTEGER_CST@1)
462 (match (power_of_two_cand @1)
463 (lshift INTEGER_CST@1 @2))
464 (for mod (trunc_mod floor_mod)
465 (simplify
466 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
467 (if ((TYPE_UNSIGNED (type)
468 || tree_expr_nonnegative_p (@0))
469 && tree_nop_conversion_p (type, TREE_TYPE (@3))
470 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
471 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
472
473 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
474 (simplify
475 (trunc_div (mult @0 integer_pow2p@1) @1)
476 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
477 (bit_and @0 { wide_int_to_tree
478 (type, wi::mask (TYPE_PRECISION (type)
479 - wi::exact_log2 (wi::to_wide (@1)),
480 false, TYPE_PRECISION (type))); })))
481
482 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
483 (simplify
484 (mult (trunc_div @0 integer_pow2p@1) @1)
485 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
486 (bit_and @0 (negate @1))))
487
488 /* Simplify (t * 2) / 2) -> t. */
489 (for div (trunc_div ceil_div floor_div round_div exact_div)
490 (simplify
491 (div (mult @0 @1) @1)
492 (if (ANY_INTEGRAL_TYPE_P (type)
493 && TYPE_OVERFLOW_UNDEFINED (type))
494 @0)))
495
496 (for op (negate abs)
497 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
498 (for coss (COS COSH)
499 (simplify
500 (coss (op @0))
501 (coss @0)))
502 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
503 (for pows (POW)
504 (simplify
505 (pows (op @0) REAL_CST@1)
506 (with { HOST_WIDE_INT n; }
507 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
508 (pows @0 @1)))))
509 /* Likewise for powi. */
510 (for pows (POWI)
511 (simplify
512 (pows (op @0) INTEGER_CST@1)
513 (if ((wi::to_wide (@1) & 1) == 0)
514 (pows @0 @1))))
515 /* Strip negate and abs from both operands of hypot. */
516 (for hypots (HYPOT)
517 (simplify
518 (hypots (op @0) @1)
519 (hypots @0 @1))
520 (simplify
521 (hypots @0 (op @1))
522 (hypots @0 @1)))
523 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
524 (for copysigns (COPYSIGN)
525 (simplify
526 (copysigns (op @0) @1)
527 (copysigns @0 @1))))
528
529 /* abs(x)*abs(x) -> x*x. Should be valid for all types. */
530 (simplify
531 (mult (abs@1 @0) @1)
532 (mult @0 @0))
533
534 /* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
535 (for coss (COS COSH)
536 copysigns (COPYSIGN)
537 (simplify
538 (coss (copysigns @0 @1))
539 (coss @0)))
540
541 /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
542 (for pows (POW)
543 copysigns (COPYSIGN)
544 (simplify
545 (pows (copysigns @0 @2) REAL_CST@1)
546 (with { HOST_WIDE_INT n; }
547 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
548 (pows @0 @1)))))
549 /* Likewise for powi. */
550 (for pows (POWI)
551 copysigns (COPYSIGN)
552 (simplify
553 (pows (copysigns @0 @2) INTEGER_CST@1)
554 (if ((wi::to_wide (@1) & 1) == 0)
555 (pows @0 @1))))
556
557 (for hypots (HYPOT)
558 copysigns (COPYSIGN)
559 /* hypot(copysign(x, y), z) -> hypot(x, z). */
560 (simplify
561 (hypots (copysigns @0 @1) @2)
562 (hypots @0 @2))
563 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
564 (simplify
565 (hypots @0 (copysigns @1 @2))
566 (hypots @0 @1)))
567
568 /* copysign(x, CST) -> [-]abs (x). */
569 (for copysigns (COPYSIGN)
570 (simplify
571 (copysigns @0 REAL_CST@1)
572 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
573 (negate (abs @0))
574 (abs @0))))
575
576 /* copysign(copysign(x, y), z) -> copysign(x, z). */
577 (for copysigns (COPYSIGN)
578 (simplify
579 (copysigns (copysigns @0 @1) @2)
580 (copysigns @0 @2)))
581
582 /* copysign(x,y)*copysign(x,y) -> x*x. */
583 (for copysigns (COPYSIGN)
584 (simplify
585 (mult (copysigns@2 @0 @1) @2)
586 (mult @0 @0)))
587
588 /* ccos(-x) -> ccos(x). Similarly for ccosh. */
589 (for ccoss (CCOS CCOSH)
590 (simplify
591 (ccoss (negate @0))
592 (ccoss @0)))
593
594 /* cabs(-x) and cos(conj(x)) -> cabs(x). */
595 (for ops (conj negate)
596 (for cabss (CABS)
597 (simplify
598 (cabss (ops @0))
599 (cabss @0))))
600
601 /* Fold (a * (1 << b)) into (a << b) */
602 (simplify
603 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
604 (if (! FLOAT_TYPE_P (type)
605 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
606 (lshift @0 @2)))
607
608 /* Fold (C1/X)*C2 into (C1*C2)/X. */
609 (simplify
610 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
611 (if (flag_associative_math
612 && single_use (@3))
613 (with
614 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
615 (if (tem)
616 (rdiv { tem; } @1)))))
617
618 /* Convert C1/(X*C2) into (C1/C2)/X */
619 (simplify
620 (rdiv REAL_CST@0 (mult @1 REAL_CST@2))
621 (if (flag_reciprocal_math)
622 (with
623 { tree tem = const_binop (RDIV_EXPR, type, @0, @2); }
624 (if (tem)
625 (rdiv { tem; } @1)))))
626
627 /* Simplify ~X & X as zero. */
628 (simplify
629 (bit_and:c (convert? @0) (convert? (bit_not @0)))
630 { build_zero_cst (type); })
631
632 /* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
633 (simplify
634 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
635 (if (TYPE_UNSIGNED (type))
636 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
637
638 (for bitop (bit_and bit_ior)
639 cmp (eq ne)
640 /* PR35691: Transform
641 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
642 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
643 (simplify
644 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
645 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
646 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
647 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
648 (cmp (bit_ior @0 (convert @1)) @2)))
649 /* Transform:
650 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
651 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
652 (simplify
653 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
654 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
655 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
656 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
657 (cmp (bit_and @0 (convert @1)) @2))))
658
659 /* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
660 (simplify
661 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
662 (minus (bit_xor @0 @1) @1))
663 (simplify
664 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
665 (if (~wi::to_wide (@2) == wi::to_wide (@1))
666 (minus (bit_xor @0 @1) @1)))
667
668 /* Fold (A & B) - (A & ~B) into B - (A ^ B). */
669 (simplify
670 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
671 (minus @1 (bit_xor @0 @1)))
672
673 /* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
674 (for op (bit_ior bit_xor plus)
675 (simplify
676 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
677 (bit_xor @0 @1))
678 (simplify
679 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
680 (if (~wi::to_wide (@2) == wi::to_wide (@1))
681 (bit_xor @0 @1))))
682
683 /* PR53979: Transform ((a ^ b) | a) -> (a | b) */
684 (simplify
685 (bit_ior:c (bit_xor:c @0 @1) @0)
686 (bit_ior @0 @1))
687
688 /* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
689 #if GIMPLE
690 (simplify
691 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
692 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
693 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
694 (bit_xor @0 @1)))
695 #endif
696
697 /* X % Y is smaller than Y. */
698 (for cmp (lt ge)
699 (simplify
700 (cmp (trunc_mod @0 @1) @1)
701 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
702 { constant_boolean_node (cmp == LT_EXPR, type); })))
703 (for cmp (gt le)
704 (simplify
705 (cmp @1 (trunc_mod @0 @1))
706 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
707 { constant_boolean_node (cmp == GT_EXPR, type); })))
708
709 /* x | ~0 -> ~0 */
710 (simplify
711 (bit_ior @0 integer_all_onesp@1)
712 @1)
713
714 /* x | 0 -> x */
715 (simplify
716 (bit_ior @0 integer_zerop)
717 @0)
718
719 /* x & 0 -> 0 */
720 (simplify
721 (bit_and @0 integer_zerop@1)
722 @1)
723
724 /* ~x | x -> -1 */
725 /* ~x ^ x -> -1 */
726 /* ~x + x -> -1 */
727 (for op (bit_ior bit_xor plus)
728 (simplify
729 (op:c (convert? @0) (convert? (bit_not @0)))
730 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
731
732 /* x ^ x -> 0 */
733 (simplify
734 (bit_xor @0 @0)
735 { build_zero_cst (type); })
736
737 /* Canonicalize X ^ ~0 to ~X. */
738 (simplify
739 (bit_xor @0 integer_all_onesp@1)
740 (bit_not @0))
741
742 /* x & ~0 -> x */
743 (simplify
744 (bit_and @0 integer_all_onesp)
745 (non_lvalue @0))
746
747 /* x & x -> x, x | x -> x */
748 (for bitop (bit_and bit_ior)
749 (simplify
750 (bitop @0 @0)
751 (non_lvalue @0)))
752
753 /* x & C -> x if we know that x & ~C == 0. */
754 #if GIMPLE
755 (simplify
756 (bit_and SSA_NAME@0 INTEGER_CST@1)
757 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
758 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
759 @0))
760 #endif
761
762 /* x + (x & 1) -> (x + 1) & ~1 */
763 (simplify
764 (plus:c @0 (bit_and:s @0 integer_onep@1))
765 (bit_and (plus @0 @1) (bit_not @1)))
766
767 /* x & ~(x & y) -> x & ~y */
768 /* x | ~(x | y) -> x | ~y */
769 (for bitop (bit_and bit_ior)
770 (simplify
771 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
772 (bitop @0 (bit_not @1))))
773
774 /* (x | y) & ~x -> y & ~x */
775 /* (x & y) | ~x -> y | ~x */
776 (for bitop (bit_and bit_ior)
777 rbitop (bit_ior bit_and)
778 (simplify
779 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
780 (bitop @1 @2)))
781
782 /* (x & y) ^ (x | y) -> x ^ y */
783 (simplify
784 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
785 (bit_xor @0 @1))
786
787 /* (x ^ y) ^ (x | y) -> x & y */
788 (simplify
789 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
790 (bit_and @0 @1))
791
792 /* (x & y) + (x ^ y) -> x | y */
793 /* (x & y) | (x ^ y) -> x | y */
794 /* (x & y) ^ (x ^ y) -> x | y */
795 (for op (plus bit_ior bit_xor)
796 (simplify
797 (op:c (bit_and @0 @1) (bit_xor @0 @1))
798 (bit_ior @0 @1)))
799
800 /* (x & y) + (x | y) -> x + y */
801 (simplify
802 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
803 (plus @0 @1))
804
805 /* (x + y) - (x | y) -> x & y */
806 (simplify
807 (minus (plus @0 @1) (bit_ior @0 @1))
808 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
809 && !TYPE_SATURATING (type))
810 (bit_and @0 @1)))
811
812 /* (x + y) - (x & y) -> x | y */
813 (simplify
814 (minus (plus @0 @1) (bit_and @0 @1))
815 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
816 && !TYPE_SATURATING (type))
817 (bit_ior @0 @1)))
818
819 /* (x | y) - (x ^ y) -> x & y */
820 (simplify
821 (minus (bit_ior @0 @1) (bit_xor @0 @1))
822 (bit_and @0 @1))
823
824 /* (x | y) - (x & y) -> x ^ y */
825 (simplify
826 (minus (bit_ior @0 @1) (bit_and @0 @1))
827 (bit_xor @0 @1))
828
829 /* (x | y) & ~(x & y) -> x ^ y */
830 (simplify
831 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
832 (bit_xor @0 @1))
833
834 /* (x | y) & (~x ^ y) -> x & y */
835 (simplify
836 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
837 (bit_and @0 @1))
838
839 /* ~x & ~y -> ~(x | y)
840 ~x | ~y -> ~(x & y) */
841 (for op (bit_and bit_ior)
842 rop (bit_ior bit_and)
843 (simplify
844 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
845 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
846 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
847 (bit_not (rop (convert @0) (convert @1))))))
848
849 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
850 with a constant, and the two constants have no bits in common,
851 we should treat this as a BIT_IOR_EXPR since this may produce more
852 simplifications. */
853 (for op (bit_xor plus)
854 (simplify
855 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
856 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
857 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
858 && tree_nop_conversion_p (type, TREE_TYPE (@2))
859 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
860 (bit_ior (convert @4) (convert @5)))))
861
862 /* (X | Y) ^ X -> Y & ~ X*/
863 (simplify
864 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
865 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
866 (convert (bit_and @1 (bit_not @0)))))
867
868 /* Convert ~X ^ ~Y to X ^ Y. */
869 (simplify
870 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
871 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
872 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
873 (bit_xor (convert @0) (convert @1))))
874
875 /* Convert ~X ^ C to X ^ ~C. */
876 (simplify
877 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
878 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
879 (bit_xor (convert @0) (bit_not @1))))
880
881 /* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
882 (for opo (bit_and bit_xor)
883 opi (bit_xor bit_and)
884 (simplify
885 (opo:c (opi:c @0 @1) @1)
886 (bit_and (bit_not @0) @1)))
887
888 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
889 operands are another bit-wise operation with a common input. If so,
890 distribute the bit operations to save an operation and possibly two if
891 constants are involved. For example, convert
892 (A | B) & (A | C) into A | (B & C)
893 Further simplification will occur if B and C are constants. */
894 (for op (bit_and bit_ior bit_xor)
895 rop (bit_ior bit_and bit_and)
896 (simplify
897 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
898 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
899 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
900 (rop (convert @0) (op (convert @1) (convert @2))))))
901
902 /* Some simple reassociation for bit operations, also handled in reassoc. */
903 /* (X & Y) & Y -> X & Y
904 (X | Y) | Y -> X | Y */
905 (for op (bit_and bit_ior)
906 (simplify
907 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
908 @2))
909 /* (X ^ Y) ^ Y -> X */
910 (simplify
911 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
912 (convert @0))
913 /* (X & Y) & (X & Z) -> (X & Y) & Z
914 (X | Y) | (X | Z) -> (X | Y) | Z */
915 (for op (bit_and bit_ior)
916 (simplify
917 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
918 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
919 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
920 (if (single_use (@5) && single_use (@6))
921 (op @3 (convert @2))
922 (if (single_use (@3) && single_use (@4))
923 (op (convert @1) @5))))))
924 /* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
925 (simplify
926 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
927 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
928 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
929 (bit_xor (convert @1) (convert @2))))
930
931 (simplify
932 (abs (abs@1 @0))
933 @1)
934 (simplify
935 (abs (negate @0))
936 (abs @0))
937 (simplify
938 (abs tree_expr_nonnegative_p@0)
939 @0)
940
941 /* A few cases of fold-const.c negate_expr_p predicate. */
942 (match negate_expr_p
943 INTEGER_CST
944 (if ((INTEGRAL_TYPE_P (type)
945 && TYPE_UNSIGNED (type))
946 || (!TYPE_OVERFLOW_SANITIZED (type)
947 && may_negate_without_overflow_p (t)))))
948 (match negate_expr_p
949 FIXED_CST)
950 (match negate_expr_p
951 (negate @0)
952 (if (!TYPE_OVERFLOW_SANITIZED (type))))
953 (match negate_expr_p
954 REAL_CST
955 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
956 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
957 ways. */
958 (match negate_expr_p
959 VECTOR_CST
960 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
961
962 /* (-A) * (-B) -> A * B */
963 (simplify
964 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
965 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
966 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
967 (mult (convert @0) (convert (negate @1)))))
968
969 /* -(A + B) -> (-B) - A. */
970 (simplify
971 (negate (plus:c @0 negate_expr_p@1))
972 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
973 && !HONOR_SIGNED_ZEROS (element_mode (type)))
974 (minus (negate @1) @0)))
975
976 /* A - B -> A + (-B) if B is easily negatable. */
977 (simplify
978 (minus @0 negate_expr_p@1)
979 (if (!FIXED_POINT_TYPE_P (type))
980 (plus @0 (negate @1))))
981
982 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
983 when profitable.
984 For bitwise binary operations apply operand conversions to the
985 binary operation result instead of to the operands. This allows
986 to combine successive conversions and bitwise binary operations.
987 We combine the above two cases by using a conditional convert. */
988 (for bitop (bit_and bit_ior bit_xor)
989 (simplify
990 (bitop (convert @0) (convert? @1))
991 (if (((TREE_CODE (@1) == INTEGER_CST
992 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
993 && int_fits_type_p (@1, TREE_TYPE (@0)))
994 || types_match (@0, @1))
995 /* ??? This transform conflicts with fold-const.c doing
996 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
997 constants (if x has signed type, the sign bit cannot be set
998 in c). This folds extension into the BIT_AND_EXPR.
999 Restrict it to GIMPLE to avoid endless recursions. */
1000 && (bitop != BIT_AND_EXPR || GIMPLE)
1001 && (/* That's a good idea if the conversion widens the operand, thus
1002 after hoisting the conversion the operation will be narrower. */
1003 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1004 /* It's also a good idea if the conversion is to a non-integer
1005 mode. */
1006 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1007 /* Or if the precision of TO is not the same as the precision
1008 of its mode. */
1009 || !type_has_mode_precision_p (type)))
1010 (convert (bitop @0 (convert @1))))))
1011
1012 (for bitop (bit_and bit_ior)
1013 rbitop (bit_ior bit_and)
1014 /* (x | y) & x -> x */
1015 /* (x & y) | x -> x */
1016 (simplify
1017 (bitop:c (rbitop:c @0 @1) @0)
1018 @0)
1019 /* (~x | y) & x -> x & y */
1020 /* (~x & y) | x -> x | y */
1021 (simplify
1022 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1023 (bitop @0 @1)))
1024
1025 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1026 (simplify
1027 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1028 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1029
1030 /* Combine successive equal operations with constants. */
1031 (for bitop (bit_and bit_ior bit_xor)
1032 (simplify
1033 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1034 (bitop @0 (bitop @1 @2))))
1035
1036 /* Try simple folding for X op !X, and X op X with the help
1037 of the truth_valued_p and logical_inverted_value predicates. */
1038 (match truth_valued_p
1039 @0
1040 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
1041 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
1042 (match truth_valued_p
1043 (op @0 @1)))
1044 (match truth_valued_p
1045 (truth_not @0))
1046
1047 (match (logical_inverted_value @0)
1048 (truth_not @0))
1049 (match (logical_inverted_value @0)
1050 (bit_not truth_valued_p@0))
1051 (match (logical_inverted_value @0)
1052 (eq @0 integer_zerop))
1053 (match (logical_inverted_value @0)
1054 (ne truth_valued_p@0 integer_truep))
1055 (match (logical_inverted_value @0)
1056 (bit_xor truth_valued_p@0 integer_truep))
1057
1058 /* X & !X -> 0. */
1059 (simplify
1060 (bit_and:c @0 (logical_inverted_value @0))
1061 { build_zero_cst (type); })
1062 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1063 (for op (bit_ior bit_xor)
1064 (simplify
1065 (op:c truth_valued_p@0 (logical_inverted_value @0))
1066 { constant_boolean_node (true, type); }))
1067 /* X ==/!= !X is false/true. */
1068 (for op (eq ne)
1069 (simplify
1070 (op:c truth_valued_p@0 (logical_inverted_value @0))
1071 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
1072
1073 /* ~~x -> x */
1074 (simplify
1075 (bit_not (bit_not @0))
1076 @0)
1077
1078 /* Convert ~ (-A) to A - 1. */
1079 (simplify
1080 (bit_not (convert? (negate @0)))
1081 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1082 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1083 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
1084
1085 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1086 (simplify
1087 (bit_not (convert? (minus @0 integer_each_onep)))
1088 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1089 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1090 (convert (negate @0))))
1091 (simplify
1092 (bit_not (convert? (plus @0 integer_all_onesp)))
1093 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1094 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1095 (convert (negate @0))))
1096
1097 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1098 (simplify
1099 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1100 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1101 (convert (bit_xor @0 (bit_not @1)))))
1102 (simplify
1103 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1104 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1105 (convert (bit_xor @0 @1))))
1106
1107 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1108 (simplify
1109 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1110 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
1111
1112 /* Fold A - (A & B) into ~B & A. */
1113 (simplify
1114 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
1115 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1116 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1117 (convert (bit_and (bit_not @1) @0))))
1118
1119 /* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
1120 (for cmp (gt lt ge le)
1121 (simplify
1122 (mult (convert (cmp @0 @1)) @2)
1123 (cond (cmp @0 @1) @2 { build_zero_cst (type); })))
1124
1125 /* For integral types with undefined overflow and C != 0 fold
1126 x * C EQ/NE y * C into x EQ/NE y. */
1127 (for cmp (eq ne)
1128 (simplify
1129 (cmp (mult:c @0 @1) (mult:c @2 @1))
1130 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1131 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1132 && tree_expr_nonzero_p (@1))
1133 (cmp @0 @2))))
1134
1135 /* For integral types with wrapping overflow and C odd fold
1136 x * C EQ/NE y * C into x EQ/NE y. */
1137 (for cmp (eq ne)
1138 (simplify
1139 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1140 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1141 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1142 && (TREE_INT_CST_LOW (@1) & 1) != 0)
1143 (cmp @0 @2))))
1144
1145 /* For integral types with undefined overflow and C != 0 fold
1146 x * C RELOP y * C into:
1147
1148 x RELOP y for nonnegative C
1149 y RELOP x for negative C */
1150 (for cmp (lt gt le ge)
1151 (simplify
1152 (cmp (mult:c @0 @1) (mult:c @2 @1))
1153 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1154 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1155 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1156 (cmp @0 @2)
1157 (if (TREE_CODE (@1) == INTEGER_CST
1158 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
1159 (cmp @2 @0))))))
1160
1161 /* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
1162 (for cmp (le gt)
1163 icmp (gt le)
1164 (simplify
1165 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1166 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1167 && TYPE_UNSIGNED (TREE_TYPE (@0))
1168 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
1169 && (wi::to_wide (@2)
1170 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
1171 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1172 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1173
1174 /* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1175 (for cmp (simple_comparison)
1176 (simplify
1177 (cmp (exact_div @0 INTEGER_CST@2) (exact_div @1 @2))
1178 (if (wi::gt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
1179 (cmp @0 @1))))
1180
1181 /* X / C1 op C2 into a simple range test. */
1182 (for cmp (simple_comparison)
1183 (simplify
1184 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1185 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1186 && integer_nonzerop (@1)
1187 && !TREE_OVERFLOW (@1)
1188 && !TREE_OVERFLOW (@2))
1189 (with { tree lo, hi; bool neg_overflow;
1190 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1191 &neg_overflow); }
1192 (switch
1193 (if (code == LT_EXPR || code == GE_EXPR)
1194 (if (TREE_OVERFLOW (lo))
1195 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1196 (if (code == LT_EXPR)
1197 (lt @0 { lo; })
1198 (ge @0 { lo; }))))
1199 (if (code == LE_EXPR || code == GT_EXPR)
1200 (if (TREE_OVERFLOW (hi))
1201 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1202 (if (code == LE_EXPR)
1203 (le @0 { hi; })
1204 (gt @0 { hi; }))))
1205 (if (!lo && !hi)
1206 { build_int_cst (type, code == NE_EXPR); })
1207 (if (code == EQ_EXPR && !hi)
1208 (ge @0 { lo; }))
1209 (if (code == EQ_EXPR && !lo)
1210 (le @0 { hi; }))
1211 (if (code == NE_EXPR && !hi)
1212 (lt @0 { lo; }))
1213 (if (code == NE_EXPR && !lo)
1214 (gt @0 { hi; }))
1215 (if (GENERIC)
1216 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1217 lo, hi); })
1218 (with
1219 {
1220 tree etype = range_check_type (TREE_TYPE (@0));
1221 if (etype)
1222 {
1223 if (! TYPE_UNSIGNED (etype))
1224 etype = unsigned_type_for (etype);
1225 hi = fold_convert (etype, hi);
1226 lo = fold_convert (etype, lo);
1227 hi = const_binop (MINUS_EXPR, etype, hi, lo);
1228 }
1229 }
1230 (if (etype && hi && !TREE_OVERFLOW (hi))
1231 (if (code == EQ_EXPR)
1232 (le (minus (convert:etype @0) { lo; }) { hi; })
1233 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1234
1235 /* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1236 (for op (lt le ge gt)
1237 (simplify
1238 (op (plus:c @0 @2) (plus:c @1 @2))
1239 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1240 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1241 (op @0 @1))))
1242 /* For equality and subtraction, this is also true with wrapping overflow. */
1243 (for op (eq ne minus)
1244 (simplify
1245 (op (plus:c @0 @2) (plus:c @1 @2))
1246 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1247 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1248 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1249 (op @0 @1))))
1250
1251 /* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1252 (for op (lt le ge gt)
1253 (simplify
1254 (op (minus @0 @2) (minus @1 @2))
1255 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1256 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1257 (op @0 @1))))
1258 /* For equality and subtraction, this is also true with wrapping overflow. */
1259 (for op (eq ne minus)
1260 (simplify
1261 (op (minus @0 @2) (minus @1 @2))
1262 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1263 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1264 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1265 (op @0 @1))))
1266
1267 /* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1268 (for op (lt le ge gt)
1269 (simplify
1270 (op (minus @2 @0) (minus @2 @1))
1271 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1272 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1273 (op @1 @0))))
1274 /* For equality and subtraction, this is also true with wrapping overflow. */
1275 (for op (eq ne minus)
1276 (simplify
1277 (op (minus @2 @0) (minus @2 @1))
1278 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1279 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1280 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1281 (op @1 @0))))
1282
1283 /* X + Y < Y is the same as X < 0 when there is no overflow. */
1284 (for op (lt le gt ge)
1285 (simplify
1286 (op:c (plus:c@2 @0 @1) @1)
1287 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1288 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1289 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1290 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1291 /* For equality, this is also true with wrapping overflow. */
1292 (for op (eq ne)
1293 (simplify
1294 (op:c (nop_convert@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1295 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1296 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1297 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1298 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1299 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1300 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1301 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1302 (simplify
1303 (op:c (nop_convert@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1304 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1305 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1306 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1307 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1308
1309 /* X - Y < X is the same as Y > 0 when there is no overflow.
1310 For equality, this is also true with wrapping overflow. */
1311 (for op (simple_comparison)
1312 (simplify
1313 (op:c @0 (minus@2 @0 @1))
1314 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1315 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1316 || ((op == EQ_EXPR || op == NE_EXPR)
1317 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1318 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1319 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1320
1321 /* Transform:
1322 * (X / Y) == 0 -> X < Y if X, Y are unsigned.
1323 * (X / Y) != 0 -> X >= Y, if X, Y are unsigned.
1324 */
1325 (for cmp (eq ne)
1326 ocmp (lt ge)
1327 (simplify
1328 (cmp (trunc_div @0 @1) integer_zerop)
1329 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
1330 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1331 (ocmp @0 @1))))
1332
1333 /* X == C - X can never be true if C is odd. */
1334 (for cmp (eq ne)
1335 (simplify
1336 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1337 (if (TREE_INT_CST_LOW (@1) & 1)
1338 { constant_boolean_node (cmp == NE_EXPR, type); })))
1339
1340 /* Arguments on which one can call get_nonzero_bits to get the bits
1341 possibly set. */
1342 (match with_possible_nonzero_bits
1343 INTEGER_CST@0)
1344 (match with_possible_nonzero_bits
1345 SSA_NAME@0
1346 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1347 /* Slightly extended version, do not make it recursive to keep it cheap. */
1348 (match (with_possible_nonzero_bits2 @0)
1349 with_possible_nonzero_bits@0)
1350 (match (with_possible_nonzero_bits2 @0)
1351 (bit_and:c with_possible_nonzero_bits@0 @2))
1352
1353 /* Same for bits that are known to be set, but we do not have
1354 an equivalent to get_nonzero_bits yet. */
1355 (match (with_certain_nonzero_bits2 @0)
1356 INTEGER_CST@0)
1357 (match (with_certain_nonzero_bits2 @0)
1358 (bit_ior @1 INTEGER_CST@0))
1359
1360 /* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
1361 (for cmp (eq ne)
1362 (simplify
1363 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
1364 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
1365 { constant_boolean_node (cmp == NE_EXPR, type); })))
1366
1367 /* ((X inner_op C0) outer_op C1)
1368 With X being a tree where value_range has reasoned certain bits to always be
1369 zero throughout its computed value range,
1370 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1371 where zero_mask has 1's for all bits that are sure to be 0 in
1372 and 0's otherwise.
1373 if (inner_op == '^') C0 &= ~C1;
1374 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1375 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1376 */
1377 (for inner_op (bit_ior bit_xor)
1378 outer_op (bit_xor bit_ior)
1379 (simplify
1380 (outer_op
1381 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1382 (with
1383 {
1384 bool fail = false;
1385 wide_int zero_mask_not;
1386 wide_int C0;
1387 wide_int cst_emit;
1388
1389 if (TREE_CODE (@2) == SSA_NAME)
1390 zero_mask_not = get_nonzero_bits (@2);
1391 else
1392 fail = true;
1393
1394 if (inner_op == BIT_XOR_EXPR)
1395 {
1396 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
1397 cst_emit = C0 | wi::to_wide (@1);
1398 }
1399 else
1400 {
1401 C0 = wi::to_wide (@0);
1402 cst_emit = C0 ^ wi::to_wide (@1);
1403 }
1404 }
1405 (if (!fail && (C0 & zero_mask_not) == 0)
1406 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
1407 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
1408 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1409
1410 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1411 (simplify
1412 (pointer_plus (pointer_plus:s @0 @1) @3)
1413 (pointer_plus @0 (plus @1 @3)))
1414
1415 /* Pattern match
1416 tem1 = (long) ptr1;
1417 tem2 = (long) ptr2;
1418 tem3 = tem2 - tem1;
1419 tem4 = (unsigned long) tem3;
1420 tem5 = ptr1 + tem4;
1421 and produce
1422 tem5 = ptr2; */
1423 (simplify
1424 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1425 /* Conditionally look through a sign-changing conversion. */
1426 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1427 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1428 || (GENERIC && type == TREE_TYPE (@1))))
1429 @1))
1430
1431 /* Pattern match
1432 tem = (sizetype) ptr;
1433 tem = tem & algn;
1434 tem = -tem;
1435 ... = ptr p+ tem;
1436 and produce the simpler and easier to analyze with respect to alignment
1437 ... = ptr & ~algn; */
1438 (simplify
1439 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
1440 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
1441 (bit_and @0 { algn; })))
1442
1443 /* Try folding difference of addresses. */
1444 (simplify
1445 (minus (convert ADDR_EXPR@0) (convert @1))
1446 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1447 (with { HOST_WIDE_INT diff; }
1448 (if (ptr_difference_const (@0, @1, &diff))
1449 { build_int_cst_type (type, diff); }))))
1450 (simplify
1451 (minus (convert @0) (convert ADDR_EXPR@1))
1452 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1453 (with { HOST_WIDE_INT diff; }
1454 (if (ptr_difference_const (@0, @1, &diff))
1455 { build_int_cst_type (type, diff); }))))
1456
1457 /* If arg0 is derived from the address of an object or function, we may
1458 be able to fold this expression using the object or function's
1459 alignment. */
1460 (simplify
1461 (bit_and (convert? @0) INTEGER_CST@1)
1462 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1463 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1464 (with
1465 {
1466 unsigned int align;
1467 unsigned HOST_WIDE_INT bitpos;
1468 get_pointer_alignment_1 (@0, &align, &bitpos);
1469 }
1470 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
1471 { wide_int_to_tree (type, (wi::to_wide (@1)
1472 & (bitpos / BITS_PER_UNIT))); }))))
1473
1474
1475 /* We can't reassociate at all for saturating types. */
1476 (if (!TYPE_SATURATING (type))
1477
1478 /* Contract negates. */
1479 /* A + (-B) -> A - B */
1480 (simplify
1481 (plus:c @0 (convert? (negate @1)))
1482 /* Apply STRIP_NOPS on the negate. */
1483 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1484 && !TYPE_OVERFLOW_SANITIZED (type))
1485 (with
1486 {
1487 tree t1 = type;
1488 if (INTEGRAL_TYPE_P (type)
1489 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1490 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1491 }
1492 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
1493 /* A - (-B) -> A + B */
1494 (simplify
1495 (minus @0 (convert? (negate @1)))
1496 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1497 && !TYPE_OVERFLOW_SANITIZED (type))
1498 (with
1499 {
1500 tree t1 = type;
1501 if (INTEGRAL_TYPE_P (type)
1502 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1503 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1504 }
1505 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
1506 /* -(-A) -> A */
1507 (simplify
1508 (negate (convert? (negate @1)))
1509 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1510 && !TYPE_OVERFLOW_SANITIZED (type))
1511 (convert @1)))
1512
1513 /* We can't reassociate floating-point unless -fassociative-math
1514 or fixed-point plus or minus because of saturation to +-Inf. */
1515 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
1516 && !FIXED_POINT_TYPE_P (type))
1517
1518 /* Match patterns that allow contracting a plus-minus pair
1519 irrespective of overflow issues. */
1520 /* (A +- B) - A -> +- B */
1521 /* (A +- B) -+ B -> A */
1522 /* A - (A +- B) -> -+ B */
1523 /* A +- (B -+ A) -> +- B */
1524 (simplify
1525 (minus (plus:c @0 @1) @0)
1526 @1)
1527 (simplify
1528 (minus (minus @0 @1) @0)
1529 (negate @1))
1530 (simplify
1531 (plus:c (minus @0 @1) @1)
1532 @0)
1533 (simplify
1534 (minus @0 (plus:c @0 @1))
1535 (negate @1))
1536 (simplify
1537 (minus @0 (minus @0 @1))
1538 @1)
1539 /* (A +- B) + (C - A) -> C +- B */
1540 /* (A + B) - (A - C) -> B + C */
1541 /* More cases are handled with comparisons. */
1542 (simplify
1543 (plus:c (plus:c @0 @1) (minus @2 @0))
1544 (plus @2 @1))
1545 (simplify
1546 (plus:c (minus @0 @1) (minus @2 @0))
1547 (minus @2 @1))
1548 (simplify
1549 (minus (plus:c @0 @1) (minus @0 @2))
1550 (plus @1 @2))
1551
1552 /* (A +- CST1) +- CST2 -> A + CST3
1553 Use view_convert because it is safe for vectors and equivalent for
1554 scalars. */
1555 (for outer_op (plus minus)
1556 (for inner_op (plus minus)
1557 neg_inner_op (minus plus)
1558 (simplify
1559 (outer_op (nop_convert (inner_op @0 CONSTANT_CLASS_P@1))
1560 CONSTANT_CLASS_P@2)
1561 /* If one of the types wraps, use that one. */
1562 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
1563 (if (outer_op == PLUS_EXPR)
1564 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
1565 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1))))
1566 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1567 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1568 (if (outer_op == PLUS_EXPR)
1569 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
1570 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
1571 /* If the constant operation overflows we cannot do the transform
1572 directly as we would introduce undefined overflow, for example
1573 with (a - 1) + INT_MIN. */
1574 (if (types_match (type, @0))
1575 (with { tree cst = const_binop (outer_op == inner_op
1576 ? PLUS_EXPR : MINUS_EXPR,
1577 type, @1, @2); }
1578 (if (cst && !TREE_OVERFLOW (cst))
1579 (inner_op @0 { cst; } )
1580 /* X+INT_MAX+1 is X-INT_MIN. */
1581 (if (INTEGRAL_TYPE_P (type) && cst
1582 && wi::to_wide (cst) == wi::min_value (type))
1583 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
1584 /* Last resort, use some unsigned type. */
1585 (with { tree utype = unsigned_type_for (type); }
1586 (view_convert (inner_op
1587 (view_convert:utype @0)
1588 (view_convert:utype
1589 { drop_tree_overflow (cst); })))))))))))))
1590
1591 /* (CST1 - A) +- CST2 -> CST3 - A */
1592 (for outer_op (plus minus)
1593 (simplify
1594 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
1595 (with { tree cst = const_binop (outer_op, type, @1, @2); }
1596 (if (cst && !TREE_OVERFLOW (cst))
1597 (minus { cst; } @0)))))
1598
1599 /* CST1 - (CST2 - A) -> CST3 + A */
1600 (simplify
1601 (minus CONSTANT_CLASS_P@1 (minus CONSTANT_CLASS_P@2 @0))
1602 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
1603 (if (cst && !TREE_OVERFLOW (cst))
1604 (plus { cst; } @0))))
1605
1606 /* ~A + A -> -1 */
1607 (simplify
1608 (plus:c (bit_not @0) @0)
1609 (if (!TYPE_OVERFLOW_TRAPS (type))
1610 { build_all_ones_cst (type); }))
1611
1612 /* ~A + 1 -> -A */
1613 (simplify
1614 (plus (convert? (bit_not @0)) integer_each_onep)
1615 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1616 (negate (convert @0))))
1617
1618 /* -A - 1 -> ~A */
1619 (simplify
1620 (minus (convert? (negate @0)) integer_each_onep)
1621 (if (!TYPE_OVERFLOW_TRAPS (type)
1622 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1623 (bit_not (convert @0))))
1624
1625 /* -1 - A -> ~A */
1626 (simplify
1627 (minus integer_all_onesp @0)
1628 (bit_not @0))
1629
1630 /* (T)(P + A) - (T)P -> (T) A */
1631 (for add (plus pointer_plus)
1632 (simplify
1633 (minus (convert (add @@0 @1))
1634 (convert @0))
1635 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1636 /* For integer types, if A has a smaller type
1637 than T the result depends on the possible
1638 overflow in P + A.
1639 E.g. T=size_t, A=(unsigned)429497295, P>0.
1640 However, if an overflow in P + A would cause
1641 undefined behavior, we can assume that there
1642 is no overflow. */
1643 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1644 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1645 /* For pointer types, if the conversion of A to the
1646 final type requires a sign- or zero-extension,
1647 then we have to punt - it is not defined which
1648 one is correct. */
1649 || (POINTER_TYPE_P (TREE_TYPE (@0))
1650 && TREE_CODE (@1) == INTEGER_CST
1651 && tree_int_cst_sign_bit (@1) == 0))
1652 (convert @1))))
1653
1654 /* (T)P - (T)(P + A) -> -(T) A */
1655 (for add (plus pointer_plus)
1656 (simplify
1657 (minus (convert @0)
1658 (convert (add @@0 @1)))
1659 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1660 /* For integer types, if A has a smaller type
1661 than T the result depends on the possible
1662 overflow in P + A.
1663 E.g. T=size_t, A=(unsigned)429497295, P>0.
1664 However, if an overflow in P + A would cause
1665 undefined behavior, we can assume that there
1666 is no overflow. */
1667 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1668 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1669 /* For pointer types, if the conversion of A to the
1670 final type requires a sign- or zero-extension,
1671 then we have to punt - it is not defined which
1672 one is correct. */
1673 || (POINTER_TYPE_P (TREE_TYPE (@0))
1674 && TREE_CODE (@1) == INTEGER_CST
1675 && tree_int_cst_sign_bit (@1) == 0))
1676 (negate (convert @1)))))
1677
1678 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
1679 (for add (plus pointer_plus)
1680 (simplify
1681 (minus (convert (add @@0 @1))
1682 (convert (add @0 @2)))
1683 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1684 /* For integer types, if A has a smaller type
1685 than T the result depends on the possible
1686 overflow in P + A.
1687 E.g. T=size_t, A=(unsigned)429497295, P>0.
1688 However, if an overflow in P + A would cause
1689 undefined behavior, we can assume that there
1690 is no overflow. */
1691 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1692 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1693 /* For pointer types, if the conversion of A to the
1694 final type requires a sign- or zero-extension,
1695 then we have to punt - it is not defined which
1696 one is correct. */
1697 || (POINTER_TYPE_P (TREE_TYPE (@0))
1698 && TREE_CODE (@1) == INTEGER_CST
1699 && tree_int_cst_sign_bit (@1) == 0
1700 && TREE_CODE (@2) == INTEGER_CST
1701 && tree_int_cst_sign_bit (@2) == 0))
1702 (minus (convert @1) (convert @2)))))))
1703
1704
1705 /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
1706
1707 (for minmax (min max FMIN FMAX)
1708 (simplify
1709 (minmax @0 @0)
1710 @0))
1711 /* min(max(x,y),y) -> y. */
1712 (simplify
1713 (min:c (max:c @0 @1) @1)
1714 @1)
1715 /* max(min(x,y),y) -> y. */
1716 (simplify
1717 (max:c (min:c @0 @1) @1)
1718 @1)
1719 /* max(a,-a) -> abs(a). */
1720 (simplify
1721 (max:c @0 (negate @0))
1722 (if (TREE_CODE (type) != COMPLEX_TYPE
1723 && (! ANY_INTEGRAL_TYPE_P (type)
1724 || TYPE_OVERFLOW_UNDEFINED (type)))
1725 (abs @0)))
1726 /* min(a,-a) -> -abs(a). */
1727 (simplify
1728 (min:c @0 (negate @0))
1729 (if (TREE_CODE (type) != COMPLEX_TYPE
1730 && (! ANY_INTEGRAL_TYPE_P (type)
1731 || TYPE_OVERFLOW_UNDEFINED (type)))
1732 (negate (abs @0))))
1733 (simplify
1734 (min @0 @1)
1735 (switch
1736 (if (INTEGRAL_TYPE_P (type)
1737 && TYPE_MIN_VALUE (type)
1738 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
1739 @1)
1740 (if (INTEGRAL_TYPE_P (type)
1741 && TYPE_MAX_VALUE (type)
1742 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
1743 @0)))
1744 (simplify
1745 (max @0 @1)
1746 (switch
1747 (if (INTEGRAL_TYPE_P (type)
1748 && TYPE_MAX_VALUE (type)
1749 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
1750 @1)
1751 (if (INTEGRAL_TYPE_P (type)
1752 && TYPE_MIN_VALUE (type)
1753 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
1754 @0)))
1755
1756 /* max (a, a + CST) -> a + CST where CST is positive. */
1757 /* max (a, a + CST) -> a where CST is negative. */
1758 (simplify
1759 (max:c @0 (plus@2 @0 INTEGER_CST@1))
1760 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1761 (if (tree_int_cst_sgn (@1) > 0)
1762 @2
1763 @0)))
1764
1765 /* min (a, a + CST) -> a where CST is positive. */
1766 /* min (a, a + CST) -> a + CST where CST is negative. */
1767 (simplify
1768 (min:c @0 (plus@2 @0 INTEGER_CST@1))
1769 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1770 (if (tree_int_cst_sgn (@1) > 0)
1771 @0
1772 @2)))
1773
1774 /* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
1775 and the outer convert demotes the expression back to x's type. */
1776 (for minmax (min max)
1777 (simplify
1778 (convert (minmax@0 (convert @1) INTEGER_CST@2))
1779 (if (INTEGRAL_TYPE_P (type)
1780 && types_match (@1, type) && int_fits_type_p (@2, type)
1781 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
1782 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
1783 (minmax @1 (convert @2)))))
1784
1785 (for minmax (FMIN FMAX)
1786 /* If either argument is NaN, return the other one. Avoid the
1787 transformation if we get (and honor) a signalling NaN. */
1788 (simplify
1789 (minmax:c @0 REAL_CST@1)
1790 (if (real_isnan (TREE_REAL_CST_PTR (@1))
1791 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
1792 @0)))
1793 /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
1794 functions to return the numeric arg if the other one is NaN.
1795 MIN and MAX don't honor that, so only transform if -ffinite-math-only
1796 is set. C99 doesn't require -0.0 to be handled, so we don't have to
1797 worry about it either. */
1798 (if (flag_finite_math_only)
1799 (simplify
1800 (FMIN @0 @1)
1801 (min @0 @1))
1802 (simplify
1803 (FMAX @0 @1)
1804 (max @0 @1)))
1805 /* min (-A, -B) -> -max (A, B) */
1806 (for minmax (min max FMIN FMAX)
1807 maxmin (max min FMAX FMIN)
1808 (simplify
1809 (minmax (negate:s@2 @0) (negate:s@3 @1))
1810 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1811 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1812 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
1813 (negate (maxmin @0 @1)))))
1814 /* MIN (~X, ~Y) -> ~MAX (X, Y)
1815 MAX (~X, ~Y) -> ~MIN (X, Y) */
1816 (for minmax (min max)
1817 maxmin (max min)
1818 (simplify
1819 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
1820 (bit_not (maxmin @0 @1))))
1821
1822 /* MIN (X, Y) == X -> X <= Y */
1823 (for minmax (min min max max)
1824 cmp (eq ne eq ne )
1825 out (le gt ge lt )
1826 (simplify
1827 (cmp:c (minmax:c @0 @1) @0)
1828 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
1829 (out @0 @1))))
1830 /* MIN (X, 5) == 0 -> X == 0
1831 MIN (X, 5) == 7 -> false */
1832 (for cmp (eq ne)
1833 (simplify
1834 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
1835 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
1836 TYPE_SIGN (TREE_TYPE (@0))))
1837 { constant_boolean_node (cmp == NE_EXPR, type); }
1838 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
1839 TYPE_SIGN (TREE_TYPE (@0))))
1840 (cmp @0 @2)))))
1841 (for cmp (eq ne)
1842 (simplify
1843 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
1844 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
1845 TYPE_SIGN (TREE_TYPE (@0))))
1846 { constant_boolean_node (cmp == NE_EXPR, type); }
1847 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
1848 TYPE_SIGN (TREE_TYPE (@0))))
1849 (cmp @0 @2)))))
1850 /* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
1851 (for minmax (min min max max min min max max )
1852 cmp (lt le gt ge gt ge lt le )
1853 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
1854 (simplify
1855 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
1856 (comb (cmp @0 @2) (cmp @1 @2))))
1857
1858 /* Simplifications of shift and rotates. */
1859
1860 (for rotate (lrotate rrotate)
1861 (simplify
1862 (rotate integer_all_onesp@0 @1)
1863 @0))
1864
1865 /* Optimize -1 >> x for arithmetic right shifts. */
1866 (simplify
1867 (rshift integer_all_onesp@0 @1)
1868 (if (!TYPE_UNSIGNED (type)
1869 && tree_expr_nonnegative_p (@1))
1870 @0))
1871
1872 /* Optimize (x >> c) << c into x & (-1<<c). */
1873 (simplify
1874 (lshift (rshift @0 INTEGER_CST@1) @1)
1875 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
1876 (bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
1877
1878 /* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
1879 types. */
1880 (simplify
1881 (rshift (lshift @0 INTEGER_CST@1) @1)
1882 (if (TYPE_UNSIGNED (type)
1883 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
1884 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
1885
1886 (for shiftrotate (lrotate rrotate lshift rshift)
1887 (simplify
1888 (shiftrotate @0 integer_zerop)
1889 (non_lvalue @0))
1890 (simplify
1891 (shiftrotate integer_zerop@0 @1)
1892 @0)
1893 /* Prefer vector1 << scalar to vector1 << vector2
1894 if vector2 is uniform. */
1895 (for vec (VECTOR_CST CONSTRUCTOR)
1896 (simplify
1897 (shiftrotate @0 vec@1)
1898 (with { tree tem = uniform_vector_p (@1); }
1899 (if (tem)
1900 (shiftrotate @0 { tem; }))))))
1901
1902 /* Simplify X << Y where Y's low width bits are 0 to X, as only valid
1903 Y is 0. Similarly for X >> Y. */
1904 #if GIMPLE
1905 (for shift (lshift rshift)
1906 (simplify
1907 (shift @0 SSA_NAME@1)
1908 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
1909 (with {
1910 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
1911 int prec = TYPE_PRECISION (TREE_TYPE (@1));
1912 }
1913 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
1914 @0)))))
1915 #endif
1916
1917 /* Rewrite an LROTATE_EXPR by a constant into an
1918 RROTATE_EXPR by a new constant. */
1919 (simplify
1920 (lrotate @0 INTEGER_CST@1)
1921 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
1922 build_int_cst (TREE_TYPE (@1),
1923 element_precision (type)), @1); }))
1924
1925 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
1926 (for op (lrotate rrotate rshift lshift)
1927 (simplify
1928 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
1929 (with { unsigned int prec = element_precision (type); }
1930 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
1931 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
1932 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
1933 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
1934 (with { unsigned int low = (tree_to_uhwi (@1)
1935 + tree_to_uhwi (@2)); }
1936 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
1937 being well defined. */
1938 (if (low >= prec)
1939 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
1940 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
1941 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
1942 { build_zero_cst (type); }
1943 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
1944 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
1945
1946
1947 /* ((1 << A) & 1) != 0 -> A == 0
1948 ((1 << A) & 1) == 0 -> A != 0 */
1949 (for cmp (ne eq)
1950 icmp (eq ne)
1951 (simplify
1952 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
1953 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
1954
1955 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
1956 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
1957 if CST2 != 0. */
1958 (for cmp (ne eq)
1959 (simplify
1960 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
1961 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
1962 (if (cand < 0
1963 || (!integer_zerop (@2)
1964 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
1965 { constant_boolean_node (cmp == NE_EXPR, type); }
1966 (if (!integer_zerop (@2)
1967 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
1968 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
1969
1970 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
1971 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
1972 if the new mask might be further optimized. */
1973 (for shift (lshift rshift)
1974 (simplify
1975 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
1976 INTEGER_CST@2)
1977 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
1978 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
1979 && tree_fits_uhwi_p (@1)
1980 && tree_to_uhwi (@1) > 0
1981 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
1982 (with
1983 {
1984 unsigned int shiftc = tree_to_uhwi (@1);
1985 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
1986 unsigned HOST_WIDE_INT newmask, zerobits = 0;
1987 tree shift_type = TREE_TYPE (@3);
1988 unsigned int prec;
1989
1990 if (shift == LSHIFT_EXPR)
1991 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
1992 else if (shift == RSHIFT_EXPR
1993 && type_has_mode_precision_p (shift_type))
1994 {
1995 prec = TYPE_PRECISION (TREE_TYPE (@3));
1996 tree arg00 = @0;
1997 /* See if more bits can be proven as zero because of
1998 zero extension. */
1999 if (@3 != @0
2000 && TYPE_UNSIGNED (TREE_TYPE (@0)))
2001 {
2002 tree inner_type = TREE_TYPE (@0);
2003 if (type_has_mode_precision_p (inner_type)
2004 && TYPE_PRECISION (inner_type) < prec)
2005 {
2006 prec = TYPE_PRECISION (inner_type);
2007 /* See if we can shorten the right shift. */
2008 if (shiftc < prec)
2009 shift_type = inner_type;
2010 /* Otherwise X >> C1 is all zeros, so we'll optimize
2011 it into (X, 0) later on by making sure zerobits
2012 is all ones. */
2013 }
2014 }
2015 zerobits = HOST_WIDE_INT_M1U;
2016 if (shiftc < prec)
2017 {
2018 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
2019 zerobits <<= prec - shiftc;
2020 }
2021 /* For arithmetic shift if sign bit could be set, zerobits
2022 can contain actually sign bits, so no transformation is
2023 possible, unless MASK masks them all away. In that
2024 case the shift needs to be converted into logical shift. */
2025 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
2026 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
2027 {
2028 if ((mask & zerobits) == 0)
2029 shift_type = unsigned_type_for (TREE_TYPE (@3));
2030 else
2031 zerobits = 0;
2032 }
2033 }
2034 }
2035 /* ((X << 16) & 0xff00) is (X, 0). */
2036 (if ((mask & zerobits) == mask)
2037 { build_int_cst (type, 0); }
2038 (with { newmask = mask | zerobits; }
2039 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
2040 (with
2041 {
2042 /* Only do the transformation if NEWMASK is some integer
2043 mode's mask. */
2044 for (prec = BITS_PER_UNIT;
2045 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
2046 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
2047 break;
2048 }
2049 (if (prec < HOST_BITS_PER_WIDE_INT
2050 || newmask == HOST_WIDE_INT_M1U)
2051 (with
2052 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
2053 (if (!tree_int_cst_equal (newmaskt, @2))
2054 (if (shift_type != TREE_TYPE (@3))
2055 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
2056 (bit_and @4 { newmaskt; })))))))))))))
2057
2058 /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
2059 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
2060 (for shift (lshift rshift)
2061 (for bit_op (bit_and bit_xor bit_ior)
2062 (simplify
2063 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
2064 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2065 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
2066 (bit_op (shift (convert @0) @1) { mask; }))))))
2067
2068 /* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
2069 (simplify
2070 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
2071 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
2072 && (element_precision (TREE_TYPE (@0))
2073 <= element_precision (TREE_TYPE (@1))
2074 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
2075 (with
2076 { tree shift_type = TREE_TYPE (@0); }
2077 (convert (rshift (convert:shift_type @1) @2)))))
2078
2079 /* ~(~X >>r Y) -> X >>r Y
2080 ~(~X <<r Y) -> X <<r Y */
2081 (for rotate (lrotate rrotate)
2082 (simplify
2083 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
2084 (if ((element_precision (TREE_TYPE (@0))
2085 <= element_precision (TREE_TYPE (@1))
2086 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
2087 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
2088 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
2089 (with
2090 { tree rotate_type = TREE_TYPE (@0); }
2091 (convert (rotate (convert:rotate_type @1) @2))))))
2092
2093 /* Simplifications of conversions. */
2094
2095 /* Basic strip-useless-type-conversions / strip_nops. */
2096 (for cvt (convert view_convert float fix_trunc)
2097 (simplify
2098 (cvt @0)
2099 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
2100 || (GENERIC && type == TREE_TYPE (@0)))
2101 @0)))
2102
2103 /* Contract view-conversions. */
2104 (simplify
2105 (view_convert (view_convert @0))
2106 (view_convert @0))
2107
2108 /* For integral conversions with the same precision or pointer
2109 conversions use a NOP_EXPR instead. */
2110 (simplify
2111 (view_convert @0)
2112 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
2113 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2114 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
2115 (convert @0)))
2116
2117 /* Strip inner integral conversions that do not change precision or size, or
2118 zero-extend while keeping the same size (for bool-to-char). */
2119 (simplify
2120 (view_convert (convert@0 @1))
2121 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2122 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
2123 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
2124 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
2125 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
2126 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
2127 (view_convert @1)))
2128
2129 /* Re-association barriers around constants and other re-association
2130 barriers can be removed. */
2131 (simplify
2132 (paren CONSTANT_CLASS_P@0)
2133 @0)
2134 (simplify
2135 (paren (paren@1 @0))
2136 @1)
2137
2138 /* Handle cases of two conversions in a row. */
2139 (for ocvt (convert float fix_trunc)
2140 (for icvt (convert float)
2141 (simplify
2142 (ocvt (icvt@1 @0))
2143 (with
2144 {
2145 tree inside_type = TREE_TYPE (@0);
2146 tree inter_type = TREE_TYPE (@1);
2147 int inside_int = INTEGRAL_TYPE_P (inside_type);
2148 int inside_ptr = POINTER_TYPE_P (inside_type);
2149 int inside_float = FLOAT_TYPE_P (inside_type);
2150 int inside_vec = VECTOR_TYPE_P (inside_type);
2151 unsigned int inside_prec = TYPE_PRECISION (inside_type);
2152 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
2153 int inter_int = INTEGRAL_TYPE_P (inter_type);
2154 int inter_ptr = POINTER_TYPE_P (inter_type);
2155 int inter_float = FLOAT_TYPE_P (inter_type);
2156 int inter_vec = VECTOR_TYPE_P (inter_type);
2157 unsigned int inter_prec = TYPE_PRECISION (inter_type);
2158 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
2159 int final_int = INTEGRAL_TYPE_P (type);
2160 int final_ptr = POINTER_TYPE_P (type);
2161 int final_float = FLOAT_TYPE_P (type);
2162 int final_vec = VECTOR_TYPE_P (type);
2163 unsigned int final_prec = TYPE_PRECISION (type);
2164 int final_unsignedp = TYPE_UNSIGNED (type);
2165 }
2166 (switch
2167 /* In addition to the cases of two conversions in a row
2168 handled below, if we are converting something to its own
2169 type via an object of identical or wider precision, neither
2170 conversion is needed. */
2171 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
2172 || (GENERIC
2173 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
2174 && (((inter_int || inter_ptr) && final_int)
2175 || (inter_float && final_float))
2176 && inter_prec >= final_prec)
2177 (ocvt @0))
2178
2179 /* Likewise, if the intermediate and initial types are either both
2180 float or both integer, we don't need the middle conversion if the
2181 former is wider than the latter and doesn't change the signedness
2182 (for integers). Avoid this if the final type is a pointer since
2183 then we sometimes need the middle conversion. */
2184 (if (((inter_int && inside_int) || (inter_float && inside_float))
2185 && (final_int || final_float)
2186 && inter_prec >= inside_prec
2187 && (inter_float || inter_unsignedp == inside_unsignedp))
2188 (ocvt @0))
2189
2190 /* If we have a sign-extension of a zero-extended value, we can
2191 replace that by a single zero-extension. Likewise if the
2192 final conversion does not change precision we can drop the
2193 intermediate conversion. */
2194 (if (inside_int && inter_int && final_int
2195 && ((inside_prec < inter_prec && inter_prec < final_prec
2196 && inside_unsignedp && !inter_unsignedp)
2197 || final_prec == inter_prec))
2198 (ocvt @0))
2199
2200 /* Two conversions in a row are not needed unless:
2201 - some conversion is floating-point (overstrict for now), or
2202 - some conversion is a vector (overstrict for now), or
2203 - the intermediate type is narrower than both initial and
2204 final, or
2205 - the intermediate type and innermost type differ in signedness,
2206 and the outermost type is wider than the intermediate, or
2207 - the initial type is a pointer type and the precisions of the
2208 intermediate and final types differ, or
2209 - the final type is a pointer type and the precisions of the
2210 initial and intermediate types differ. */
2211 (if (! inside_float && ! inter_float && ! final_float
2212 && ! inside_vec && ! inter_vec && ! final_vec
2213 && (inter_prec >= inside_prec || inter_prec >= final_prec)
2214 && ! (inside_int && inter_int
2215 && inter_unsignedp != inside_unsignedp
2216 && inter_prec < final_prec)
2217 && ((inter_unsignedp && inter_prec > inside_prec)
2218 == (final_unsignedp && final_prec > inter_prec))
2219 && ! (inside_ptr && inter_prec != final_prec)
2220 && ! (final_ptr && inside_prec != inter_prec))
2221 (ocvt @0))
2222
2223 /* A truncation to an unsigned type (a zero-extension) should be
2224 canonicalized as bitwise and of a mask. */
2225 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
2226 && final_int && inter_int && inside_int
2227 && final_prec == inside_prec
2228 && final_prec > inter_prec
2229 && inter_unsignedp)
2230 (convert (bit_and @0 { wide_int_to_tree
2231 (inside_type,
2232 wi::mask (inter_prec, false,
2233 TYPE_PRECISION (inside_type))); })))
2234
2235 /* If we are converting an integer to a floating-point that can
2236 represent it exactly and back to an integer, we can skip the
2237 floating-point conversion. */
2238 (if (GIMPLE /* PR66211 */
2239 && inside_int && inter_float && final_int &&
2240 (unsigned) significand_size (TYPE_MODE (inter_type))
2241 >= inside_prec - !inside_unsignedp)
2242 (convert @0)))))))
2243
2244 /* If we have a narrowing conversion to an integral type that is fed by a
2245 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
2246 masks off bits outside the final type (and nothing else). */
2247 (simplify
2248 (convert (bit_and @0 INTEGER_CST@1))
2249 (if (INTEGRAL_TYPE_P (type)
2250 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2251 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
2252 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
2253 TYPE_PRECISION (type)), 0))
2254 (convert @0)))
2255
2256
2257 /* (X /[ex] A) * A -> X. */
2258 (simplify
2259 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
2260 (convert @0))
2261
2262 /* Canonicalization of binary operations. */
2263
2264 /* Convert X + -C into X - C. */
2265 (simplify
2266 (plus @0 REAL_CST@1)
2267 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
2268 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
2269 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
2270 (minus @0 { tem; })))))
2271
2272 /* Convert x+x into x*2. */
2273 (simplify
2274 (plus @0 @0)
2275 (if (SCALAR_FLOAT_TYPE_P (type))
2276 (mult @0 { build_real (type, dconst2); })
2277 (if (INTEGRAL_TYPE_P (type))
2278 (mult @0 { build_int_cst (type, 2); }))))
2279
2280 (simplify
2281 (minus integer_zerop @1)
2282 (negate @1))
2283
2284 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
2285 ARG0 is zero and X + ARG0 reduces to X, since that would mean
2286 (-ARG1 + ARG0) reduces to -ARG1. */
2287 (simplify
2288 (minus real_zerop@0 @1)
2289 (if (fold_real_zero_addition_p (type, @0, 0))
2290 (negate @1)))
2291
2292 /* Transform x * -1 into -x. */
2293 (simplify
2294 (mult @0 integer_minus_onep)
2295 (negate @0))
2296
2297 /* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
2298 signed overflow for CST != 0 && CST != -1. */
2299 (simplify
2300 (mult:c (mult:s @0 INTEGER_CST@1) @2)
2301 (if (TREE_CODE (@2) != INTEGER_CST
2302 && !integer_zerop (@1) && !integer_minus_onep (@1))
2303 (mult (mult @0 @2) @1)))
2304
2305 /* True if we can easily extract the real and imaginary parts of a complex
2306 number. */
2307 (match compositional_complex
2308 (convert? (complex @0 @1)))
2309
2310 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
2311 (simplify
2312 (complex (realpart @0) (imagpart @0))
2313 @0)
2314 (simplify
2315 (realpart (complex @0 @1))
2316 @0)
2317 (simplify
2318 (imagpart (complex @0 @1))
2319 @1)
2320
2321 /* Sometimes we only care about half of a complex expression. */
2322 (simplify
2323 (realpart (convert?:s (conj:s @0)))
2324 (convert (realpart @0)))
2325 (simplify
2326 (imagpart (convert?:s (conj:s @0)))
2327 (convert (negate (imagpart @0))))
2328 (for part (realpart imagpart)
2329 (for op (plus minus)
2330 (simplify
2331 (part (convert?:s@2 (op:s @0 @1)))
2332 (convert (op (part @0) (part @1))))))
2333 (simplify
2334 (realpart (convert?:s (CEXPI:s @0)))
2335 (convert (COS @0)))
2336 (simplify
2337 (imagpart (convert?:s (CEXPI:s @0)))
2338 (convert (SIN @0)))
2339
2340 /* conj(conj(x)) -> x */
2341 (simplify
2342 (conj (convert? (conj @0)))
2343 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
2344 (convert @0)))
2345
2346 /* conj({x,y}) -> {x,-y} */
2347 (simplify
2348 (conj (convert?:s (complex:s @0 @1)))
2349 (with { tree itype = TREE_TYPE (type); }
2350 (complex (convert:itype @0) (negate (convert:itype @1)))))
2351
2352 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
2353 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
2354 (simplify
2355 (bswap (bswap @0))
2356 @0)
2357 (simplify
2358 (bswap (bit_not (bswap @0)))
2359 (bit_not @0))
2360 (for bitop (bit_xor bit_ior bit_and)
2361 (simplify
2362 (bswap (bitop:c (bswap @0) @1))
2363 (bitop @0 (bswap @1)))))
2364
2365
2366 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
2367
2368 /* Simplify constant conditions.
2369 Only optimize constant conditions when the selected branch
2370 has the same type as the COND_EXPR. This avoids optimizing
2371 away "c ? x : throw", where the throw has a void type.
2372 Note that we cannot throw away the fold-const.c variant nor
2373 this one as we depend on doing this transform before possibly
2374 A ? B : B -> B triggers and the fold-const.c one can optimize
2375 0 ? A : B to B even if A has side-effects. Something
2376 genmatch cannot handle. */
2377 (simplify
2378 (cond INTEGER_CST@0 @1 @2)
2379 (if (integer_zerop (@0))
2380 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
2381 @2)
2382 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
2383 @1)))
2384 (simplify
2385 (vec_cond VECTOR_CST@0 @1 @2)
2386 (if (integer_all_onesp (@0))
2387 @1
2388 (if (integer_zerop (@0))
2389 @2)))
2390
2391 /* Simplification moved from fold_cond_expr_with_comparison. It may also
2392 be extended. */
2393 /* This pattern implements two kinds simplification:
2394
2395 Case 1)
2396 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
2397 1) Conversions are type widening from smaller type.
2398 2) Const c1 equals to c2 after canonicalizing comparison.
2399 3) Comparison has tree code LT, LE, GT or GE.
2400 This specific pattern is needed when (cmp (convert x) c) may not
2401 be simplified by comparison patterns because of multiple uses of
2402 x. It also makes sense here because simplifying across multiple
2403 referred var is always benefitial for complicated cases.
2404
2405 Case 2)
2406 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
2407 (for cmp (lt le gt ge eq)
2408 (simplify
2409 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
2410 (with
2411 {
2412 tree from_type = TREE_TYPE (@1);
2413 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
2414 enum tree_code code = ERROR_MARK;
2415
2416 if (INTEGRAL_TYPE_P (from_type)
2417 && int_fits_type_p (@2, from_type)
2418 && (types_match (c1_type, from_type)
2419 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
2420 && (TYPE_UNSIGNED (from_type)
2421 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
2422 && (types_match (c2_type, from_type)
2423 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
2424 && (TYPE_UNSIGNED (from_type)
2425 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
2426 {
2427 if (cmp != EQ_EXPR)
2428 {
2429 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
2430 {
2431 /* X <= Y - 1 equals to X < Y. */
2432 if (cmp == LE_EXPR)
2433 code = LT_EXPR;
2434 /* X > Y - 1 equals to X >= Y. */
2435 if (cmp == GT_EXPR)
2436 code = GE_EXPR;
2437 }
2438 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
2439 {
2440 /* X < Y + 1 equals to X <= Y. */
2441 if (cmp == LT_EXPR)
2442 code = LE_EXPR;
2443 /* X >= Y + 1 equals to X > Y. */
2444 if (cmp == GE_EXPR)
2445 code = GT_EXPR;
2446 }
2447 if (code != ERROR_MARK
2448 || wi::to_widest (@2) == wi::to_widest (@3))
2449 {
2450 if (cmp == LT_EXPR || cmp == LE_EXPR)
2451 code = MIN_EXPR;
2452 if (cmp == GT_EXPR || cmp == GE_EXPR)
2453 code = MAX_EXPR;
2454 }
2455 }
2456 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
2457 else if (int_fits_type_p (@3, from_type))
2458 code = EQ_EXPR;
2459 }
2460 }
2461 (if (code == MAX_EXPR)
2462 (convert (max @1 (convert @2)))
2463 (if (code == MIN_EXPR)
2464 (convert (min @1 (convert @2)))
2465 (if (code == EQ_EXPR)
2466 (convert (cond (eq @1 (convert @3))
2467 (convert:from_type @3) (convert:from_type @2)))))))))
2468
2469 /* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
2470
2471 1) OP is PLUS or MINUS.
2472 2) CMP is LT, LE, GT or GE.
2473 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
2474
2475 This pattern also handles special cases like:
2476
2477 A) Operand x is a unsigned to signed type conversion and c1 is
2478 integer zero. In this case,
2479 (signed type)x < 0 <=> x > MAX_VAL(signed type)
2480 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
2481 B) Const c1 may not equal to (C3 op' C2). In this case we also
2482 check equality for (c1+1) and (c1-1) by adjusting comparison
2483 code.
2484
2485 TODO: Though signed type is handled by this pattern, it cannot be
2486 simplified at the moment because C standard requires additional
2487 type promotion. In order to match&simplify it here, the IR needs
2488 to be cleaned up by other optimizers, i.e, VRP. */
2489 (for op (plus minus)
2490 (for cmp (lt le gt ge)
2491 (simplify
2492 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
2493 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
2494 (if (types_match (from_type, to_type)
2495 /* Check if it is special case A). */
2496 || (TYPE_UNSIGNED (from_type)
2497 && !TYPE_UNSIGNED (to_type)
2498 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
2499 && integer_zerop (@1)
2500 && (cmp == LT_EXPR || cmp == GE_EXPR)))
2501 (with
2502 {
2503 bool overflow = false;
2504 enum tree_code code, cmp_code = cmp;
2505 wide_int real_c1;
2506 wide_int c1 = wi::to_wide (@1);
2507 wide_int c2 = wi::to_wide (@2);
2508 wide_int c3 = wi::to_wide (@3);
2509 signop sgn = TYPE_SIGN (from_type);
2510
2511 /* Handle special case A), given x of unsigned type:
2512 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
2513 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
2514 if (!types_match (from_type, to_type))
2515 {
2516 if (cmp_code == LT_EXPR)
2517 cmp_code = GT_EXPR;
2518 if (cmp_code == GE_EXPR)
2519 cmp_code = LE_EXPR;
2520 c1 = wi::max_value (to_type);
2521 }
2522 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
2523 compute (c3 op' c2) and check if it equals to c1 with op' being
2524 the inverted operator of op. Make sure overflow doesn't happen
2525 if it is undefined. */
2526 if (op == PLUS_EXPR)
2527 real_c1 = wi::sub (c3, c2, sgn, &overflow);
2528 else
2529 real_c1 = wi::add (c3, c2, sgn, &overflow);
2530
2531 code = cmp_code;
2532 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
2533 {
2534 /* Check if c1 equals to real_c1. Boundary condition is handled
2535 by adjusting comparison operation if necessary. */
2536 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
2537 && !overflow)
2538 {
2539 /* X <= Y - 1 equals to X < Y. */
2540 if (cmp_code == LE_EXPR)
2541 code = LT_EXPR;
2542 /* X > Y - 1 equals to X >= Y. */
2543 if (cmp_code == GT_EXPR)
2544 code = GE_EXPR;
2545 }
2546 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
2547 && !overflow)
2548 {
2549 /* X < Y + 1 equals to X <= Y. */
2550 if (cmp_code == LT_EXPR)
2551 code = LE_EXPR;
2552 /* X >= Y + 1 equals to X > Y. */
2553 if (cmp_code == GE_EXPR)
2554 code = GT_EXPR;
2555 }
2556 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
2557 {
2558 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
2559 code = MIN_EXPR;
2560 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
2561 code = MAX_EXPR;
2562 }
2563 }
2564 }
2565 (if (code == MAX_EXPR)
2566 (op (max @X { wide_int_to_tree (from_type, real_c1); })
2567 { wide_int_to_tree (from_type, c2); })
2568 (if (code == MIN_EXPR)
2569 (op (min @X { wide_int_to_tree (from_type, real_c1); })
2570 { wide_int_to_tree (from_type, c2); })))))))))
2571
2572 (for cnd (cond vec_cond)
2573 /* A ? B : (A ? X : C) -> A ? B : C. */
2574 (simplify
2575 (cnd @0 (cnd @0 @1 @2) @3)
2576 (cnd @0 @1 @3))
2577 (simplify
2578 (cnd @0 @1 (cnd @0 @2 @3))
2579 (cnd @0 @1 @3))
2580 /* A ? B : (!A ? C : X) -> A ? B : C. */
2581 /* ??? This matches embedded conditions open-coded because genmatch
2582 would generate matching code for conditions in separate stmts only.
2583 The following is still important to merge then and else arm cases
2584 from if-conversion. */
2585 (simplify
2586 (cnd @0 @1 (cnd @2 @3 @4))
2587 (if (COMPARISON_CLASS_P (@0)
2588 && COMPARISON_CLASS_P (@2)
2589 && invert_tree_comparison
2590 (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@2)
2591 && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@2, 0), 0)
2592 && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@2, 1), 0))
2593 (cnd @0 @1 @3)))
2594 (simplify
2595 (cnd @0 (cnd @1 @2 @3) @4)
2596 (if (COMPARISON_CLASS_P (@0)
2597 && COMPARISON_CLASS_P (@1)
2598 && invert_tree_comparison
2599 (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@1)
2600 && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@1, 0), 0)
2601 && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@1, 1), 0))
2602 (cnd @0 @3 @4)))
2603
2604 /* A ? B : B -> B. */
2605 (simplify
2606 (cnd @0 @1 @1)
2607 @1)
2608
2609 /* !A ? B : C -> A ? C : B. */
2610 (simplify
2611 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
2612 (cnd @0 @2 @1)))
2613
2614 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
2615 return all -1 or all 0 results. */
2616 /* ??? We could instead convert all instances of the vec_cond to negate,
2617 but that isn't necessarily a win on its own. */
2618 (simplify
2619 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
2620 (if (VECTOR_TYPE_P (type)
2621 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1))
2622 && (TYPE_MODE (TREE_TYPE (type))
2623 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
2624 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
2625
2626 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
2627 (simplify
2628 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
2629 (if (VECTOR_TYPE_P (type)
2630 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1))
2631 && (TYPE_MODE (TREE_TYPE (type))
2632 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
2633 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
2634
2635
2636 /* Simplifications of comparisons. */
2637
2638 /* See if we can reduce the magnitude of a constant involved in a
2639 comparison by changing the comparison code. This is a canonicalization
2640 formerly done by maybe_canonicalize_comparison_1. */
2641 (for cmp (le gt)
2642 acmp (lt ge)
2643 (simplify
2644 (cmp @0 INTEGER_CST@1)
2645 (if (tree_int_cst_sgn (@1) == -1)
2646 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
2647 (for cmp (ge lt)
2648 acmp (gt le)
2649 (simplify
2650 (cmp @0 INTEGER_CST@1)
2651 (if (tree_int_cst_sgn (@1) == 1)
2652 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
2653
2654
2655 /* We can simplify a logical negation of a comparison to the
2656 inverted comparison. As we cannot compute an expression
2657 operator using invert_tree_comparison we have to simulate
2658 that with expression code iteration. */
2659 (for cmp (tcc_comparison)
2660 icmp (inverted_tcc_comparison)
2661 ncmp (inverted_tcc_comparison_with_nans)
2662 /* Ideally we'd like to combine the following two patterns
2663 and handle some more cases by using
2664 (logical_inverted_value (cmp @0 @1))
2665 here but for that genmatch would need to "inline" that.
2666 For now implement what forward_propagate_comparison did. */
2667 (simplify
2668 (bit_not (cmp @0 @1))
2669 (if (VECTOR_TYPE_P (type)
2670 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
2671 /* Comparison inversion may be impossible for trapping math,
2672 invert_tree_comparison will tell us. But we can't use
2673 a computed operator in the replacement tree thus we have
2674 to play the trick below. */
2675 (with { enum tree_code ic = invert_tree_comparison
2676 (cmp, HONOR_NANS (@0)); }
2677 (if (ic == icmp)
2678 (icmp @0 @1)
2679 (if (ic == ncmp)
2680 (ncmp @0 @1))))))
2681 (simplify
2682 (bit_xor (cmp @0 @1) integer_truep)
2683 (with { enum tree_code ic = invert_tree_comparison
2684 (cmp, HONOR_NANS (@0)); }
2685 (if (ic == icmp)
2686 (icmp @0 @1)
2687 (if (ic == ncmp)
2688 (ncmp @0 @1))))))
2689
2690 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
2691 ??? The transformation is valid for the other operators if overflow
2692 is undefined for the type, but performing it here badly interacts
2693 with the transformation in fold_cond_expr_with_comparison which
2694 attempts to synthetize ABS_EXPR. */
2695 (for cmp (eq ne)
2696 (simplify
2697 (cmp (minus@2 @0 @1) integer_zerop)
2698 (if (single_use (@2))
2699 (cmp @0 @1))))
2700
2701 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
2702 signed arithmetic case. That form is created by the compiler
2703 often enough for folding it to be of value. One example is in
2704 computing loop trip counts after Operator Strength Reduction. */
2705 (for cmp (simple_comparison)
2706 scmp (swapped_simple_comparison)
2707 (simplify
2708 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
2709 /* Handle unfolded multiplication by zero. */
2710 (if (integer_zerop (@1))
2711 (cmp @1 @2)
2712 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2713 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2714 && single_use (@3))
2715 /* If @1 is negative we swap the sense of the comparison. */
2716 (if (tree_int_cst_sgn (@1) < 0)
2717 (scmp @0 @2)
2718 (cmp @0 @2))))))
2719
2720 /* Simplify comparison of something with itself. For IEEE
2721 floating-point, we can only do some of these simplifications. */
2722 (for cmp (eq ge le)
2723 (simplify
2724 (cmp @0 @0)
2725 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
2726 || ! HONOR_NANS (@0))
2727 { constant_boolean_node (true, type); }
2728 (if (cmp != EQ_EXPR)
2729 (eq @0 @0)))))
2730 (for cmp (ne gt lt)
2731 (simplify
2732 (cmp @0 @0)
2733 (if (cmp != NE_EXPR
2734 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
2735 || ! HONOR_NANS (@0))
2736 { constant_boolean_node (false, type); })))
2737 (for cmp (unle unge uneq)
2738 (simplify
2739 (cmp @0 @0)
2740 { constant_boolean_node (true, type); }))
2741 (for cmp (unlt ungt)
2742 (simplify
2743 (cmp @0 @0)
2744 (unordered @0 @0)))
2745 (simplify
2746 (ltgt @0 @0)
2747 (if (!flag_trapping_math)
2748 { constant_boolean_node (false, type); }))
2749
2750 /* Fold ~X op ~Y as Y op X. */
2751 (for cmp (simple_comparison)
2752 (simplify
2753 (cmp (bit_not@2 @0) (bit_not@3 @1))
2754 (if (single_use (@2) && single_use (@3))
2755 (cmp @1 @0))))
2756
2757 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
2758 (for cmp (simple_comparison)
2759 scmp (swapped_simple_comparison)
2760 (simplify
2761 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
2762 (if (single_use (@2)
2763 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
2764 (scmp @0 (bit_not @1)))))
2765
2766 (for cmp (simple_comparison)
2767 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
2768 (simplify
2769 (cmp (convert@2 @0) (convert? @1))
2770 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2771 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
2772 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
2773 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
2774 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
2775 (with
2776 {
2777 tree type1 = TREE_TYPE (@1);
2778 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
2779 {
2780 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
2781 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
2782 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
2783 type1 = float_type_node;
2784 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
2785 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
2786 type1 = double_type_node;
2787 }
2788 tree newtype
2789 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
2790 ? TREE_TYPE (@0) : type1);
2791 }
2792 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
2793 (cmp (convert:newtype @0) (convert:newtype @1))))))
2794
2795 (simplify
2796 (cmp @0 REAL_CST@1)
2797 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
2798 (switch
2799 /* a CMP (-0) -> a CMP 0 */
2800 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
2801 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
2802 /* x != NaN is always true, other ops are always false. */
2803 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
2804 && ! HONOR_SNANS (@1))
2805 { constant_boolean_node (cmp == NE_EXPR, type); })
2806 /* Fold comparisons against infinity. */
2807 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
2808 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
2809 (with
2810 {
2811 REAL_VALUE_TYPE max;
2812 enum tree_code code = cmp;
2813 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
2814 if (neg)
2815 code = swap_tree_comparison (code);
2816 }
2817 (switch
2818 /* x > +Inf is always false, if with ignore sNANs. */
2819 (if (code == GT_EXPR
2820 && ! HONOR_SNANS (@0))
2821 { constant_boolean_node (false, type); })
2822 (if (code == LE_EXPR)
2823 /* x <= +Inf is always true, if we don't case about NaNs. */
2824 (if (! HONOR_NANS (@0))
2825 { constant_boolean_node (true, type); }
2826 /* x <= +Inf is the same as x == x, i.e. !isnan(x). */
2827 (eq @0 @0)))
2828 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
2829 (if (code == EQ_EXPR || code == GE_EXPR)
2830 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
2831 (if (neg)
2832 (lt @0 { build_real (TREE_TYPE (@0), max); })
2833 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
2834 /* x < +Inf is always equal to x <= DBL_MAX. */
2835 (if (code == LT_EXPR)
2836 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
2837 (if (neg)
2838 (ge @0 { build_real (TREE_TYPE (@0), max); })
2839 (le @0 { build_real (TREE_TYPE (@0), max); }))))
2840 /* x != +Inf is always equal to !(x > DBL_MAX). */
2841 (if (code == NE_EXPR)
2842 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
2843 (if (! HONOR_NANS (@0))
2844 (if (neg)
2845 (ge @0 { build_real (TREE_TYPE (@0), max); })
2846 (le @0 { build_real (TREE_TYPE (@0), max); }))
2847 (if (neg)
2848 (bit_xor (lt @0 { build_real (TREE_TYPE (@0), max); })
2849 { build_one_cst (type); })
2850 (bit_xor (gt @0 { build_real (TREE_TYPE (@0), max); })
2851 { build_one_cst (type); }))))))))))
2852
2853 /* If this is a comparison of a real constant with a PLUS_EXPR
2854 or a MINUS_EXPR of a real constant, we can convert it into a
2855 comparison with a revised real constant as long as no overflow
2856 occurs when unsafe_math_optimizations are enabled. */
2857 (if (flag_unsafe_math_optimizations)
2858 (for op (plus minus)
2859 (simplify
2860 (cmp (op @0 REAL_CST@1) REAL_CST@2)
2861 (with
2862 {
2863 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
2864 TREE_TYPE (@1), @2, @1);
2865 }
2866 (if (tem && !TREE_OVERFLOW (tem))
2867 (cmp @0 { tem; }))))))
2868
2869 /* Likewise, we can simplify a comparison of a real constant with
2870 a MINUS_EXPR whose first operand is also a real constant, i.e.
2871 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
2872 floating-point types only if -fassociative-math is set. */
2873 (if (flag_associative_math)
2874 (simplify
2875 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
2876 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
2877 (if (tem && !TREE_OVERFLOW (tem))
2878 (cmp { tem; } @1)))))
2879
2880 /* Fold comparisons against built-in math functions. */
2881 (if (flag_unsafe_math_optimizations
2882 && ! flag_errno_math)
2883 (for sq (SQRT)
2884 (simplify
2885 (cmp (sq @0) REAL_CST@1)
2886 (switch
2887 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
2888 (switch
2889 /* sqrt(x) < y is always false, if y is negative. */
2890 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
2891 { constant_boolean_node (false, type); })
2892 /* sqrt(x) > y is always true, if y is negative and we
2893 don't care about NaNs, i.e. negative values of x. */
2894 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
2895 { constant_boolean_node (true, type); })
2896 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
2897 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
2898 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
2899 (switch
2900 /* sqrt(x) < 0 is always false. */
2901 (if (cmp == LT_EXPR)
2902 { constant_boolean_node (false, type); })
2903 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
2904 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
2905 { constant_boolean_node (true, type); })
2906 /* sqrt(x) <= 0 -> x == 0. */
2907 (if (cmp == LE_EXPR)
2908 (eq @0 @1))
2909 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
2910 == or !=. In the last case:
2911
2912 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
2913
2914 if x is negative or NaN. Due to -funsafe-math-optimizations,
2915 the results for other x follow from natural arithmetic. */
2916 (cmp @0 @1)))
2917 (if (cmp == GT_EXPR || cmp == GE_EXPR)
2918 (with
2919 {
2920 REAL_VALUE_TYPE c2;
2921 real_arithmetic (&c2, MULT_EXPR,
2922 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
2923 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
2924 }
2925 (if (REAL_VALUE_ISINF (c2))
2926 /* sqrt(x) > y is x == +Inf, when y is very large. */
2927 (if (HONOR_INFINITIES (@0))
2928 (eq @0 { build_real (TREE_TYPE (@0), c2); })
2929 { constant_boolean_node (false, type); })
2930 /* sqrt(x) > c is the same as x > c*c. */
2931 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
2932 (if (cmp == LT_EXPR || cmp == LE_EXPR)
2933 (with
2934 {
2935 REAL_VALUE_TYPE c2;
2936 real_arithmetic (&c2, MULT_EXPR,
2937 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
2938 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
2939 }
2940 (if (REAL_VALUE_ISINF (c2))
2941 (switch
2942 /* sqrt(x) < y is always true, when y is a very large
2943 value and we don't care about NaNs or Infinities. */
2944 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
2945 { constant_boolean_node (true, type); })
2946 /* sqrt(x) < y is x != +Inf when y is very large and we
2947 don't care about NaNs. */
2948 (if (! HONOR_NANS (@0))
2949 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
2950 /* sqrt(x) < y is x >= 0 when y is very large and we
2951 don't care about Infinities. */
2952 (if (! HONOR_INFINITIES (@0))
2953 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
2954 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
2955 (if (GENERIC)
2956 (truth_andif
2957 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
2958 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
2959 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
2960 (if (! HONOR_NANS (@0))
2961 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
2962 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
2963 (if (GENERIC)
2964 (truth_andif
2965 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
2966 (cmp @0 { build_real (TREE_TYPE (@0), c2); })))))))))
2967 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
2968 (simplify
2969 (cmp (sq @0) (sq @1))
2970 (if (! HONOR_NANS (@0))
2971 (cmp @0 @1))))))
2972
2973 /* Optimize various special cases of (FTYPE) N CMP CST. */
2974 (for cmp (lt le eq ne ge gt)
2975 icmp (le le eq ne ge ge)
2976 (simplify
2977 (cmp (float @0) REAL_CST@1)
2978 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
2979 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
2980 (with
2981 {
2982 tree itype = TREE_TYPE (@0);
2983 signop isign = TYPE_SIGN (itype);
2984 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
2985 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
2986 /* Be careful to preserve any potential exceptions due to
2987 NaNs. qNaNs are ok in == or != context.
2988 TODO: relax under -fno-trapping-math or
2989 -fno-signaling-nans. */
2990 bool exception_p
2991 = real_isnan (cst) && (cst->signalling
2992 || (cmp != EQ_EXPR && cmp != NE_EXPR));
2993 /* INT?_MIN is power-of-two so it takes
2994 only one mantissa bit. */
2995 bool signed_p = isign == SIGNED;
2996 bool itype_fits_ftype_p
2997 = TYPE_PRECISION (itype) - signed_p <= significand_size (fmt);
2998 }
2999 /* TODO: allow non-fitting itype and SNaNs when
3000 -fno-trapping-math. */
3001 (if (itype_fits_ftype_p && ! exception_p)
3002 (with
3003 {
3004 REAL_VALUE_TYPE imin, imax;
3005 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
3006 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
3007
3008 REAL_VALUE_TYPE icst;
3009 if (cmp == GT_EXPR || cmp == GE_EXPR)
3010 real_ceil (&icst, fmt, cst);
3011 else if (cmp == LT_EXPR || cmp == LE_EXPR)
3012 real_floor (&icst, fmt, cst);
3013 else
3014 real_trunc (&icst, fmt, cst);
3015
3016 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
3017
3018 bool overflow_p = false;
3019 wide_int icst_val
3020 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
3021 }
3022 (switch
3023 /* Optimize cases when CST is outside of ITYPE's range. */
3024 (if (real_compare (LT_EXPR, cst, &imin))
3025 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
3026 type); })
3027 (if (real_compare (GT_EXPR, cst, &imax))
3028 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
3029 type); })
3030 /* Remove cast if CST is an integer representable by ITYPE. */
3031 (if (cst_int_p)
3032 (cmp @0 { gcc_assert (!overflow_p);
3033 wide_int_to_tree (itype, icst_val); })
3034 )
3035 /* When CST is fractional, optimize
3036 (FTYPE) N == CST -> 0
3037 (FTYPE) N != CST -> 1. */
3038 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3039 { constant_boolean_node (cmp == NE_EXPR, type); })
3040 /* Otherwise replace with sensible integer constant. */
3041 (with
3042 {
3043 gcc_checking_assert (!overflow_p);
3044 }
3045 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
3046
3047 /* Fold A /[ex] B CMP C to A CMP B * C. */
3048 (for cmp (eq ne)
3049 (simplify
3050 (cmp (exact_div @0 @1) INTEGER_CST@2)
3051 (if (!integer_zerop (@1))
3052 (if (wi::to_wide (@2) == 0)
3053 (cmp @0 @2)
3054 (if (TREE_CODE (@1) == INTEGER_CST)
3055 (with
3056 {
3057 bool ovf;
3058 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3059 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3060 }
3061 (if (ovf)
3062 { constant_boolean_node (cmp == NE_EXPR, type); }
3063 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
3064 (for cmp (lt le gt ge)
3065 (simplify
3066 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
3067 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
3068 (with
3069 {
3070 bool ovf;
3071 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3072 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3073 }
3074 (if (ovf)
3075 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
3076 TYPE_SIGN (TREE_TYPE (@2)))
3077 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
3078 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
3079
3080 /* Unordered tests if either argument is a NaN. */
3081 (simplify
3082 (bit_ior (unordered @0 @0) (unordered @1 @1))
3083 (if (types_match (@0, @1))
3084 (unordered @0 @1)))
3085 (simplify
3086 (bit_and (ordered @0 @0) (ordered @1 @1))
3087 (if (types_match (@0, @1))
3088 (ordered @0 @1)))
3089 (simplify
3090 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
3091 @2)
3092 (simplify
3093 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
3094 @2)
3095
3096 /* Simple range test simplifications. */
3097 /* A < B || A >= B -> true. */
3098 (for test1 (lt le le le ne ge)
3099 test2 (ge gt ge ne eq ne)
3100 (simplify
3101 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
3102 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3103 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3104 { constant_boolean_node (true, type); })))
3105 /* A < B && A >= B -> false. */
3106 (for test1 (lt lt lt le ne eq)
3107 test2 (ge gt eq gt eq gt)
3108 (simplify
3109 (bit_and:c (test1 @0 @1) (test2 @0 @1))
3110 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3111 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3112 { constant_boolean_node (false, type); })))
3113
3114 /* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
3115 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
3116
3117 Note that comparisons
3118 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
3119 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
3120 will be canonicalized to above so there's no need to
3121 consider them here.
3122 */
3123
3124 (for cmp (le gt)
3125 eqcmp (eq ne)
3126 (simplify
3127 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
3128 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3129 (with
3130 {
3131 tree ty = TREE_TYPE (@0);
3132 unsigned prec = TYPE_PRECISION (ty);
3133 wide_int mask = wi::to_wide (@2, prec);
3134 wide_int rhs = wi::to_wide (@3, prec);
3135 signop sgn = TYPE_SIGN (ty);
3136 }
3137 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
3138 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
3139 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
3140 { build_zero_cst (ty); }))))))
3141
3142 /* -A CMP -B -> B CMP A. */
3143 (for cmp (tcc_comparison)
3144 scmp (swapped_tcc_comparison)
3145 (simplify
3146 (cmp (negate @0) (negate @1))
3147 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3148 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3149 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3150 (scmp @0 @1)))
3151 (simplify
3152 (cmp (negate @0) CONSTANT_CLASS_P@1)
3153 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3154 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3155 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3156 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
3157 (if (tem && !TREE_OVERFLOW (tem))
3158 (scmp @0 { tem; }))))))
3159
3160 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
3161 (for op (eq ne)
3162 (simplify
3163 (op (abs @0) zerop@1)
3164 (op @0 @1)))
3165
3166 /* From fold_sign_changed_comparison and fold_widened_comparison.
3167 FIXME: the lack of symmetry is disturbing. */
3168 (for cmp (simple_comparison)
3169 (simplify
3170 (cmp (convert@0 @00) (convert?@1 @10))
3171 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3172 /* Disable this optimization if we're casting a function pointer
3173 type on targets that require function pointer canonicalization. */
3174 && !(targetm.have_canonicalize_funcptr_for_compare ()
3175 && TREE_CODE (TREE_TYPE (@00)) == POINTER_TYPE
3176 && TREE_CODE (TREE_TYPE (TREE_TYPE (@00))) == FUNCTION_TYPE)
3177 && single_use (@0))
3178 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
3179 && (TREE_CODE (@10) == INTEGER_CST
3180 || @1 != @10)
3181 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
3182 || cmp == NE_EXPR
3183 || cmp == EQ_EXPR)
3184 && !POINTER_TYPE_P (TREE_TYPE (@00)))
3185 /* ??? The special-casing of INTEGER_CST conversion was in the original
3186 code and here to avoid a spurious overflow flag on the resulting
3187 constant which fold_convert produces. */
3188 (if (TREE_CODE (@1) == INTEGER_CST)
3189 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
3190 TREE_OVERFLOW (@1)); })
3191 (cmp @00 (convert @1)))
3192
3193 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
3194 /* If possible, express the comparison in the shorter mode. */
3195 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
3196 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
3197 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
3198 && TYPE_UNSIGNED (TREE_TYPE (@00))))
3199 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
3200 || ((TYPE_PRECISION (TREE_TYPE (@00))
3201 >= TYPE_PRECISION (TREE_TYPE (@10)))
3202 && (TYPE_UNSIGNED (TREE_TYPE (@00))
3203 == TYPE_UNSIGNED (TREE_TYPE (@10))))
3204 || (TREE_CODE (@10) == INTEGER_CST
3205 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3206 && int_fits_type_p (@10, TREE_TYPE (@00)))))
3207 (cmp @00 (convert @10))
3208 (if (TREE_CODE (@10) == INTEGER_CST
3209 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3210 && !int_fits_type_p (@10, TREE_TYPE (@00)))
3211 (with
3212 {
3213 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3214 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3215 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
3216 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
3217 }
3218 (if (above || below)
3219 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3220 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
3221 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3222 { constant_boolean_node (above ? true : false, type); }
3223 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3224 { constant_boolean_node (above ? false : true, type); }))))))))))))
3225
3226 (for cmp (eq ne)
3227 /* A local variable can never be pointed to by
3228 the default SSA name of an incoming parameter.
3229 SSA names are canonicalized to 2nd place. */
3230 (simplify
3231 (cmp addr@0 SSA_NAME@1)
3232 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
3233 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
3234 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
3235 (if (TREE_CODE (base) == VAR_DECL
3236 && auto_var_in_fn_p (base, current_function_decl))
3237 (if (cmp == NE_EXPR)
3238 { constant_boolean_node (true, type); }
3239 { constant_boolean_node (false, type); }))))))
3240
3241 /* Equality compare simplifications from fold_binary */
3242 (for cmp (eq ne)
3243
3244 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
3245 Similarly for NE_EXPR. */
3246 (simplify
3247 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
3248 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
3249 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
3250 { constant_boolean_node (cmp == NE_EXPR, type); }))
3251
3252 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
3253 (simplify
3254 (cmp (bit_xor @0 @1) integer_zerop)
3255 (cmp @0 @1))
3256
3257 /* (X ^ Y) == Y becomes X == 0.
3258 Likewise (X ^ Y) == X becomes Y == 0. */
3259 (simplify
3260 (cmp:c (bit_xor:c @0 @1) @0)
3261 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
3262
3263 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
3264 (simplify
3265 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
3266 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
3267 (cmp @0 (bit_xor @1 (convert @2)))))
3268
3269 (simplify
3270 (cmp (convert? addr@0) integer_zerop)
3271 (if (tree_single_nonzero_warnv_p (@0, NULL))
3272 { constant_boolean_node (cmp == NE_EXPR, type); })))
3273
3274 /* If we have (A & C) == C where C is a power of 2, convert this into
3275 (A & C) != 0. Similarly for NE_EXPR. */
3276 (for cmp (eq ne)
3277 icmp (ne eq)
3278 (simplify
3279 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
3280 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
3281
3282 /* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
3283 convert this into a shift followed by ANDing with D. */
3284 (simplify
3285 (cond
3286 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
3287 integer_pow2p@2 integer_zerop)
3288 (with {
3289 int shift = (wi::exact_log2 (wi::to_wide (@2))
3290 - wi::exact_log2 (wi::to_wide (@1)));
3291 }
3292 (if (shift > 0)
3293 (bit_and
3294 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
3295 (bit_and
3296 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); })) @2))))
3297
3298 /* If we have (A & C) != 0 where C is the sign bit of A, convert
3299 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
3300 (for cmp (eq ne)
3301 ncmp (ge lt)
3302 (simplify
3303 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
3304 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3305 && type_has_mode_precision_p (TREE_TYPE (@0))
3306 && element_precision (@2) >= element_precision (@0)
3307 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
3308 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
3309 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
3310
3311 /* If we have A < 0 ? C : 0 where C is a power of 2, convert
3312 this into a right shift or sign extension followed by ANDing with C. */
3313 (simplify
3314 (cond
3315 (lt @0 integer_zerop)
3316 integer_pow2p@1 integer_zerop)
3317 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
3318 (with {
3319 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
3320 }
3321 (if (shift >= 0)
3322 (bit_and
3323 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
3324 @1)
3325 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
3326 sign extension followed by AND with C will achieve the effect. */
3327 (bit_and (convert @0) @1)))))
3328
3329 /* When the addresses are not directly of decls compare base and offset.
3330 This implements some remaining parts of fold_comparison address
3331 comparisons but still no complete part of it. Still it is good
3332 enough to make fold_stmt not regress when not dispatching to fold_binary. */
3333 (for cmp (simple_comparison)
3334 (simplify
3335 (cmp (convert1?@2 addr@0) (convert2? addr@1))
3336 (with
3337 {
3338 HOST_WIDE_INT off0, off1;
3339 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
3340 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
3341 if (base0 && TREE_CODE (base0) == MEM_REF)
3342 {
3343 off0 += mem_ref_offset (base0).to_short_addr ();
3344 base0 = TREE_OPERAND (base0, 0);
3345 }
3346 if (base1 && TREE_CODE (base1) == MEM_REF)
3347 {
3348 off1 += mem_ref_offset (base1).to_short_addr ();
3349 base1 = TREE_OPERAND (base1, 0);
3350 }
3351 }
3352 (if (base0 && base1)
3353 (with
3354 {
3355 int equal = 2;
3356 /* Punt in GENERIC on variables with value expressions;
3357 the value expressions might point to fields/elements
3358 of other vars etc. */
3359 if (GENERIC
3360 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
3361 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
3362 ;
3363 else if (decl_in_symtab_p (base0)
3364 && decl_in_symtab_p (base1))
3365 equal = symtab_node::get_create (base0)
3366 ->equal_address_to (symtab_node::get_create (base1));
3367 else if ((DECL_P (base0)
3368 || TREE_CODE (base0) == SSA_NAME
3369 || TREE_CODE (base0) == STRING_CST)
3370 && (DECL_P (base1)
3371 || TREE_CODE (base1) == SSA_NAME
3372 || TREE_CODE (base1) == STRING_CST))
3373 equal = (base0 == base1);
3374 }
3375 (if (equal == 1)
3376 (switch
3377 (if (cmp == EQ_EXPR)
3378 { constant_boolean_node (off0 == off1, type); })
3379 (if (cmp == NE_EXPR)
3380 { constant_boolean_node (off0 != off1, type); })
3381 (if (cmp == LT_EXPR)
3382 { constant_boolean_node (off0 < off1, type); })
3383 (if (cmp == LE_EXPR)
3384 { constant_boolean_node (off0 <= off1, type); })
3385 (if (cmp == GE_EXPR)
3386 { constant_boolean_node (off0 >= off1, type); })
3387 (if (cmp == GT_EXPR)
3388 { constant_boolean_node (off0 > off1, type); }))
3389 (if (equal == 0
3390 && DECL_P (base0) && DECL_P (base1)
3391 /* If we compare this as integers require equal offset. */
3392 && (!INTEGRAL_TYPE_P (TREE_TYPE (@2))
3393 || off0 == off1))
3394 (switch
3395 (if (cmp == EQ_EXPR)
3396 { constant_boolean_node (false, type); })
3397 (if (cmp == NE_EXPR)
3398 { constant_boolean_node (true, type); })))))))))
3399
3400 /* Simplify pointer equality compares using PTA. */
3401 (for neeq (ne eq)
3402 (simplify
3403 (neeq @0 @1)
3404 (if (POINTER_TYPE_P (TREE_TYPE (@0))
3405 && ptrs_compare_unequal (@0, @1))
3406 { neeq == EQ_EXPR ? boolean_false_node : boolean_true_node; })))
3407
3408 /* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
3409 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
3410 Disable the transform if either operand is pointer to function.
3411 This broke pr22051-2.c for arm where function pointer
3412 canonicalizaion is not wanted. */
3413
3414 (for cmp (ne eq)
3415 (simplify
3416 (cmp (convert @0) INTEGER_CST@1)
3417 (if ((POINTER_TYPE_P (TREE_TYPE (@0)) && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
3418 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
3419 || (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && POINTER_TYPE_P (TREE_TYPE (@1))
3420 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
3421 (cmp @0 (convert @1)))))
3422
3423 /* Non-equality compare simplifications from fold_binary */
3424 (for cmp (lt gt le ge)
3425 /* Comparisons with the highest or lowest possible integer of
3426 the specified precision will have known values. */
3427 (simplify
3428 (cmp (convert?@2 @0) INTEGER_CST@1)
3429 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
3430 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
3431 (with
3432 {
3433 tree arg1_type = TREE_TYPE (@1);
3434 unsigned int prec = TYPE_PRECISION (arg1_type);
3435 wide_int max = wi::max_value (arg1_type);
3436 wide_int signed_max = wi::max_value (prec, SIGNED);
3437 wide_int min = wi::min_value (arg1_type);
3438 }
3439 (switch
3440 (if (wi::to_wide (@1) == max)
3441 (switch
3442 (if (cmp == GT_EXPR)
3443 { constant_boolean_node (false, type); })
3444 (if (cmp == GE_EXPR)
3445 (eq @2 @1))
3446 (if (cmp == LE_EXPR)
3447 { constant_boolean_node (true, type); })
3448 (if (cmp == LT_EXPR)
3449 (ne @2 @1))))
3450 (if (wi::to_wide (@1) == min)
3451 (switch
3452 (if (cmp == LT_EXPR)
3453 { constant_boolean_node (false, type); })
3454 (if (cmp == LE_EXPR)
3455 (eq @2 @1))
3456 (if (cmp == GE_EXPR)
3457 { constant_boolean_node (true, type); })
3458 (if (cmp == GT_EXPR)
3459 (ne @2 @1))))
3460 (if (wi::to_wide (@1) == max - 1)
3461 (switch
3462 (if (cmp == GT_EXPR)
3463 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))
3464 (if (cmp == LE_EXPR)
3465 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
3466 (if (wi::to_wide (@1) == min + 1)
3467 (switch
3468 (if (cmp == GE_EXPR)
3469 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))
3470 (if (cmp == LT_EXPR)
3471 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
3472 (if (wi::to_wide (@1) == signed_max
3473 && TYPE_UNSIGNED (arg1_type)
3474 /* We will flip the signedness of the comparison operator
3475 associated with the mode of @1, so the sign bit is
3476 specified by this mode. Check that @1 is the signed
3477 max associated with this sign bit. */
3478 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
3479 /* signed_type does not work on pointer types. */
3480 && INTEGRAL_TYPE_P (arg1_type))
3481 /* The following case also applies to X < signed_max+1
3482 and X >= signed_max+1 because previous transformations. */
3483 (if (cmp == LE_EXPR || cmp == GT_EXPR)
3484 (with { tree st = signed_type_for (arg1_type); }
3485 (if (cmp == LE_EXPR)
3486 (ge (convert:st @0) { build_zero_cst (st); })
3487 (lt (convert:st @0) { build_zero_cst (st); }))))))))))
3488
3489 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
3490 /* If the second operand is NaN, the result is constant. */
3491 (simplify
3492 (cmp @0 REAL_CST@1)
3493 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3494 && (cmp != LTGT_EXPR || ! flag_trapping_math))
3495 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
3496 ? false : true, type); })))
3497
3498 /* bool_var != 0 becomes bool_var. */
3499 (simplify
3500 (ne @0 integer_zerop)
3501 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3502 && types_match (type, TREE_TYPE (@0)))
3503 (non_lvalue @0)))
3504 /* bool_var == 1 becomes bool_var. */
3505 (simplify
3506 (eq @0 integer_onep)
3507 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3508 && types_match (type, TREE_TYPE (@0)))
3509 (non_lvalue @0)))
3510 /* Do not handle
3511 bool_var == 0 becomes !bool_var or
3512 bool_var != 1 becomes !bool_var
3513 here because that only is good in assignment context as long
3514 as we require a tcc_comparison in GIMPLE_CONDs where we'd
3515 replace if (x == 0) with tem = ~x; if (tem != 0) which is
3516 clearly less optimal and which we'll transform again in forwprop. */
3517
3518 /* When one argument is a constant, overflow detection can be simplified.
3519 Currently restricted to single use so as not to interfere too much with
3520 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
3521 A + CST CMP A -> A CMP' CST' */
3522 (for cmp (lt le ge gt)
3523 out (gt gt le le)
3524 (simplify
3525 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
3526 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3527 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
3528 && wi::to_wide (@1) != 0
3529 && single_use (@2))
3530 (with { unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
3531 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
3532 wi::max_value (prec, UNSIGNED)
3533 - wi::to_wide (@1)); })))))
3534
3535 /* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
3536 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
3537 expects the long form, so we restrict the transformation for now. */
3538 (for cmp (gt le)
3539 (simplify
3540 (cmp:c (minus@2 @0 @1) @0)
3541 (if (single_use (@2)
3542 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3543 && TYPE_UNSIGNED (TREE_TYPE (@0))
3544 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
3545 (cmp @1 @0))))
3546
3547 /* Testing for overflow is unnecessary if we already know the result. */
3548 /* A - B > A */
3549 (for cmp (gt le)
3550 out (ne eq)
3551 (simplify
3552 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
3553 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3554 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3555 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3556 /* A + B < A */
3557 (for cmp (lt ge)
3558 out (ne eq)
3559 (simplify
3560 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
3561 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3562 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3563 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3564
3565 /* For unsigned operands, -1 / B < A checks whether A * B would overflow.
3566 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
3567 (for cmp (lt ge)
3568 out (ne eq)
3569 (simplify
3570 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
3571 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
3572 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
3573 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
3574
3575 /* Simplification of math builtins. These rules must all be optimizations
3576 as well as IL simplifications. If there is a possibility that the new
3577 form could be a pessimization, the rule should go in the canonicalization
3578 section that follows this one.
3579
3580 Rules can generally go in this section if they satisfy one of
3581 the following:
3582
3583 - the rule describes an identity
3584
3585 - the rule replaces calls with something as simple as addition or
3586 multiplication
3587
3588 - the rule contains unary calls only and simplifies the surrounding
3589 arithmetic. (The idea here is to exclude non-unary calls in which
3590 one operand is constant and in which the call is known to be cheap
3591 when the operand has that value.) */
3592
3593 (if (flag_unsafe_math_optimizations)
3594 /* Simplify sqrt(x) * sqrt(x) -> x. */
3595 (simplify
3596 (mult (SQRT@1 @0) @1)
3597 (if (!HONOR_SNANS (type))
3598 @0))
3599
3600 (for op (plus minus)
3601 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
3602 (simplify
3603 (op (rdiv @0 @1)
3604 (rdiv @2 @1))
3605 (rdiv (op @0 @2) @1)))
3606
3607 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
3608 (for root (SQRT CBRT)
3609 (simplify
3610 (mult (root:s @0) (root:s @1))
3611 (root (mult @0 @1))))
3612
3613 /* Simplify expN(x) * expN(y) -> expN(x+y). */
3614 (for exps (EXP EXP2 EXP10 POW10)
3615 (simplify
3616 (mult (exps:s @0) (exps:s @1))
3617 (exps (plus @0 @1))))
3618
3619 /* Simplify a/root(b/c) into a*root(c/b). */
3620 (for root (SQRT CBRT)
3621 (simplify
3622 (rdiv @0 (root:s (rdiv:s @1 @2)))
3623 (mult @0 (root (rdiv @2 @1)))))
3624
3625 /* Simplify x/expN(y) into x*expN(-y). */
3626 (for exps (EXP EXP2 EXP10 POW10)
3627 (simplify
3628 (rdiv @0 (exps:s @1))
3629 (mult @0 (exps (negate @1)))))
3630
3631 (for logs (LOG LOG2 LOG10 LOG10)
3632 exps (EXP EXP2 EXP10 POW10)
3633 /* logN(expN(x)) -> x. */
3634 (simplify
3635 (logs (exps @0))
3636 @0)
3637 /* expN(logN(x)) -> x. */
3638 (simplify
3639 (exps (logs @0))
3640 @0))
3641
3642 /* Optimize logN(func()) for various exponential functions. We
3643 want to determine the value "x" and the power "exponent" in
3644 order to transform logN(x**exponent) into exponent*logN(x). */
3645 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
3646 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
3647 (simplify
3648 (logs (exps @0))
3649 (if (SCALAR_FLOAT_TYPE_P (type))
3650 (with {
3651 tree x;
3652 switch (exps)
3653 {
3654 CASE_CFN_EXP:
3655 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
3656 x = build_real_truncate (type, dconst_e ());
3657 break;
3658 CASE_CFN_EXP2:
3659 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
3660 x = build_real (type, dconst2);
3661 break;
3662 CASE_CFN_EXP10:
3663 CASE_CFN_POW10:
3664 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
3665 {
3666 REAL_VALUE_TYPE dconst10;
3667 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
3668 x = build_real (type, dconst10);
3669 }
3670 break;
3671 default:
3672 gcc_unreachable ();
3673 }
3674 }
3675 (mult (logs { x; }) @0)))))
3676
3677 (for logs (LOG LOG
3678 LOG2 LOG2
3679 LOG10 LOG10)
3680 exps (SQRT CBRT)
3681 (simplify
3682 (logs (exps @0))
3683 (if (SCALAR_FLOAT_TYPE_P (type))
3684 (with {
3685 tree x;
3686 switch (exps)
3687 {
3688 CASE_CFN_SQRT:
3689 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
3690 x = build_real (type, dconsthalf);
3691 break;
3692 CASE_CFN_CBRT:
3693 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
3694 x = build_real_truncate (type, dconst_third ());
3695 break;
3696 default:
3697 gcc_unreachable ();
3698 }
3699 }
3700 (mult { x; } (logs @0))))))
3701
3702 /* logN(pow(x,exponent)) -> exponent*logN(x). */
3703 (for logs (LOG LOG2 LOG10)
3704 pows (POW)
3705 (simplify
3706 (logs (pows @0 @1))
3707 (mult @1 (logs @0))))
3708
3709 /* pow(C,x) -> exp(log(C)*x) if C > 0. */
3710 (for pows (POW)
3711 exps (EXP)
3712 logs (LOG)
3713 (simplify
3714 (pows REAL_CST@0 @1)
3715 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
3716 && real_isfinite (TREE_REAL_CST_PTR (@0)))
3717 (exps (mult (logs @0) @1)))))
3718
3719 (for sqrts (SQRT)
3720 cbrts (CBRT)
3721 pows (POW)
3722 exps (EXP EXP2 EXP10 POW10)
3723 /* sqrt(expN(x)) -> expN(x*0.5). */
3724 (simplify
3725 (sqrts (exps @0))
3726 (exps (mult @0 { build_real (type, dconsthalf); })))
3727 /* cbrt(expN(x)) -> expN(x/3). */
3728 (simplify
3729 (cbrts (exps @0))
3730 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
3731 /* pow(expN(x), y) -> expN(x*y). */
3732 (simplify
3733 (pows (exps @0) @1)
3734 (exps (mult @0 @1))))
3735
3736 /* tan(atan(x)) -> x. */
3737 (for tans (TAN)
3738 atans (ATAN)
3739 (simplify
3740 (tans (atans @0))
3741 @0)))
3742
3743 /* cabs(x+0i) or cabs(0+xi) -> abs(x). */
3744 (simplify
3745 (CABS (complex:C @0 real_zerop@1))
3746 (abs @0))
3747
3748 /* trunc(trunc(x)) -> trunc(x), etc. */
3749 (for fns (TRUNC FLOOR CEIL ROUND NEARBYINT RINT)
3750 (simplify
3751 (fns (fns @0))
3752 (fns @0)))
3753 /* f(x) -> x if x is integer valued and f does nothing for such values. */
3754 (for fns (TRUNC FLOOR CEIL ROUND NEARBYINT RINT)
3755 (simplify
3756 (fns integer_valued_real_p@0)
3757 @0))
3758
3759 /* hypot(x,0) and hypot(0,x) -> abs(x). */
3760 (simplify
3761 (HYPOT:c @0 real_zerop@1)
3762 (abs @0))
3763
3764 /* pow(1,x) -> 1. */
3765 (simplify
3766 (POW real_onep@0 @1)
3767 @0)
3768
3769 (simplify
3770 /* copysign(x,x) -> x. */
3771 (COPYSIGN @0 @0)
3772 @0)
3773
3774 (simplify
3775 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
3776 (COPYSIGN @0 tree_expr_nonnegative_p@1)
3777 (abs @0))
3778
3779 (for scale (LDEXP SCALBN SCALBLN)
3780 /* ldexp(0, x) -> 0. */
3781 (simplify
3782 (scale real_zerop@0 @1)
3783 @0)
3784 /* ldexp(x, 0) -> x. */
3785 (simplify
3786 (scale @0 integer_zerop@1)
3787 @0)
3788 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
3789 (simplify
3790 (scale REAL_CST@0 @1)
3791 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
3792 @0)))
3793
3794 /* Canonicalization of sequences of math builtins. These rules represent
3795 IL simplifications but are not necessarily optimizations.
3796
3797 The sincos pass is responsible for picking "optimal" implementations
3798 of math builtins, which may be more complicated and can sometimes go
3799 the other way, e.g. converting pow into a sequence of sqrts.
3800 We only want to do these canonicalizations before the pass has run. */
3801
3802 (if (flag_unsafe_math_optimizations && canonicalize_math_p ())
3803 /* Simplify tan(x) * cos(x) -> sin(x). */
3804 (simplify
3805 (mult:c (TAN:s @0) (COS:s @0))
3806 (SIN @0))
3807
3808 /* Simplify x * pow(x,c) -> pow(x,c+1). */
3809 (simplify
3810 (mult:c @0 (POW:s @0 REAL_CST@1))
3811 (if (!TREE_OVERFLOW (@1))
3812 (POW @0 (plus @1 { build_one_cst (type); }))))
3813
3814 /* Simplify sin(x) / cos(x) -> tan(x). */
3815 (simplify
3816 (rdiv (SIN:s @0) (COS:s @0))
3817 (TAN @0))
3818
3819 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
3820 (simplify
3821 (rdiv (COS:s @0) (SIN:s @0))
3822 (rdiv { build_one_cst (type); } (TAN @0)))
3823
3824 /* Simplify sin(x) / tan(x) -> cos(x). */
3825 (simplify
3826 (rdiv (SIN:s @0) (TAN:s @0))
3827 (if (! HONOR_NANS (@0)
3828 && ! HONOR_INFINITIES (@0))
3829 (COS @0)))
3830
3831 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
3832 (simplify
3833 (rdiv (TAN:s @0) (SIN:s @0))
3834 (if (! HONOR_NANS (@0)
3835 && ! HONOR_INFINITIES (@0))
3836 (rdiv { build_one_cst (type); } (COS @0))))
3837
3838 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
3839 (simplify
3840 (mult (POW:s @0 @1) (POW:s @0 @2))
3841 (POW @0 (plus @1 @2)))
3842
3843 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
3844 (simplify
3845 (mult (POW:s @0 @1) (POW:s @2 @1))
3846 (POW (mult @0 @2) @1))
3847
3848 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
3849 (simplify
3850 (mult (POWI:s @0 @1) (POWI:s @2 @1))
3851 (POWI (mult @0 @2) @1))
3852
3853 /* Simplify pow(x,c) / x -> pow(x,c-1). */
3854 (simplify
3855 (rdiv (POW:s @0 REAL_CST@1) @0)
3856 (if (!TREE_OVERFLOW (@1))
3857 (POW @0 (minus @1 { build_one_cst (type); }))))
3858
3859 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
3860 (simplify
3861 (rdiv @0 (POW:s @1 @2))
3862 (mult @0 (POW @1 (negate @2))))
3863
3864 (for sqrts (SQRT)
3865 cbrts (CBRT)
3866 pows (POW)
3867 /* sqrt(sqrt(x)) -> pow(x,1/4). */
3868 (simplify
3869 (sqrts (sqrts @0))
3870 (pows @0 { build_real (type, dconst_quarter ()); }))
3871 /* sqrt(cbrt(x)) -> pow(x,1/6). */
3872 (simplify
3873 (sqrts (cbrts @0))
3874 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
3875 /* cbrt(sqrt(x)) -> pow(x,1/6). */
3876 (simplify
3877 (cbrts (sqrts @0))
3878 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
3879 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
3880 (simplify
3881 (cbrts (cbrts tree_expr_nonnegative_p@0))
3882 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
3883 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
3884 (simplify
3885 (sqrts (pows @0 @1))
3886 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
3887 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
3888 (simplify
3889 (cbrts (pows tree_expr_nonnegative_p@0 @1))
3890 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
3891 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
3892 (simplify
3893 (pows (sqrts @0) @1)
3894 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
3895 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
3896 (simplify
3897 (pows (cbrts tree_expr_nonnegative_p@0) @1)
3898 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
3899 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
3900 (simplify
3901 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
3902 (pows @0 (mult @1 @2))))
3903
3904 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
3905 (simplify
3906 (CABS (complex @0 @0))
3907 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
3908
3909 /* hypot(x,x) -> fabs(x)*sqrt(2). */
3910 (simplify
3911 (HYPOT @0 @0)
3912 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
3913
3914 /* cexp(x+yi) -> exp(x)*cexpi(y). */
3915 (for cexps (CEXP)
3916 exps (EXP)
3917 cexpis (CEXPI)
3918 (simplify
3919 (cexps compositional_complex@0)
3920 (if (targetm.libc_has_function (function_c99_math_complex))
3921 (complex
3922 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
3923 (mult @1 (imagpart @2)))))))
3924
3925 (if (canonicalize_math_p ())
3926 /* floor(x) -> trunc(x) if x is nonnegative. */
3927 (for floors (FLOOR)
3928 truncs (TRUNC)
3929 (simplify
3930 (floors tree_expr_nonnegative_p@0)
3931 (truncs @0))))
3932
3933 (match double_value_p
3934 @0
3935 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
3936 (for froms (BUILT_IN_TRUNCL
3937 BUILT_IN_FLOORL
3938 BUILT_IN_CEILL
3939 BUILT_IN_ROUNDL
3940 BUILT_IN_NEARBYINTL
3941 BUILT_IN_RINTL)
3942 tos (BUILT_IN_TRUNC
3943 BUILT_IN_FLOOR
3944 BUILT_IN_CEIL
3945 BUILT_IN_ROUND
3946 BUILT_IN_NEARBYINT
3947 BUILT_IN_RINT)
3948 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
3949 (if (optimize && canonicalize_math_p ())
3950 (simplify
3951 (froms (convert double_value_p@0))
3952 (convert (tos @0)))))
3953
3954 (match float_value_p
3955 @0
3956 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
3957 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
3958 BUILT_IN_FLOORL BUILT_IN_FLOOR
3959 BUILT_IN_CEILL BUILT_IN_CEIL
3960 BUILT_IN_ROUNDL BUILT_IN_ROUND
3961 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
3962 BUILT_IN_RINTL BUILT_IN_RINT)
3963 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
3964 BUILT_IN_FLOORF BUILT_IN_FLOORF
3965 BUILT_IN_CEILF BUILT_IN_CEILF
3966 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
3967 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
3968 BUILT_IN_RINTF BUILT_IN_RINTF)
3969 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
3970 if x is a float. */
3971 (if (optimize && canonicalize_math_p ()
3972 && targetm.libc_has_function (function_c99_misc))
3973 (simplify
3974 (froms (convert float_value_p@0))
3975 (convert (tos @0)))))
3976
3977 (for froms (XFLOORL XCEILL XROUNDL XRINTL)
3978 tos (XFLOOR XCEIL XROUND XRINT)
3979 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
3980 (if (optimize && canonicalize_math_p ())
3981 (simplify
3982 (froms (convert double_value_p@0))
3983 (tos @0))))
3984
3985 (for froms (XFLOORL XCEILL XROUNDL XRINTL
3986 XFLOOR XCEIL XROUND XRINT)
3987 tos (XFLOORF XCEILF XROUNDF XRINTF)
3988 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
3989 if x is a float. */
3990 (if (optimize && canonicalize_math_p ())
3991 (simplify
3992 (froms (convert float_value_p@0))
3993 (tos @0))))
3994
3995 (if (canonicalize_math_p ())
3996 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
3997 (for floors (IFLOOR LFLOOR LLFLOOR)
3998 (simplify
3999 (floors tree_expr_nonnegative_p@0)
4000 (fix_trunc @0))))
4001
4002 (if (canonicalize_math_p ())
4003 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
4004 (for fns (IFLOOR LFLOOR LLFLOOR
4005 ICEIL LCEIL LLCEIL
4006 IROUND LROUND LLROUND)
4007 (simplify
4008 (fns integer_valued_real_p@0)
4009 (fix_trunc @0)))
4010 (if (!flag_errno_math)
4011 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
4012 (for rints (IRINT LRINT LLRINT)
4013 (simplify
4014 (rints integer_valued_real_p@0)
4015 (fix_trunc @0)))))
4016
4017 (if (canonicalize_math_p ())
4018 (for ifn (IFLOOR ICEIL IROUND IRINT)
4019 lfn (LFLOOR LCEIL LROUND LRINT)
4020 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
4021 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
4022 sizeof (int) == sizeof (long). */
4023 (if (TYPE_PRECISION (integer_type_node)
4024 == TYPE_PRECISION (long_integer_type_node))
4025 (simplify
4026 (ifn @0)
4027 (lfn:long_integer_type_node @0)))
4028 /* Canonicalize llround (x) to lround (x) on LP64 targets where
4029 sizeof (long long) == sizeof (long). */
4030 (if (TYPE_PRECISION (long_long_integer_type_node)
4031 == TYPE_PRECISION (long_integer_type_node))
4032 (simplify
4033 (llfn @0)
4034 (lfn:long_integer_type_node @0)))))
4035
4036 /* cproj(x) -> x if we're ignoring infinities. */
4037 (simplify
4038 (CPROJ @0)
4039 (if (!HONOR_INFINITIES (type))
4040 @0))
4041
4042 /* If the real part is inf and the imag part is known to be
4043 nonnegative, return (inf + 0i). */
4044 (simplify
4045 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
4046 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
4047 { build_complex_inf (type, false); }))
4048
4049 /* If the imag part is inf, return (inf+I*copysign(0,imag)). */
4050 (simplify
4051 (CPROJ (complex @0 REAL_CST@1))
4052 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
4053 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
4054
4055 (for pows (POW)
4056 sqrts (SQRT)
4057 cbrts (CBRT)
4058 (simplify
4059 (pows @0 REAL_CST@1)
4060 (with {
4061 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
4062 REAL_VALUE_TYPE tmp;
4063 }
4064 (switch
4065 /* pow(x,0) -> 1. */
4066 (if (real_equal (value, &dconst0))
4067 { build_real (type, dconst1); })
4068 /* pow(x,1) -> x. */
4069 (if (real_equal (value, &dconst1))
4070 @0)
4071 /* pow(x,-1) -> 1/x. */
4072 (if (real_equal (value, &dconstm1))
4073 (rdiv { build_real (type, dconst1); } @0))
4074 /* pow(x,0.5) -> sqrt(x). */
4075 (if (flag_unsafe_math_optimizations
4076 && canonicalize_math_p ()
4077 && real_equal (value, &dconsthalf))
4078 (sqrts @0))
4079 /* pow(x,1/3) -> cbrt(x). */
4080 (if (flag_unsafe_math_optimizations
4081 && canonicalize_math_p ()
4082 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
4083 real_equal (value, &tmp)))
4084 (cbrts @0))))))
4085
4086 /* powi(1,x) -> 1. */
4087 (simplify
4088 (POWI real_onep@0 @1)
4089 @0)
4090
4091 (simplify
4092 (POWI @0 INTEGER_CST@1)
4093 (switch
4094 /* powi(x,0) -> 1. */
4095 (if (wi::to_wide (@1) == 0)
4096 { build_real (type, dconst1); })
4097 /* powi(x,1) -> x. */
4098 (if (wi::to_wide (@1) == 1)
4099 @0)
4100 /* powi(x,-1) -> 1/x. */
4101 (if (wi::to_wide (@1) == -1)
4102 (rdiv { build_real (type, dconst1); } @0))))
4103
4104 /* Narrowing of arithmetic and logical operations.
4105
4106 These are conceptually similar to the transformations performed for
4107 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
4108 term we want to move all that code out of the front-ends into here. */
4109
4110 /* If we have a narrowing conversion of an arithmetic operation where
4111 both operands are widening conversions from the same type as the outer
4112 narrowing conversion. Then convert the innermost operands to a suitable
4113 unsigned type (to avoid introducing undefined behavior), perform the
4114 operation and convert the result to the desired type. */
4115 (for op (plus minus)
4116 (simplify
4117 (convert (op:s (convert@2 @0) (convert?@3 @1)))
4118 (if (INTEGRAL_TYPE_P (type)
4119 /* We check for type compatibility between @0 and @1 below,
4120 so there's no need to check that @1/@3 are integral types. */
4121 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4122 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4123 /* The precision of the type of each operand must match the
4124 precision of the mode of each operand, similarly for the
4125 result. */
4126 && type_has_mode_precision_p (TREE_TYPE (@0))
4127 && type_has_mode_precision_p (TREE_TYPE (@1))
4128 && type_has_mode_precision_p (type)
4129 /* The inner conversion must be a widening conversion. */
4130 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4131 && types_match (@0, type)
4132 && (types_match (@0, @1)
4133 /* Or the second operand is const integer or converted const
4134 integer from valueize. */
4135 || TREE_CODE (@1) == INTEGER_CST))
4136 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4137 (op @0 (convert @1))
4138 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4139 (convert (op (convert:utype @0)
4140 (convert:utype @1))))))))
4141
4142 /* This is another case of narrowing, specifically when there's an outer
4143 BIT_AND_EXPR which masks off bits outside the type of the innermost
4144 operands. Like the previous case we have to convert the operands
4145 to unsigned types to avoid introducing undefined behavior for the
4146 arithmetic operation. */
4147 (for op (minus plus)
4148 (simplify
4149 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
4150 (if (INTEGRAL_TYPE_P (type)
4151 /* We check for type compatibility between @0 and @1 below,
4152 so there's no need to check that @1/@3 are integral types. */
4153 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4154 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4155 /* The precision of the type of each operand must match the
4156 precision of the mode of each operand, similarly for the
4157 result. */
4158 && type_has_mode_precision_p (TREE_TYPE (@0))
4159 && type_has_mode_precision_p (TREE_TYPE (@1))
4160 && type_has_mode_precision_p (type)
4161 /* The inner conversion must be a widening conversion. */
4162 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4163 && types_match (@0, @1)
4164 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
4165 <= TYPE_PRECISION (TREE_TYPE (@0)))
4166 && (wi::to_wide (@4)
4167 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
4168 true, TYPE_PRECISION (type))) == 0)
4169 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4170 (with { tree ntype = TREE_TYPE (@0); }
4171 (convert (bit_and (op @0 @1) (convert:ntype @4))))
4172 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4173 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
4174 (convert:utype @4))))))))
4175
4176 /* Transform (@0 < @1 and @0 < @2) to use min,
4177 (@0 > @1 and @0 > @2) to use max */
4178 (for op (lt le gt ge)
4179 ext (min min max max)
4180 (simplify
4181 (bit_and (op:cs @0 @1) (op:cs @0 @2))
4182 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4183 && TREE_CODE (@0) != INTEGER_CST)
4184 (op @0 (ext @1 @2)))))
4185
4186 (simplify
4187 /* signbit(x) -> 0 if x is nonnegative. */
4188 (SIGNBIT tree_expr_nonnegative_p@0)
4189 { integer_zero_node; })
4190
4191 (simplify
4192 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
4193 (SIGNBIT @0)
4194 (if (!HONOR_SIGNED_ZEROS (@0))
4195 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
4196
4197 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
4198 (for cmp (eq ne)
4199 (for op (plus minus)
4200 rop (minus plus)
4201 (simplify
4202 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4203 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4204 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
4205 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
4206 && !TYPE_SATURATING (TREE_TYPE (@0)))
4207 (with { tree res = int_const_binop (rop, @2, @1); }
4208 (if (TREE_OVERFLOW (res)
4209 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4210 { constant_boolean_node (cmp == NE_EXPR, type); }
4211 (if (single_use (@3))
4212 (cmp @0 { res; }))))))))
4213 (for cmp (lt le gt ge)
4214 (for op (plus minus)
4215 rop (minus plus)
4216 (simplify
4217 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4218 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4219 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4220 (with { tree res = int_const_binop (rop, @2, @1); }
4221 (if (TREE_OVERFLOW (res))
4222 {
4223 fold_overflow_warning (("assuming signed overflow does not occur "
4224 "when simplifying conditional to constant"),
4225 WARN_STRICT_OVERFLOW_CONDITIONAL);
4226 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
4227 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
4228 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
4229 TYPE_SIGN (TREE_TYPE (@1)))
4230 != (op == MINUS_EXPR);
4231 constant_boolean_node (less == ovf_high, type);
4232 }
4233 (if (single_use (@3))
4234 (with
4235 {
4236 fold_overflow_warning (("assuming signed overflow does not occur "
4237 "when changing X +- C1 cmp C2 to "
4238 "X cmp C2 -+ C1"),
4239 WARN_STRICT_OVERFLOW_COMPARISON);
4240 }
4241 (cmp @0 { res; })))))))))
4242
4243 /* Canonicalizations of BIT_FIELD_REFs. */
4244
4245 (simplify
4246 (BIT_FIELD_REF @0 @1 @2)
4247 (switch
4248 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
4249 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4250 (switch
4251 (if (integer_zerop (@2))
4252 (view_convert (realpart @0)))
4253 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4254 (view_convert (imagpart @0)))))
4255 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4256 && INTEGRAL_TYPE_P (type)
4257 /* On GIMPLE this should only apply to register arguments. */
4258 && (! GIMPLE || is_gimple_reg (@0))
4259 /* A bit-field-ref that referenced the full argument can be stripped. */
4260 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
4261 && integer_zerop (@2))
4262 /* Low-parts can be reduced to integral conversions.
4263 ??? The following doesn't work for PDP endian. */
4264 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
4265 /* Don't even think about BITS_BIG_ENDIAN. */
4266 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
4267 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
4268 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
4269 ? (TYPE_PRECISION (TREE_TYPE (@0))
4270 - TYPE_PRECISION (type))
4271 : 0)) == 0)))
4272 (convert @0))))
4273
4274 /* Simplify vector extracts. */
4275
4276 (simplify
4277 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
4278 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
4279 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
4280 || (VECTOR_TYPE_P (type)
4281 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
4282 (with
4283 {
4284 tree ctor = (TREE_CODE (@0) == SSA_NAME
4285 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
4286 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
4287 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
4288 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
4289 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
4290 }
4291 (if (n != 0
4292 && (idx % width) == 0
4293 && (n % width) == 0
4294 && ((idx + n) / width) <= TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor)))
4295 (with
4296 {
4297 idx = idx / width;
4298 n = n / width;
4299 /* Constructor elements can be subvectors. */
4300 unsigned HOST_WIDE_INT k = 1;
4301 if (CONSTRUCTOR_NELTS (ctor) != 0)
4302 {
4303 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
4304 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
4305 k = TYPE_VECTOR_SUBPARTS (cons_elem);
4306 }
4307 }
4308 (switch
4309 /* We keep an exact subset of the constructor elements. */
4310 (if ((idx % k) == 0 && (n % k) == 0)
4311 (if (CONSTRUCTOR_NELTS (ctor) == 0)
4312 { build_constructor (type, NULL); }
4313 (with
4314 {
4315 idx /= k;
4316 n /= k;
4317 }
4318 (if (n == 1)
4319 (if (idx < CONSTRUCTOR_NELTS (ctor))
4320 { CONSTRUCTOR_ELT (ctor, idx)->value; }
4321 { build_zero_cst (type); })
4322 {
4323 vec<constructor_elt, va_gc> *vals;
4324 vec_alloc (vals, n);
4325 for (unsigned i = 0;
4326 i < n && idx + i < CONSTRUCTOR_NELTS (ctor); ++i)
4327 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
4328 CONSTRUCTOR_ELT (ctor, idx + i)->value);
4329 build_constructor (type, vals);
4330 }))))
4331 /* The bitfield references a single constructor element. */
4332 (if (idx + n <= (idx / k + 1) * k)
4333 (switch
4334 (if (CONSTRUCTOR_NELTS (ctor) <= idx / k)
4335 { build_zero_cst (type); })
4336 (if (n == k)
4337 { CONSTRUCTOR_ELT (ctor, idx / k)->value; })
4338 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / k)->value; }
4339 @1 { bitsize_int ((idx % k) * width); })))))))))
4340
4341 /* Simplify a bit extraction from a bit insertion for the cases with
4342 the inserted element fully covering the extraction or the insertion
4343 not touching the extraction. */
4344 (simplify
4345 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
4346 (with
4347 {
4348 unsigned HOST_WIDE_INT isize;
4349 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
4350 isize = TYPE_PRECISION (TREE_TYPE (@1));
4351 else
4352 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
4353 }
4354 (switch
4355 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
4356 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
4357 wi::to_wide (@ipos) + isize))
4358 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
4359 wi::to_wide (@rpos)
4360 - wi::to_wide (@ipos)); }))
4361 (if (wi::geu_p (wi::to_wide (@ipos),
4362 wi::to_wide (@rpos) + wi::to_wide (@rsize))
4363 || wi::geu_p (wi::to_wide (@rpos),
4364 wi::to_wide (@ipos) + isize))
4365 (BIT_FIELD_REF @0 @rsize @rpos)))))