Mercurial > hg > CbC > GCC_original
view gcc/doc/extend.texi @ 16:04ced10e8804
gcc 7
author | kono |
---|---|
date | Fri, 27 Oct 2017 22:46:09 +0900 |
parents | f6334be47118 |
children | 84e7813d76e9 |
line wrap: on
line source
c Copyright (C) 1988-2017 Free Software Foundation, Inc. @c This is part of the GCC manual. @c For copying conditions, see the file gcc.texi. @node C Extensions @chapter Extensions to the C Language Family @cindex extensions, C language @cindex C language extensions @opindex pedantic GNU C provides several language features not found in ISO standard C@. (The @option{-pedantic} option directs GCC to print a warning message if any of these features is used.) To test for the availability of these features in conditional compilation, check for a predefined macro @code{__GNUC__}, which is always defined under GCC@. These extensions are available in C and Objective-C@. Most of them are also available in C++. @xref{C++ Extensions,,Extensions to the C++ Language}, for extensions that apply @emph{only} to C++. Some features that are in ISO C99 but not C90 or C++ are also, as extensions, accepted by GCC in C90 mode and in C++. @menu * Statement Exprs:: Putting statements and declarations inside expressions. * Local Labels:: Labels local to a block. * Labels as Values:: Getting pointers to labels, and computed gotos. * Nested Functions:: As in Algol and Pascal, lexical scoping of functions. * Constructing Calls:: Dispatching a call to another function. * Typeof:: @code{typeof}: referring to the type of an expression. * Conditionals:: Omitting the middle operand of a @samp{?:} expression. * __int128:: 128-bit integers---@code{__int128}. * Long Long:: Double-word integers---@code{long long int}. * Complex:: Data types for complex numbers. * Floating Types:: Additional Floating Types. * Half-Precision:: Half-Precision Floating Point. * Decimal Float:: Decimal Floating Types. * Hex Floats:: Hexadecimal floating-point constants. * Fixed-Point:: Fixed-Point Types. * Named Address Spaces::Named address spaces. * Zero Length:: Zero-length arrays. * Empty Structures:: Structures with no members. * Variable Length:: Arrays whose length is computed at run time. * Variadic Macros:: Macros with a variable number of arguments. * Escaped Newlines:: Slightly looser rules for escaped newlines. * Subscripting:: Any array can be subscripted, even if not an lvalue. * Pointer Arith:: Arithmetic on @code{void}-pointers and function pointers. * Pointers to Arrays:: Pointers to arrays with qualifiers work as expected. * Initializers:: Non-constant initializers. * Compound Literals:: Compound literals give structures, unions or arrays as values. * Designated Inits:: Labeling elements of initializers. * Case Ranges:: `case 1 ... 9' and such. * Cast to Union:: Casting to union type from any member of the union. * Mixed Declarations:: Mixing declarations and code. * Function Attributes:: Declaring that functions have no side effects, or that they can never return. * Variable Attributes:: Specifying attributes of variables. * Type Attributes:: Specifying attributes of types. * Label Attributes:: Specifying attributes on labels. * Enumerator Attributes:: Specifying attributes on enumerators. * Statement Attributes:: Specifying attributes on statements. * Attribute Syntax:: Formal syntax for attributes. * Function Prototypes:: Prototype declarations and old-style definitions. * C++ Comments:: C++ comments are recognized. * Dollar Signs:: Dollar sign is allowed in identifiers. * Character Escapes:: @samp{\e} stands for the character @key{ESC}. * Alignment:: Inquiring about the alignment of a type or variable. * Inline:: Defining inline functions (as fast as macros). * Volatiles:: What constitutes an access to a volatile object. * Using Assembly Language with C:: Instructions and extensions for interfacing C with assembler. * Alternate Keywords:: @code{__const__}, @code{__asm__}, etc., for header files. * Incomplete Enums:: @code{enum foo;}, with details to follow. * Function Names:: Printable strings which are the name of the current function. * Return Address:: Getting the return or frame address of a function. * Vector Extensions:: Using vector instructions through built-in functions. * Offsetof:: Special syntax for implementing @code{offsetof}. * __sync Builtins:: Legacy built-in functions for atomic memory access. * __atomic Builtins:: Atomic built-in functions with memory model. * Integer Overflow Builtins:: Built-in functions to perform arithmetics and arithmetic overflow checking. * x86 specific memory model extensions for transactional memory:: x86 memory models. * Object Size Checking:: Built-in functions for limited buffer overflow checking. * Pointer Bounds Checker builtins:: Built-in functions for Pointer Bounds Checker. * Cilk Plus Builtins:: Built-in functions for the Cilk Plus language extension. * Other Builtins:: Other built-in functions. * Target Builtins:: Built-in functions specific to particular targets. * Target Format Checks:: Format checks specific to particular targets. * Pragmas:: Pragmas accepted by GCC. * Unnamed Fields:: Unnamed struct/union fields within structs/unions. * Thread-Local:: Per-thread variables. * Binary constants:: Binary constants using the @samp{0b} prefix. @end menu @node Statement Exprs @section Statements and Declarations in Expressions @cindex statements inside expressions @cindex declarations inside expressions @cindex expressions containing statements @cindex macros, statements in expressions @c the above section title wrapped and causes an underfull hbox.. i @c changed it from "within" to "in". --mew 4feb93 A compound statement enclosed in parentheses may appear as an expression in GNU C@. This allows you to use loops, switches, and local variables within an expression. Recall that a compound statement is a sequence of statements surrounded by braces; in this construct, parentheses go around the braces. For example: @smallexample (@{ int y = foo (); int z; if (y > 0) z = y; else z = - y; z; @}) @end smallexample @noindent is a valid (though slightly more complex than necessary) expression for the absolute value of @code{foo ()}. The last thing in the compound statement should be an expression followed by a semicolon; the value of this subexpression serves as the value of the entire construct. (If you use some other kind of statement last within the braces, the construct has type @code{void}, and thus effectively no value.) This feature is especially useful in making macro definitions ``safe'' (so that they evaluate each operand exactly once). For example, the ``maximum'' function is commonly defined as a macro in standard C as follows: @smallexample #define max(a,b) ((a) > (b) ? (a) : (b)) @end smallexample @noindent @cindex side effects, macro argument But this definition computes either @var{a} or @var{b} twice, with bad results if the operand has side effects. In GNU C, if you know the type of the operands (here taken as @code{int}), you can define the macro safely as follows: @smallexample #define maxint(a,b) \ (@{int _a = (a), _b = (b); _a > _b ? _a : _b; @}) @end smallexample Embedded statements are not allowed in constant expressions, such as the value of an enumeration constant, the width of a bit-field, or the initial value of a static variable. If you don't know the type of the operand, you can still do this, but you must use @code{typeof} or @code{__auto_type} (@pxref{Typeof}). In G++, the result value of a statement expression undergoes array and function pointer decay, and is returned by value to the enclosing expression. For instance, if @code{A} is a class, then @smallexample A a; (@{a;@}).Foo () @end smallexample @noindent constructs a temporary @code{A} object to hold the result of the statement expression, and that is used to invoke @code{Foo}. Therefore the @code{this} pointer observed by @code{Foo} is not the address of @code{a}. In a statement expression, any temporaries created within a statement are destroyed at that statement's end. This makes statement expressions inside macros slightly different from function calls. In the latter case temporaries introduced during argument evaluation are destroyed at the end of the statement that includes the function call. In the statement expression case they are destroyed during the statement expression. For instance, @smallexample #define macro(a) (@{__typeof__(a) b = (a); b + 3; @}) template<typename T> T function(T a) @{ T b = a; return b + 3; @} void foo () @{ macro (X ()); function (X ()); @} @end smallexample @noindent has different places where temporaries are destroyed. For the @code{macro} case, the temporary @code{X} is destroyed just after the initialization of @code{b}. In the @code{function} case that temporary is destroyed when the function returns. These considerations mean that it is probably a bad idea to use statement expressions of this form in header files that are designed to work with C++. (Note that some versions of the GNU C Library contained header files using statement expressions that lead to precisely this bug.) Jumping into a statement expression with @code{goto} or using a @code{switch} statement outside the statement expression with a @code{case} or @code{default} label inside the statement expression is not permitted. Jumping into a statement expression with a computed @code{goto} (@pxref{Labels as Values}) has undefined behavior. Jumping out of a statement expression is permitted, but if the statement expression is part of a larger expression then it is unspecified which other subexpressions of that expression have been evaluated except where the language definition requires certain subexpressions to be evaluated before or after the statement expression. In any case, as with a function call, the evaluation of a statement expression is not interleaved with the evaluation of other parts of the containing expression. For example, @smallexample foo (), ((@{ bar1 (); goto a; 0; @}) + bar2 ()), baz(); @end smallexample @noindent calls @code{foo} and @code{bar1} and does not call @code{baz} but may or may not call @code{bar2}. If @code{bar2} is called, it is called after @code{foo} and before @code{bar1}. @node Local Labels @section Locally Declared Labels @cindex local labels @cindex macros, local labels GCC allows you to declare @dfn{local labels} in any nested block scope. A local label is just like an ordinary label, but you can only reference it (with a @code{goto} statement, or by taking its address) within the block in which it is declared. A local label declaration looks like this: @smallexample __label__ @var{label}; @end smallexample @noindent or @smallexample __label__ @var{label1}, @var{label2}, /* @r{@dots{}} */; @end smallexample Local label declarations must come at the beginning of the block, before any ordinary declarations or statements. The label declaration defines the label @emph{name}, but does not define the label itself. You must do this in the usual way, with @code{@var{label}:}, within the statements of the statement expression. The local label feature is useful for complex macros. If a macro contains nested loops, a @code{goto} can be useful for breaking out of them. However, an ordinary label whose scope is the whole function cannot be used: if the macro can be expanded several times in one function, the label is multiply defined in that function. A local label avoids this problem. For example: @smallexample #define SEARCH(value, array, target) \ do @{ \ __label__ found; \ typeof (target) _SEARCH_target = (target); \ typeof (*(array)) *_SEARCH_array = (array); \ int i, j; \ int value; \ for (i = 0; i < max; i++) \ for (j = 0; j < max; j++) \ if (_SEARCH_array[i][j] == _SEARCH_target) \ @{ (value) = i; goto found; @} \ (value) = -1; \ found:; \ @} while (0) @end smallexample This could also be written using a statement expression: @smallexample #define SEARCH(array, target) \ (@{ \ __label__ found; \ typeof (target) _SEARCH_target = (target); \ typeof (*(array)) *_SEARCH_array = (array); \ int i, j; \ int value; \ for (i = 0; i < max; i++) \ for (j = 0; j < max; j++) \ if (_SEARCH_array[i][j] == _SEARCH_target) \ @{ value = i; goto found; @} \ value = -1; \ found: \ value; \ @}) @end smallexample Local label declarations also make the labels they declare visible to nested functions, if there are any. @xref{Nested Functions}, for details. @node Labels as Values @section Labels as Values @cindex labels as values @cindex computed gotos @cindex goto with computed label @cindex address of a label You can get the address of a label defined in the current function (or a containing function) with the unary operator @samp{&&}. The value has type @code{void *}. This value is a constant and can be used wherever a constant of that type is valid. For example: @smallexample void *ptr; /* @r{@dots{}} */ ptr = &&foo; @end smallexample To use these values, you need to be able to jump to one. This is done with the computed goto statement@footnote{The analogous feature in Fortran is called an assigned goto, but that name seems inappropriate in C, where one can do more than simply store label addresses in label variables.}, @code{goto *@var{exp};}. For example, @smallexample goto *ptr; @end smallexample @noindent Any expression of type @code{void *} is allowed. One way of using these constants is in initializing a static array that serves as a jump table: @smallexample static void *array[] = @{ &&foo, &&bar, &&hack @}; @end smallexample @noindent Then you can select a label with indexing, like this: @smallexample goto *array[i]; @end smallexample @noindent Note that this does not check whether the subscript is in bounds---array indexing in C never does that. Such an array of label values serves a purpose much like that of the @code{switch} statement. The @code{switch} statement is cleaner, so use that rather than an array unless the problem does not fit a @code{switch} statement very well. Another use of label values is in an interpreter for threaded code. The labels within the interpreter function can be stored in the threaded code for super-fast dispatching. You may not use this mechanism to jump to code in a different function. If you do that, totally unpredictable things happen. The best way to avoid this is to store the label address only in automatic variables and never pass it as an argument. An alternate way to write the above example is @smallexample static const int array[] = @{ &&foo - &&foo, &&bar - &&foo, &&hack - &&foo @}; goto *(&&foo + array[i]); @end smallexample @noindent This is more friendly to code living in shared libraries, as it reduces the number of dynamic relocations that are needed, and by consequence, allows the data to be read-only. This alternative with label differences is not supported for the AVR target, please use the first approach for AVR programs. The @code{&&foo} expressions for the same label might have different values if the containing function is inlined or cloned. If a program relies on them being always the same, @code{__attribute__((__noinline__,__noclone__))} should be used to prevent inlining and cloning. If @code{&&foo} is used in a static variable initializer, inlining and cloning is forbidden. @node Nested Functions @section Nested Functions @cindex nested functions @cindex downward funargs @cindex thunks A @dfn{nested function} is a function defined inside another function. Nested functions are supported as an extension in GNU C, but are not supported by GNU C++. The nested function's name is local to the block where it is defined. For example, here we define a nested function named @code{square}, and call it twice: @smallexample @group foo (double a, double b) @{ double square (double z) @{ return z * z; @} return square (a) + square (b); @} @end group @end smallexample The nested function can access all the variables of the containing function that are visible at the point of its definition. This is called @dfn{lexical scoping}. For example, here we show a nested function which uses an inherited variable named @code{offset}: @smallexample @group bar (int *array, int offset, int size) @{ int access (int *array, int index) @{ return array[index + offset]; @} int i; /* @r{@dots{}} */ for (i = 0; i < size; i++) /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */ @} @end group @end smallexample Nested function definitions are permitted within functions in the places where variable definitions are allowed; that is, in any block, mixed with the other declarations and statements in the block. It is possible to call the nested function from outside the scope of its name by storing its address or passing the address to another function: @smallexample hack (int *array, int size) @{ void store (int index, int value) @{ array[index] = value; @} intermediate (store, size); @} @end smallexample Here, the function @code{intermediate} receives the address of @code{store} as an argument. If @code{intermediate} calls @code{store}, the arguments given to @code{store} are used to store into @code{array}. But this technique works only so long as the containing function (@code{hack}, in this example) does not exit. If you try to call the nested function through its address after the containing function exits, all hell breaks loose. If you try to call it after a containing scope level exits, and if it refers to some of the variables that are no longer in scope, you may be lucky, but it's not wise to take the risk. If, however, the nested function does not refer to anything that has gone out of scope, you should be safe. GCC implements taking the address of a nested function using a technique called @dfn{trampolines}. This technique was described in @cite{Lexical Closures for C++} (Thomas M. Breuel, USENIX C++ Conference Proceedings, October 17-21, 1988). A nested function can jump to a label inherited from a containing function, provided the label is explicitly declared in the containing function (@pxref{Local Labels}). Such a jump returns instantly to the containing function, exiting the nested function that did the @code{goto} and any intermediate functions as well. Here is an example: @smallexample @group bar (int *array, int offset, int size) @{ __label__ failure; int access (int *array, int index) @{ if (index > size) goto failure; return array[index + offset]; @} int i; /* @r{@dots{}} */ for (i = 0; i < size; i++) /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */ /* @r{@dots{}} */ return 0; /* @r{Control comes here from @code{access} if it detects an error.} */ failure: return -1; @} @end group @end smallexample A nested function always has no linkage. Declaring one with @code{extern} or @code{static} is erroneous. If you need to declare the nested function before its definition, use @code{auto} (which is otherwise meaningless for function declarations). @smallexample bar (int *array, int offset, int size) @{ __label__ failure; auto int access (int *, int); /* @r{@dots{}} */ int access (int *array, int index) @{ if (index > size) goto failure; return array[index + offset]; @} /* @r{@dots{}} */ @} @end smallexample @node Constructing Calls @section Constructing Function Calls @cindex constructing calls @cindex forwarding calls Using the built-in functions described below, you can record the arguments a function received, and call another function with the same arguments, without knowing the number or types of the arguments. You can also record the return value of that function call, and later return that value, without knowing what data type the function tried to return (as long as your caller expects that data type). However, these built-in functions may interact badly with some sophisticated features or other extensions of the language. It is, therefore, not recommended to use them outside very simple functions acting as mere forwarders for their arguments. @deftypefn {Built-in Function} {void *} __builtin_apply_args () This built-in function returns a pointer to data describing how to perform a call with the same arguments as are passed to the current function. The function saves the arg pointer register, structure value address, and all registers that might be used to pass arguments to a function into a block of memory allocated on the stack. Then it returns the address of that block. @end deftypefn @deftypefn {Built-in Function} {void *} __builtin_apply (void (*@var{function})(), void *@var{arguments}, size_t @var{size}) This built-in function invokes @var{function} with a copy of the parameters described by @var{arguments} and @var{size}. The value of @var{arguments} should be the value returned by @code{__builtin_apply_args}. The argument @var{size} specifies the size of the stack argument data, in bytes. This function returns a pointer to data describing how to return whatever value is returned by @var{function}. The data is saved in a block of memory allocated on the stack. It is not always simple to compute the proper value for @var{size}. The value is used by @code{__builtin_apply} to compute the amount of data that should be pushed on the stack and copied from the incoming argument area. @end deftypefn @deftypefn {Built-in Function} {void} __builtin_return (void *@var{result}) This built-in function returns the value described by @var{result} from the containing function. You should specify, for @var{result}, a value returned by @code{__builtin_apply}. @end deftypefn @deftypefn {Built-in Function} {} __builtin_va_arg_pack () This built-in function represents all anonymous arguments of an inline function. It can be used only in inline functions that are always inlined, never compiled as a separate function, such as those using @code{__attribute__ ((__always_inline__))} or @code{__attribute__ ((__gnu_inline__))} extern inline functions. It must be only passed as last argument to some other function with variable arguments. This is useful for writing small wrapper inlines for variable argument functions, when using preprocessor macros is undesirable. For example: @smallexample extern int myprintf (FILE *f, const char *format, ...); extern inline __attribute__ ((__gnu_inline__)) int myprintf (FILE *f, const char *format, ...) @{ int r = fprintf (f, "myprintf: "); if (r < 0) return r; int s = fprintf (f, format, __builtin_va_arg_pack ()); if (s < 0) return s; return r + s; @} @end smallexample @end deftypefn @deftypefn {Built-in Function} {size_t} __builtin_va_arg_pack_len () This built-in function returns the number of anonymous arguments of an inline function. It can be used only in inline functions that are always inlined, never compiled as a separate function, such as those using @code{__attribute__ ((__always_inline__))} or @code{__attribute__ ((__gnu_inline__))} extern inline functions. For example following does link- or run-time checking of open arguments for optimized code: @smallexample #ifdef __OPTIMIZE__ extern inline __attribute__((__gnu_inline__)) int myopen (const char *path, int oflag, ...) @{ if (__builtin_va_arg_pack_len () > 1) warn_open_too_many_arguments (); if (__builtin_constant_p (oflag)) @{ if ((oflag & O_CREAT) != 0 && __builtin_va_arg_pack_len () < 1) @{ warn_open_missing_mode (); return __open_2 (path, oflag); @} return open (path, oflag, __builtin_va_arg_pack ()); @} if (__builtin_va_arg_pack_len () < 1) return __open_2 (path, oflag); return open (path, oflag, __builtin_va_arg_pack ()); @} #endif @end smallexample @end deftypefn @node Typeof @section Referring to a Type with @code{typeof} @findex typeof @findex sizeof @cindex macros, types of arguments Another way to refer to the type of an expression is with @code{typeof}. The syntax of using of this keyword looks like @code{sizeof}, but the construct acts semantically like a type name defined with @code{typedef}. There are two ways of writing the argument to @code{typeof}: with an expression or with a type. Here is an example with an expression: @smallexample typeof (x[0](1)) @end smallexample @noindent This assumes that @code{x} is an array of pointers to functions; the type described is that of the values of the functions. Here is an example with a typename as the argument: @smallexample typeof (int *) @end smallexample @noindent Here the type described is that of pointers to @code{int}. If you are writing a header file that must work when included in ISO C programs, write @code{__typeof__} instead of @code{typeof}. @xref{Alternate Keywords}. A @code{typeof} construct can be used anywhere a typedef name can be used. For example, you can use it in a declaration, in a cast, or inside of @code{sizeof} or @code{typeof}. The operand of @code{typeof} is evaluated for its side effects if and only if it is an expression of variably modified type or the name of such a type. @code{typeof} is often useful in conjunction with statement expressions (@pxref{Statement Exprs}). Here is how the two together can be used to define a safe ``maximum'' macro which operates on any arithmetic type and evaluates each of its arguments exactly once: @smallexample #define max(a,b) \ (@{ typeof (a) _a = (a); \ typeof (b) _b = (b); \ _a > _b ? _a : _b; @}) @end smallexample @cindex underscores in variables in macros @cindex @samp{_} in variables in macros @cindex local variables in macros @cindex variables, local, in macros @cindex macros, local variables in The reason for using names that start with underscores for the local variables is to avoid conflicts with variable names that occur within the expressions that are substituted for @code{a} and @code{b}. Eventually we hope to design a new form of declaration syntax that allows you to declare variables whose scopes start only after their initializers; this will be a more reliable way to prevent such conflicts. @noindent Some more examples of the use of @code{typeof}: @itemize @bullet @item This declares @code{y} with the type of what @code{x} points to. @smallexample typeof (*x) y; @end smallexample @item This declares @code{y} as an array of such values. @smallexample typeof (*x) y[4]; @end smallexample @item This declares @code{y} as an array of pointers to characters: @smallexample typeof (typeof (char *)[4]) y; @end smallexample @noindent It is equivalent to the following traditional C declaration: @smallexample char *y[4]; @end smallexample To see the meaning of the declaration using @code{typeof}, and why it might be a useful way to write, rewrite it with these macros: @smallexample #define pointer(T) typeof(T *) #define array(T, N) typeof(T [N]) @end smallexample @noindent Now the declaration can be rewritten this way: @smallexample array (pointer (char), 4) y; @end smallexample @noindent Thus, @code{array (pointer (char), 4)} is the type of arrays of 4 pointers to @code{char}. @end itemize In GNU C, but not GNU C++, you may also declare the type of a variable as @code{__auto_type}. In that case, the declaration must declare only one variable, whose declarator must just be an identifier, the declaration must be initialized, and the type of the variable is determined by the initializer; the name of the variable is not in scope until after the initializer. (In C++, you should use C++11 @code{auto} for this purpose.) Using @code{__auto_type}, the ``maximum'' macro above could be written as: @smallexample #define max(a,b) \ (@{ __auto_type _a = (a); \ __auto_type _b = (b); \ _a > _b ? _a : _b; @}) @end smallexample Using @code{__auto_type} instead of @code{typeof} has two advantages: @itemize @bullet @item Each argument to the macro appears only once in the expansion of the macro. This prevents the size of the macro expansion growing exponentially when calls to such macros are nested inside arguments of such macros. @item If the argument to the macro has variably modified type, it is evaluated only once when using @code{__auto_type}, but twice if @code{typeof} is used. @end itemize @node Conditionals @section Conditionals with Omitted Operands @cindex conditional expressions, extensions @cindex omitted middle-operands @cindex middle-operands, omitted @cindex extensions, @code{?:} @cindex @code{?:} extensions The middle operand in a conditional expression may be omitted. Then if the first operand is nonzero, its value is the value of the conditional expression. Therefore, the expression @smallexample x ? : y @end smallexample @noindent has the value of @code{x} if that is nonzero; otherwise, the value of @code{y}. This example is perfectly equivalent to @smallexample x ? x : y @end smallexample @cindex side effect in @code{?:} @cindex @code{?:} side effect @noindent In this simple case, the ability to omit the middle operand is not especially useful. When it becomes useful is when the first operand does, or may (if it is a macro argument), contain a side effect. Then repeating the operand in the middle would perform the side effect twice. Omitting the middle operand uses the value already computed without the undesirable effects of recomputing it. @node __int128 @section 128-bit Integers @cindex @code{__int128} data types As an extension the integer scalar type @code{__int128} is supported for targets which have an integer mode wide enough to hold 128 bits. Simply write @code{__int128} for a signed 128-bit integer, or @code{unsigned __int128} for an unsigned 128-bit integer. There is no support in GCC for expressing an integer constant of type @code{__int128} for targets with @code{long long} integer less than 128 bits wide. @node Long Long @section Double-Word Integers @cindex @code{long long} data types @cindex double-word arithmetic @cindex multiprecision arithmetic @cindex @code{LL} integer suffix @cindex @code{ULL} integer suffix ISO C99 supports data types for integers that are at least 64 bits wide, and as an extension GCC supports them in C90 mode and in C++. Simply write @code{long long int} for a signed integer, or @code{unsigned long long int} for an unsigned integer. To make an integer constant of type @code{long long int}, add the suffix @samp{LL} to the integer. To make an integer constant of type @code{unsigned long long int}, add the suffix @samp{ULL} to the integer. You can use these types in arithmetic like any other integer types. Addition, subtraction, and bitwise boolean operations on these types are open-coded on all types of machines. Multiplication is open-coded if the machine supports a fullword-to-doubleword widening multiply instruction. Division and shifts are open-coded only on machines that provide special support. The operations that are not open-coded use special library routines that come with GCC@. There may be pitfalls when you use @code{long long} types for function arguments without function prototypes. If a function expects type @code{int} for its argument, and you pass a value of type @code{long long int}, confusion results because the caller and the subroutine disagree about the number of bytes for the argument. Likewise, if the function expects @code{long long int} and you pass @code{int}. The best way to avoid such problems is to use prototypes. @node Complex @section Complex Numbers @cindex complex numbers @cindex @code{_Complex} keyword @cindex @code{__complex__} keyword ISO C99 supports complex floating data types, and as an extension GCC supports them in C90 mode and in C++. GCC also supports complex integer data types which are not part of ISO C99. You can declare complex types using the keyword @code{_Complex}. As an extension, the older GNU keyword @code{__complex__} is also supported. For example, @samp{_Complex double x;} declares @code{x} as a variable whose real part and imaginary part are both of type @code{double}. @samp{_Complex short int y;} declares @code{y} to have real and imaginary parts of type @code{short int}; this is not likely to be useful, but it shows that the set of complex types is complete. To write a constant with a complex data type, use the suffix @samp{i} or @samp{j} (either one; they are equivalent). For example, @code{2.5fi} has type @code{_Complex float} and @code{3i} has type @code{_Complex int}. Such a constant always has a pure imaginary value, but you can form any complex value you like by adding one to a real constant. This is a GNU extension; if you have an ISO C99 conforming C library (such as the GNU C Library), and want to construct complex constants of floating type, you should include @code{<complex.h>} and use the macros @code{I} or @code{_Complex_I} instead. @cindex @code{__real__} keyword @cindex @code{__imag__} keyword To extract the real part of a complex-valued expression @var{exp}, write @code{__real__ @var{exp}}. Likewise, use @code{__imag__} to extract the imaginary part. This is a GNU extension; for values of floating type, you should use the ISO C99 functions @code{crealf}, @code{creal}, @code{creall}, @code{cimagf}, @code{cimag} and @code{cimagl}, declared in @code{<complex.h>} and also provided as built-in functions by GCC@. @cindex complex conjugation The operator @samp{~} performs complex conjugation when used on a value with a complex type. This is a GNU extension; for values of floating type, you should use the ISO C99 functions @code{conjf}, @code{conj} and @code{conjl}, declared in @code{<complex.h>} and also provided as built-in functions by GCC@. GCC can allocate complex automatic variables in a noncontiguous fashion; it's even possible for the real part to be in a register while the imaginary part is on the stack (or vice versa). Only the DWARF debug info format can represent this, so use of DWARF is recommended. If you are using the stabs debug info format, GCC describes a noncontiguous complex variable as if it were two separate variables of noncomplex type. If the variable's actual name is @code{foo}, the two fictitious variables are named @code{foo$real} and @code{foo$imag}. You can examine and set these two fictitious variables with your debugger. @node Floating Types @section Additional Floating Types @cindex additional floating types @cindex @code{_Float@var{n}} data types @cindex @code{_Float@var{n}x} data types @cindex @code{__float80} data type @cindex @code{__float128} data type @cindex @code{__ibm128} data type @cindex @code{w} floating point suffix @cindex @code{q} floating point suffix @cindex @code{W} floating point suffix @cindex @code{Q} floating point suffix ISO/IEC TS 18661-3:2015 defines C support for additional floating types @code{_Float@var{n}} and @code{_Float@var{n}x}, and GCC supports these type names; the set of types supported depends on the target architecture. These types are not supported when compiling C++. Constants with these types use suffixes @code{f@var{n}} or @code{F@var{n}} and @code{f@var{n}x} or @code{F@var{n}x}. These type names can be used together with @code{_Complex} to declare complex types. As an extension, GNU C and GNU C++ support additional floating types, which are not supported by all targets. @itemize @bullet @item @code{__float128} is available on i386, x86_64, IA-64, and hppa HP-UX, as well as on PowerPC GNU/Linux targets that enable the vector scalar (VSX) instruction set. @code{__float128} supports the 128-bit floating type. On i386, x86_64, PowerPC, and IA-64 other than HP-UX, @code{__float128} is an alias for @code{_Float128}. On hppa and IA-64 HP-UX, @code{__float128} is an alias for @code{long double}. @item @code{__float80} is available on the i386, x86_64, and IA-64 targets, and supports the 80-bit (@code{XFmode}) floating type. It is an alias for the type name @code{_Float64x} on these targets. @item @code{__ibm128} is available on PowerPC targets, and provides access to the IBM extended double format which is the current format used for @code{long double}. When @code{long double} transitions to @code{__float128} on PowerPC in the future, @code{__ibm128} will remain for use in conversions between the two types. @end itemize Support for these additional types includes the arithmetic operators: add, subtract, multiply, divide; unary arithmetic operators; relational operators; equality operators; and conversions to and from integer and other floating types. Use a suffix @samp{w} or @samp{W} in a literal constant of type @code{__float80} or type @code{__ibm128}. Use a suffix @samp{q} or @samp{Q} for @code{_float128}. In order to use @code{_Float128}, @code{__float128}, and @code{__ibm128} on PowerPC Linux systems, you must use the @option{-mfloat128} option. It is expected in future versions of GCC that @code{_Float128} and @code{__float128} will be enabled automatically. The @code{_Float128} type is supported on all systems where @code{__float128} is supported or where @code{long double} has the IEEE binary128 format. The @code{_Float64x} type is supported on all systems where @code{__float128} is supported. The @code{_Float32} type is supported on all systems supporting IEEE binary32; the @code{_Float64} and @code{_Float32x} types are supported on all systems supporting IEEE binary64. The @code{_Float16} type is supported on AArch64 systems by default, and on ARM systems when the IEEE format for 16-bit floating-point types is selected with @option{-mfp16-format=ieee}. GCC does not currently support @code{_Float128x} on any systems. On the i386, x86_64, IA-64, and HP-UX targets, you can declare complex types using the corresponding internal complex type, @code{XCmode} for @code{__float80} type and @code{TCmode} for @code{__float128} type: @smallexample typedef _Complex float __attribute__((mode(TC))) _Complex128; typedef _Complex float __attribute__((mode(XC))) _Complex80; @end smallexample On the PowerPC Linux VSX targets, you can declare complex types using the corresponding internal complex type, @code{KCmode} for @code{__float128} type and @code{ICmode} for @code{__ibm128} type: @smallexample typedef _Complex float __attribute__((mode(KC))) _Complex_float128; typedef _Complex float __attribute__((mode(IC))) _Complex_ibm128; @end smallexample @node Half-Precision @section Half-Precision Floating Point @cindex half-precision floating point @cindex @code{__fp16} data type On ARM and AArch64 targets, GCC supports half-precision (16-bit) floating point via the @code{__fp16} type defined in the ARM C Language Extensions. On ARM systems, you must enable this type explicitly with the @option{-mfp16-format} command-line option in order to use it. ARM targets support two incompatible representations for half-precision floating-point values. You must choose one of the representations and use it consistently in your program. Specifying @option{-mfp16-format=ieee} selects the IEEE 754-2008 format. This format can represent normalized values in the range of @math{2^{-14}} to 65504. There are 11 bits of significand precision, approximately 3 decimal digits. Specifying @option{-mfp16-format=alternative} selects the ARM alternative format. This representation is similar to the IEEE format, but does not support infinities or NaNs. Instead, the range of exponents is extended, so that this format can represent normalized values in the range of @math{2^{-14}} to 131008. The GCC port for AArch64 only supports the IEEE 754-2008 format, and does not require use of the @option{-mfp16-format} command-line option. The @code{__fp16} type may only be used as an argument to intrinsics defined in @code{<arm_fp16.h>}, or as a storage format. For purposes of arithmetic and other operations, @code{__fp16} values in C or C++ expressions are automatically promoted to @code{float}. The ARM target provides hardware support for conversions between @code{__fp16} and @code{float} values as an extension to VFP and NEON (Advanced SIMD), and from ARMv8 provides hardware support for conversions between @code{__fp16} and @code{double} values. GCC generates code using these hardware instructions if you compile with options to select an FPU that provides them; for example, @option{-mfpu=neon-fp16 -mfloat-abi=softfp}, in addition to the @option{-mfp16-format} option to select a half-precision format. Language-level support for the @code{__fp16} data type is independent of whether GCC generates code using hardware floating-point instructions. In cases where hardware support is not specified, GCC implements conversions between @code{__fp16} and other types as library calls. It is recommended that portable code use the @code{_Float16} type defined by ISO/IEC TS 18661-3:2015. @xref{Floating Types}. @node Decimal Float @section Decimal Floating Types @cindex decimal floating types @cindex @code{_Decimal32} data type @cindex @code{_Decimal64} data type @cindex @code{_Decimal128} data type @cindex @code{df} integer suffix @cindex @code{dd} integer suffix @cindex @code{dl} integer suffix @cindex @code{DF} integer suffix @cindex @code{DD} integer suffix @cindex @code{DL} integer suffix As an extension, GNU C supports decimal floating types as defined in the N1312 draft of ISO/IEC WDTR24732. Support for decimal floating types in GCC will evolve as the draft technical report changes. Calling conventions for any target might also change. Not all targets support decimal floating types. The decimal floating types are @code{_Decimal32}, @code{_Decimal64}, and @code{_Decimal128}. They use a radix of ten, unlike the floating types @code{float}, @code{double}, and @code{long double} whose radix is not specified by the C standard but is usually two. Support for decimal floating types includes the arithmetic operators add, subtract, multiply, divide; unary arithmetic operators; relational operators; equality operators; and conversions to and from integer and other floating types. Use a suffix @samp{df} or @samp{DF} in a literal constant of type @code{_Decimal32}, @samp{dd} or @samp{DD} for @code{_Decimal64}, and @samp{dl} or @samp{DL} for @code{_Decimal128}. GCC support of decimal float as specified by the draft technical report is incomplete: @itemize @bullet @item When the value of a decimal floating type cannot be represented in the integer type to which it is being converted, the result is undefined rather than the result value specified by the draft technical report. @item GCC does not provide the C library functionality associated with @file{math.h}, @file{fenv.h}, @file{stdio.h}, @file{stdlib.h}, and @file{wchar.h}, which must come from a separate C library implementation. Because of this the GNU C compiler does not define macro @code{__STDC_DEC_FP__} to indicate that the implementation conforms to the technical report. @end itemize Types @code{_Decimal32}, @code{_Decimal64}, and @code{_Decimal128} are supported by the DWARF debug information format. @node Hex Floats @section Hex Floats @cindex hex floats ISO C99 supports floating-point numbers written not only in the usual decimal notation, such as @code{1.55e1}, but also numbers such as @code{0x1.fp3} written in hexadecimal format. As a GNU extension, GCC supports this in C90 mode (except in some cases when strictly conforming) and in C++. In that format the @samp{0x} hex introducer and the @samp{p} or @samp{P} exponent field are mandatory. The exponent is a decimal number that indicates the power of 2 by which the significant part is multiplied. Thus @samp{0x1.f} is @tex $1 {15\over16}$, @end tex @ifnottex 1 15/16, @end ifnottex @samp{p3} multiplies it by 8, and the value of @code{0x1.fp3} is the same as @code{1.55e1}. Unlike for floating-point numbers in the decimal notation the exponent is always required in the hexadecimal notation. Otherwise the compiler would not be able to resolve the ambiguity of, e.g., @code{0x1.f}. This could mean @code{1.0f} or @code{1.9375} since @samp{f} is also the extension for floating-point constants of type @code{float}. @node Fixed-Point @section Fixed-Point Types @cindex fixed-point types @cindex @code{_Fract} data type @cindex @code{_Accum} data type @cindex @code{_Sat} data type @cindex @code{hr} fixed-suffix @cindex @code{r} fixed-suffix @cindex @code{lr} fixed-suffix @cindex @code{llr} fixed-suffix @cindex @code{uhr} fixed-suffix @cindex @code{ur} fixed-suffix @cindex @code{ulr} fixed-suffix @cindex @code{ullr} fixed-suffix @cindex @code{hk} fixed-suffix @cindex @code{k} fixed-suffix @cindex @code{lk} fixed-suffix @cindex @code{llk} fixed-suffix @cindex @code{uhk} fixed-suffix @cindex @code{uk} fixed-suffix @cindex @code{ulk} fixed-suffix @cindex @code{ullk} fixed-suffix @cindex @code{HR} fixed-suffix @cindex @code{R} fixed-suffix @cindex @code{LR} fixed-suffix @cindex @code{LLR} fixed-suffix @cindex @code{UHR} fixed-suffix @cindex @code{UR} fixed-suffix @cindex @code{ULR} fixed-suffix @cindex @code{ULLR} fixed-suffix @cindex @code{HK} fixed-suffix @cindex @code{K} fixed-suffix @cindex @code{LK} fixed-suffix @cindex @code{LLK} fixed-suffix @cindex @code{UHK} fixed-suffix @cindex @code{UK} fixed-suffix @cindex @code{ULK} fixed-suffix @cindex @code{ULLK} fixed-suffix As an extension, GNU C supports fixed-point types as defined in the N1169 draft of ISO/IEC DTR 18037. Support for fixed-point types in GCC will evolve as the draft technical report changes. Calling conventions for any target might also change. Not all targets support fixed-point types. The fixed-point types are @code{short _Fract}, @code{_Fract}, @code{long _Fract}, @code{long long _Fract}, @code{unsigned short _Fract}, @code{unsigned _Fract}, @code{unsigned long _Fract}, @code{unsigned long long _Fract}, @code{_Sat short _Fract}, @code{_Sat _Fract}, @code{_Sat long _Fract}, @code{_Sat long long _Fract}, @code{_Sat unsigned short _Fract}, @code{_Sat unsigned _Fract}, @code{_Sat unsigned long _Fract}, @code{_Sat unsigned long long _Fract}, @code{short _Accum}, @code{_Accum}, @code{long _Accum}, @code{long long _Accum}, @code{unsigned short _Accum}, @code{unsigned _Accum}, @code{unsigned long _Accum}, @code{unsigned long long _Accum}, @code{_Sat short _Accum}, @code{_Sat _Accum}, @code{_Sat long _Accum}, @code{_Sat long long _Accum}, @code{_Sat unsigned short _Accum}, @code{_Sat unsigned _Accum}, @code{_Sat unsigned long _Accum}, @code{_Sat unsigned long long _Accum}. Fixed-point data values contain fractional and optional integral parts. The format of fixed-point data varies and depends on the target machine. Support for fixed-point types includes: @itemize @bullet @item prefix and postfix increment and decrement operators (@code{++}, @code{--}) @item unary arithmetic operators (@code{+}, @code{-}, @code{!}) @item binary arithmetic operators (@code{+}, @code{-}, @code{*}, @code{/}) @item binary shift operators (@code{<<}, @code{>>}) @item relational operators (@code{<}, @code{<=}, @code{>=}, @code{>}) @item equality operators (@code{==}, @code{!=}) @item assignment operators (@code{+=}, @code{-=}, @code{*=}, @code{/=}, @code{<<=}, @code{>>=}) @item conversions to and from integer, floating-point, or fixed-point types @end itemize Use a suffix in a fixed-point literal constant: @itemize @item @samp{hr} or @samp{HR} for @code{short _Fract} and @code{_Sat short _Fract} @item @samp{r} or @samp{R} for @code{_Fract} and @code{_Sat _Fract} @item @samp{lr} or @samp{LR} for @code{long _Fract} and @code{_Sat long _Fract} @item @samp{llr} or @samp{LLR} for @code{long long _Fract} and @code{_Sat long long _Fract} @item @samp{uhr} or @samp{UHR} for @code{unsigned short _Fract} and @code{_Sat unsigned short _Fract} @item @samp{ur} or @samp{UR} for @code{unsigned _Fract} and @code{_Sat unsigned _Fract} @item @samp{ulr} or @samp{ULR} for @code{unsigned long _Fract} and @code{_Sat unsigned long _Fract} @item @samp{ullr} or @samp{ULLR} for @code{unsigned long long _Fract} and @code{_Sat unsigned long long _Fract} @item @samp{hk} or @samp{HK} for @code{short _Accum} and @code{_Sat short _Accum} @item @samp{k} or @samp{K} for @code{_Accum} and @code{_Sat _Accum} @item @samp{lk} or @samp{LK} for @code{long _Accum} and @code{_Sat long _Accum} @item @samp{llk} or @samp{LLK} for @code{long long _Accum} and @code{_Sat long long _Accum} @item @samp{uhk} or @samp{UHK} for @code{unsigned short _Accum} and @code{_Sat unsigned short _Accum} @item @samp{uk} or @samp{UK} for @code{unsigned _Accum} and @code{_Sat unsigned _Accum} @item @samp{ulk} or @samp{ULK} for @code{unsigned long _Accum} and @code{_Sat unsigned long _Accum} @item @samp{ullk} or @samp{ULLK} for @code{unsigned long long _Accum} and @code{_Sat unsigned long long _Accum} @end itemize GCC support of fixed-point types as specified by the draft technical report is incomplete: @itemize @bullet @item Pragmas to control overflow and rounding behaviors are not implemented. @end itemize Fixed-point types are supported by the DWARF debug information format. @node Named Address Spaces @section Named Address Spaces @cindex Named Address Spaces As an extension, GNU C supports named address spaces as defined in the N1275 draft of ISO/IEC DTR 18037. Support for named address spaces in GCC will evolve as the draft technical report changes. Calling conventions for any target might also change. At present, only the AVR, SPU, M32C, RL78, and x86 targets support address spaces other than the generic address space. Address space identifiers may be used exactly like any other C type qualifier (e.g., @code{const} or @code{volatile}). See the N1275 document for more details. @anchor{AVR Named Address Spaces} @subsection AVR Named Address Spaces On the AVR target, there are several address spaces that can be used in order to put read-only data into the flash memory and access that data by means of the special instructions @code{LPM} or @code{ELPM} needed to read from flash. Devices belonging to @code{avrtiny} and @code{avrxmega3} can access flash memory by means of @code{LD*} instructions because the flash memory is mapped into the RAM address space. There is @emph{no need} for language extensions like @code{__flash} or attribute @ref{AVR Variable Attributes,,@code{progmem}}. The default linker description files for these devices cater for that feature and @code{.rodata} stays in flash: The compiler just generates @code{LD*} instructions, and the linker script adds core specific offsets to all @code{.rodata} symbols: @code{0x4000} in the case of @code{avrtiny} and @code{0x8000} in the case of @code{avrxmega3}. See @ref{AVR Options} for a list of respective devices. For devices not in @code{avrtiny} or @code{avrxmega3}, any data including read-only data is located in RAM (the generic address space) because flash memory is not visible in the RAM address space. In order to locate read-only data in flash memory @emph{and} to generate the right instructions to access this data without using (inline) assembler code, special address spaces are needed. @table @code @item __flash @cindex @code{__flash} AVR Named Address Spaces The @code{__flash} qualifier locates data in the @code{.progmem.data} section. Data is read using the @code{LPM} instruction. Pointers to this address space are 16 bits wide. @item __flash1 @itemx __flash2 @itemx __flash3 @itemx __flash4 @itemx __flash5 @cindex @code{__flash1} AVR Named Address Spaces @cindex @code{__flash2} AVR Named Address Spaces @cindex @code{__flash3} AVR Named Address Spaces @cindex @code{__flash4} AVR Named Address Spaces @cindex @code{__flash5} AVR Named Address Spaces These are 16-bit address spaces locating data in section @code{.progmem@var{N}.data} where @var{N} refers to address space @code{__flash@var{N}}. The compiler sets the @code{RAMPZ} segment register appropriately before reading data by means of the @code{ELPM} instruction. @item __memx @cindex @code{__memx} AVR Named Address Spaces This is a 24-bit address space that linearizes flash and RAM: If the high bit of the address is set, data is read from RAM using the lower two bytes as RAM address. If the high bit of the address is clear, data is read from flash with @code{RAMPZ} set according to the high byte of the address. @xref{AVR Built-in Functions,,@code{__builtin_avr_flash_segment}}. Objects in this address space are located in @code{.progmemx.data}. @end table @b{Example} @smallexample char my_read (const __flash char ** p) @{ /* p is a pointer to RAM that points to a pointer to flash. The first indirection of p reads that flash pointer from RAM and the second indirection reads a char from this flash address. */ return **p; @} /* Locate array[] in flash memory */ const __flash int array[] = @{ 3, 5, 7, 11, 13, 17, 19 @}; int i = 1; int main (void) @{ /* Return 17 by reading from flash memory */ return array[array[i]]; @} @end smallexample @noindent For each named address space supported by avr-gcc there is an equally named but uppercase built-in macro defined. The purpose is to facilitate testing if respective address space support is available or not: @smallexample #ifdef __FLASH const __flash int var = 1; int read_var (void) @{ return var; @} #else #include <avr/pgmspace.h> /* From AVR-LibC */ const int var PROGMEM = 1; int read_var (void) @{ return (int) pgm_read_word (&var); @} #endif /* __FLASH */ @end smallexample @noindent Notice that attribute @ref{AVR Variable Attributes,,@code{progmem}} locates data in flash but accesses to these data read from generic address space, i.e.@: from RAM, so that you need special accessors like @code{pgm_read_byte} from @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC}} together with attribute @code{progmem}. @noindent @b{Limitations and caveats} @itemize @item Reading across the 64@tie{}KiB section boundary of the @code{__flash} or @code{__flash@var{N}} address spaces shows undefined behavior. The only address space that supports reading across the 64@tie{}KiB flash segment boundaries is @code{__memx}. @item If you use one of the @code{__flash@var{N}} address spaces you must arrange your linker script to locate the @code{.progmem@var{N}.data} sections according to your needs. @item Any data or pointers to the non-generic address spaces must be qualified as @code{const}, i.e.@: as read-only data. This still applies if the data in one of these address spaces like software version number or calibration lookup table are intended to be changed after load time by, say, a boot loader. In this case the right qualification is @code{const} @code{volatile} so that the compiler must not optimize away known values or insert them as immediates into operands of instructions. @item The following code initializes a variable @code{pfoo} located in static storage with a 24-bit address: @smallexample extern const __memx char foo; const __memx void *pfoo = &foo; @end smallexample @item On the reduced Tiny devices like ATtiny40, no address spaces are supported. Just use vanilla C / C++ code without overhead as outlined above. Attribute @code{progmem} is supported but works differently, see @ref{AVR Variable Attributes}. @end itemize @subsection M32C Named Address Spaces @cindex @code{__far} M32C Named Address Spaces On the M32C target, with the R8C and M16C CPU variants, variables qualified with @code{__far} are accessed using 32-bit addresses in order to access memory beyond the first 64@tie{}Ki bytes. If @code{__far} is used with the M32CM or M32C CPU variants, it has no effect. @subsection RL78 Named Address Spaces @cindex @code{__far} RL78 Named Address Spaces On the RL78 target, variables qualified with @code{__far} are accessed with 32-bit pointers (20-bit addresses) rather than the default 16-bit addresses. Non-far variables are assumed to appear in the topmost 64@tie{}KiB of the address space. @subsection SPU Named Address Spaces @cindex @code{__ea} SPU Named Address Spaces On the SPU target variables may be declared as belonging to another address space by qualifying the type with the @code{__ea} address space identifier: @smallexample extern int __ea i; @end smallexample @noindent The compiler generates special code to access the variable @code{i}. It may use runtime library support, or generate special machine instructions to access that address space. @subsection x86 Named Address Spaces @cindex x86 named address spaces On the x86 target, variables may be declared as being relative to the @code{%fs} or @code{%gs} segments. @table @code @item __seg_fs @itemx __seg_gs @cindex @code{__seg_fs} x86 named address space @cindex @code{__seg_gs} x86 named address space The object is accessed with the respective segment override prefix. The respective segment base must be set via some method specific to the operating system. Rather than require an expensive system call to retrieve the segment base, these address spaces are not considered to be subspaces of the generic (flat) address space. This means that explicit casts are required to convert pointers between these address spaces and the generic address space. In practice the application should cast to @code{uintptr_t} and apply the segment base offset that it installed previously. The preprocessor symbols @code{__SEG_FS} and @code{__SEG_GS} are defined when these address spaces are supported. @end table @node Zero Length @section Arrays of Length Zero @cindex arrays of length zero @cindex zero-length arrays @cindex length-zero arrays @cindex flexible array members Zero-length arrays are allowed in GNU C@. They are very useful as the last element of a structure that is really a header for a variable-length object: @smallexample struct line @{ int length; char contents[0]; @}; struct line *thisline = (struct line *) malloc (sizeof (struct line) + this_length); thisline->length = this_length; @end smallexample In ISO C90, you would have to give @code{contents} a length of 1, which means either you waste space or complicate the argument to @code{malloc}. In ISO C99, you would use a @dfn{flexible array member}, which is slightly different in syntax and semantics: @itemize @bullet @item Flexible array members are written as @code{contents[]} without the @code{0}. @item Flexible array members have incomplete type, and so the @code{sizeof} operator may not be applied. As a quirk of the original implementation of zero-length arrays, @code{sizeof} evaluates to zero. @item Flexible array members may only appear as the last member of a @code{struct} that is otherwise non-empty. @item A structure containing a flexible array member, or a union containing such a structure (possibly recursively), may not be a member of a structure or an element of an array. (However, these uses are permitted by GCC as extensions.) @end itemize Non-empty initialization of zero-length arrays is treated like any case where there are more initializer elements than the array holds, in that a suitable warning about ``excess elements in array'' is given, and the excess elements (all of them, in this case) are ignored. GCC allows static initialization of flexible array members. This is equivalent to defining a new structure containing the original structure followed by an array of sufficient size to contain the data. E.g.@: in the following, @code{f1} is constructed as if it were declared like @code{f2}. @smallexample struct f1 @{ int x; int y[]; @} f1 = @{ 1, @{ 2, 3, 4 @} @}; struct f2 @{ struct f1 f1; int data[3]; @} f2 = @{ @{ 1 @}, @{ 2, 3, 4 @} @}; @end smallexample @noindent The convenience of this extension is that @code{f1} has the desired type, eliminating the need to consistently refer to @code{f2.f1}. This has symmetry with normal static arrays, in that an array of unknown size is also written with @code{[]}. Of course, this extension only makes sense if the extra data comes at the end of a top-level object, as otherwise we would be overwriting data at subsequent offsets. To avoid undue complication and confusion with initialization of deeply nested arrays, we simply disallow any non-empty initialization except when the structure is the top-level object. For example: @smallexample struct foo @{ int x; int y[]; @}; struct bar @{ struct foo z; @}; struct foo a = @{ 1, @{ 2, 3, 4 @} @}; // @r{Valid.} struct bar b = @{ @{ 1, @{ 2, 3, 4 @} @} @}; // @r{Invalid.} struct bar c = @{ @{ 1, @{ @} @} @}; // @r{Valid.} struct foo d[1] = @{ @{ 1, @{ 2, 3, 4 @} @} @}; // @r{Invalid.} @end smallexample @node Empty Structures @section Structures with No Members @cindex empty structures @cindex zero-size structures GCC permits a C structure to have no members: @smallexample struct empty @{ @}; @end smallexample The structure has size zero. In C++, empty structures are part of the language. G++ treats empty structures as if they had a single member of type @code{char}. @node Variable Length @section Arrays of Variable Length @cindex variable-length arrays @cindex arrays of variable length @cindex VLAs Variable-length automatic arrays are allowed in ISO C99, and as an extension GCC accepts them in C90 mode and in C++. These arrays are declared like any other automatic arrays, but with a length that is not a constant expression. The storage is allocated at the point of declaration and deallocated when the block scope containing the declaration exits. For example: @smallexample FILE * concat_fopen (char *s1, char *s2, char *mode) @{ char str[strlen (s1) + strlen (s2) + 1]; strcpy (str, s1); strcat (str, s2); return fopen (str, mode); @} @end smallexample @cindex scope of a variable length array @cindex variable-length array scope @cindex deallocating variable length arrays Jumping or breaking out of the scope of the array name deallocates the storage. Jumping into the scope is not allowed; you get an error message for it. @cindex variable-length array in a structure As an extension, GCC accepts variable-length arrays as a member of a structure or a union. For example: @smallexample void foo (int n) @{ struct S @{ int x[n]; @}; @} @end smallexample @cindex @code{alloca} vs variable-length arrays You can use the function @code{alloca} to get an effect much like variable-length arrays. The function @code{alloca} is available in many other C implementations (but not in all). On the other hand, variable-length arrays are more elegant. There are other differences between these two methods. Space allocated with @code{alloca} exists until the containing @emph{function} returns. The space for a variable-length array is deallocated as soon as the array name's scope ends, unless you also use @code{alloca} in this scope. You can also use variable-length arrays as arguments to functions: @smallexample struct entry tester (int len, char data[len][len]) @{ /* @r{@dots{}} */ @} @end smallexample The length of an array is computed once when the storage is allocated and is remembered for the scope of the array in case you access it with @code{sizeof}. If you want to pass the array first and the length afterward, you can use a forward declaration in the parameter list---another GNU extension. @smallexample struct entry tester (int len; char data[len][len], int len) @{ /* @r{@dots{}} */ @} @end smallexample @cindex parameter forward declaration The @samp{int len} before the semicolon is a @dfn{parameter forward declaration}, and it serves the purpose of making the name @code{len} known when the declaration of @code{data} is parsed. You can write any number of such parameter forward declarations in the parameter list. They can be separated by commas or semicolons, but the last one must end with a semicolon, which is followed by the ``real'' parameter declarations. Each forward declaration must match a ``real'' declaration in parameter name and data type. ISO C99 does not support parameter forward declarations. @node Variadic Macros @section Macros with a Variable Number of Arguments. @cindex variable number of arguments @cindex macro with variable arguments @cindex rest argument (in macro) @cindex variadic macros In the ISO C standard of 1999, a macro can be declared to accept a variable number of arguments much as a function can. The syntax for defining the macro is similar to that of a function. Here is an example: @smallexample #define debug(format, ...) fprintf (stderr, format, __VA_ARGS__) @end smallexample @noindent Here @samp{@dots{}} is a @dfn{variable argument}. In the invocation of such a macro, it represents the zero or more tokens until the closing parenthesis that ends the invocation, including any commas. This set of tokens replaces the identifier @code{__VA_ARGS__} in the macro body wherever it appears. See the CPP manual for more information. GCC has long supported variadic macros, and used a different syntax that allowed you to give a name to the variable arguments just like any other argument. Here is an example: @smallexample #define debug(format, args...) fprintf (stderr, format, args) @end smallexample @noindent This is in all ways equivalent to the ISO C example above, but arguably more readable and descriptive. GNU CPP has two further variadic macro extensions, and permits them to be used with either of the above forms of macro definition. In standard C, you are not allowed to leave the variable argument out entirely; but you are allowed to pass an empty argument. For example, this invocation is invalid in ISO C, because there is no comma after the string: @smallexample debug ("A message") @end smallexample GNU CPP permits you to completely omit the variable arguments in this way. In the above examples, the compiler would complain, though since the expansion of the macro still has the extra comma after the format string. To help solve this problem, CPP behaves specially for variable arguments used with the token paste operator, @samp{##}. If instead you write @smallexample #define debug(format, ...) fprintf (stderr, format, ## __VA_ARGS__) @end smallexample @noindent and if the variable arguments are omitted or empty, the @samp{##} operator causes the preprocessor to remove the comma before it. If you do provide some variable arguments in your macro invocation, GNU CPP does not complain about the paste operation and instead places the variable arguments after the comma. Just like any other pasted macro argument, these arguments are not macro expanded. @node Escaped Newlines @section Slightly Looser Rules for Escaped Newlines @cindex escaped newlines @cindex newlines (escaped) The preprocessor treatment of escaped newlines is more relaxed than that specified by the C90 standard, which requires the newline to immediately follow a backslash. GCC's implementation allows whitespace in the form of spaces, horizontal and vertical tabs, and form feeds between the backslash and the subsequent newline. The preprocessor issues a warning, but treats it as a valid escaped newline and combines the two lines to form a single logical line. This works within comments and tokens, as well as between tokens. Comments are @emph{not} treated as whitespace for the purposes of this relaxation, since they have not yet been replaced with spaces. @node Subscripting @section Non-Lvalue Arrays May Have Subscripts @cindex subscripting @cindex arrays, non-lvalue @cindex subscripting and function values In ISO C99, arrays that are not lvalues still decay to pointers, and may be subscripted, although they may not be modified or used after the next sequence point and the unary @samp{&} operator may not be applied to them. As an extension, GNU C allows such arrays to be subscripted in C90 mode, though otherwise they do not decay to pointers outside C99 mode. For example, this is valid in GNU C though not valid in C90: @smallexample @group struct foo @{int a[4];@}; struct foo f(); bar (int index) @{ return f().a[index]; @} @end group @end smallexample @node Pointer Arith @section Arithmetic on @code{void}- and Function-Pointers @cindex void pointers, arithmetic @cindex void, size of pointer to @cindex function pointers, arithmetic @cindex function, size of pointer to In GNU C, addition and subtraction operations are supported on pointers to @code{void} and on pointers to functions. This is done by treating the size of a @code{void} or of a function as 1. A consequence of this is that @code{sizeof} is also allowed on @code{void} and on function types, and returns 1. @opindex Wpointer-arith The option @option{-Wpointer-arith} requests a warning if these extensions are used. @node Pointers to Arrays @section Pointers to Arrays with Qualifiers Work as Expected @cindex pointers to arrays @cindex const qualifier In GNU C, pointers to arrays with qualifiers work similar to pointers to other qualified types. For example, a value of type @code{int (*)[5]} can be used to initialize a variable of type @code{const int (*)[5]}. These types are incompatible in ISO C because the @code{const} qualifier is formally attached to the element type of the array and not the array itself. @smallexample extern void transpose (int N, int M, double out[M][N], const double in[N][M]); double x[3][2]; double y[2][3]; @r{@dots{}} transpose(3, 2, y, x); @end smallexample @node Initializers @section Non-Constant Initializers @cindex initializers, non-constant @cindex non-constant initializers As in standard C++ and ISO C99, the elements of an aggregate initializer for an automatic variable are not required to be constant expressions in GNU C@. Here is an example of an initializer with run-time varying elements: @smallexample foo (float f, float g) @{ float beat_freqs[2] = @{ f-g, f+g @}; /* @r{@dots{}} */ @} @end smallexample @node Compound Literals @section Compound Literals @cindex constructor expressions @cindex initializations in expressions @cindex structures, constructor expression @cindex expressions, constructor @cindex compound literals @c The GNU C name for what C99 calls compound literals was "constructor expressions". A compound literal looks like a cast of a brace-enclosed aggregate initializer list. Its value is an object of the type specified in the cast, containing the elements specified in the initializer. Unlike the result of a cast, a compound literal is an lvalue. ISO C99 and later support compound literals. As an extension, GCC supports compound literals also in C90 mode and in C++, although as explained below, the C++ semantics are somewhat different. Usually, the specified type of a compound literal is a structure. Assume that @code{struct foo} and @code{structure} are declared as shown: @smallexample struct foo @{int a; char b[2];@} structure; @end smallexample @noindent Here is an example of constructing a @code{struct foo} with a compound literal: @smallexample structure = ((struct foo) @{x + y, 'a', 0@}); @end smallexample @noindent This is equivalent to writing the following: @smallexample @{ struct foo temp = @{x + y, 'a', 0@}; structure = temp; @} @end smallexample You can also construct an array, though this is dangerous in C++, as explained below. If all the elements of the compound literal are (made up of) simple constant expressions suitable for use in initializers of objects of static storage duration, then the compound literal can be coerced to a pointer to its first element and used in such an initializer, as shown here: @smallexample char **foo = (char *[]) @{ "x", "y", "z" @}; @end smallexample Compound literals for scalar types and union types are also allowed. In the following example the variable @code{i} is initialized to the value @code{2}, the result of incrementing the unnamed object created by the compound literal. @smallexample int i = ++(int) @{ 1 @}; @end smallexample As a GNU extension, GCC allows initialization of objects with static storage duration by compound literals (which is not possible in ISO C99 because the initializer is not a constant). It is handled as if the object were initialized only with the brace-enclosed list if the types of the compound literal and the object match. The elements of the compound literal must be constant. If the object being initialized has array type of unknown size, the size is determined by the size of the compound literal. @smallexample static struct foo x = (struct foo) @{1, 'a', 'b'@}; static int y[] = (int []) @{1, 2, 3@}; static int z[] = (int [3]) @{1@}; @end smallexample @noindent The above lines are equivalent to the following: @smallexample static struct foo x = @{1, 'a', 'b'@}; static int y[] = @{1, 2, 3@}; static int z[] = @{1, 0, 0@}; @end smallexample In C, a compound literal designates an unnamed object with static or automatic storage duration. In C++, a compound literal designates a temporary object that only lives until the end of its full-expression. As a result, well-defined C code that takes the address of a subobject of a compound literal can be undefined in C++, so G++ rejects the conversion of a temporary array to a pointer. For instance, if the array compound literal example above appeared inside a function, any subsequent use of @code{foo} in C++ would have undefined behavior because the lifetime of the array ends after the declaration of @code{foo}. As an optimization, G++ sometimes gives array compound literals longer lifetimes: when the array either appears outside a function or has a @code{const}-qualified type. If @code{foo} and its initializer had elements of type @code{char *const} rather than @code{char *}, or if @code{foo} were a global variable, the array would have static storage duration. But it is probably safest just to avoid the use of array compound literals in C++ code. @node Designated Inits @section Designated Initializers @cindex initializers with labeled elements @cindex labeled elements in initializers @cindex case labels in initializers @cindex designated initializers Standard C90 requires the elements of an initializer to appear in a fixed order, the same as the order of the elements in the array or structure being initialized. In ISO C99 you can give the elements in any order, specifying the array indices or structure field names they apply to, and GNU C allows this as an extension in C90 mode as well. This extension is not implemented in GNU C++. To specify an array index, write @samp{[@var{index}] =} before the element value. For example, @smallexample int a[6] = @{ [4] = 29, [2] = 15 @}; @end smallexample @noindent is equivalent to @smallexample int a[6] = @{ 0, 0, 15, 0, 29, 0 @}; @end smallexample @noindent The index values must be constant expressions, even if the array being initialized is automatic. An alternative syntax for this that has been obsolete since GCC 2.5 but GCC still accepts is to write @samp{[@var{index}]} before the element value, with no @samp{=}. To initialize a range of elements to the same value, write @samp{[@var{first} ... @var{last}] = @var{value}}. This is a GNU extension. For example, @smallexample int widths[] = @{ [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 @}; @end smallexample @noindent If the value in it has side-effects, the side-effects happen only once, not for each initialized field by the range initializer. @noindent Note that the length of the array is the highest value specified plus one. In a structure initializer, specify the name of a field to initialize with @samp{.@var{fieldname} =} before the element value. For example, given the following structure, @smallexample struct point @{ int x, y; @}; @end smallexample @noindent the following initialization @smallexample struct point p = @{ .y = yvalue, .x = xvalue @}; @end smallexample @noindent is equivalent to @smallexample struct point p = @{ xvalue, yvalue @}; @end smallexample Another syntax that has the same meaning, obsolete since GCC 2.5, is @samp{@var{fieldname}:}, as shown here: @smallexample struct point p = @{ y: yvalue, x: xvalue @}; @end smallexample Omitted field members are implicitly initialized the same as objects that have static storage duration. @cindex designators The @samp{[@var{index}]} or @samp{.@var{fieldname}} is known as a @dfn{designator}. You can also use a designator (or the obsolete colon syntax) when initializing a union, to specify which element of the union should be used. For example, @smallexample union foo @{ int i; double d; @}; union foo f = @{ .d = 4 @}; @end smallexample @noindent converts 4 to a @code{double} to store it in the union using the second element. By contrast, casting 4 to type @code{union foo} stores it into the union as the integer @code{i}, since it is an integer. @xref{Cast to Union}. You can combine this technique of naming elements with ordinary C initialization of successive elements. Each initializer element that does not have a designator applies to the next consecutive element of the array or structure. For example, @smallexample int a[6] = @{ [1] = v1, v2, [4] = v4 @}; @end smallexample @noindent is equivalent to @smallexample int a[6] = @{ 0, v1, v2, 0, v4, 0 @}; @end smallexample Labeling the elements of an array initializer is especially useful when the indices are characters or belong to an @code{enum} type. For example: @smallexample int whitespace[256] = @{ [' '] = 1, ['\t'] = 1, ['\h'] = 1, ['\f'] = 1, ['\n'] = 1, ['\r'] = 1 @}; @end smallexample @cindex designator lists You can also write a series of @samp{.@var{fieldname}} and @samp{[@var{index}]} designators before an @samp{=} to specify a nested subobject to initialize; the list is taken relative to the subobject corresponding to the closest surrounding brace pair. For example, with the @samp{struct point} declaration above: @smallexample struct point ptarray[10] = @{ [2].y = yv2, [2].x = xv2, [0].x = xv0 @}; @end smallexample @noindent If the same field is initialized multiple times, it has the value from the last initialization. If any such overridden initialization has side-effect, it is unspecified whether the side-effect happens or not. Currently, GCC discards them and issues a warning. @node Case Ranges @section Case Ranges @cindex case ranges @cindex ranges in case statements You can specify a range of consecutive values in a single @code{case} label, like this: @smallexample case @var{low} ... @var{high}: @end smallexample @noindent This has the same effect as the proper number of individual @code{case} labels, one for each integer value from @var{low} to @var{high}, inclusive. This feature is especially useful for ranges of ASCII character codes: @smallexample case 'A' ... 'Z': @end smallexample @strong{Be careful:} Write spaces around the @code{...}, for otherwise it may be parsed wrong when you use it with integer values. For example, write this: @smallexample case 1 ... 5: @end smallexample @noindent rather than this: @smallexample case 1...5: @end smallexample @node Cast to Union @section Cast to a Union Type @cindex cast to a union @cindex union, casting to a A cast to union type looks similar to other casts, except that the type specified is a union type. You can specify the type either with the @code{union} keyword or with a @code{typedef} name that refers to a union. A cast to a union actually creates a compound literal and yields an lvalue, not an rvalue like true casts do. @xref{Compound Literals}. The types that may be cast to the union type are those of the members of the union. Thus, given the following union and variables: @smallexample union foo @{ int i; double d; @}; int x; double y; @end smallexample @noindent both @code{x} and @code{y} can be cast to type @code{union foo}. Using the cast as the right-hand side of an assignment to a variable of union type is equivalent to storing in a member of the union: @smallexample union foo u; /* @r{@dots{}} */ u = (union foo) x @equiv{} u.i = x u = (union foo) y @equiv{} u.d = y @end smallexample You can also use the union cast as a function argument: @smallexample void hack (union foo); /* @r{@dots{}} */ hack ((union foo) x); @end smallexample @node Mixed Declarations @section Mixed Declarations and Code @cindex mixed declarations and code @cindex declarations, mixed with code @cindex code, mixed with declarations ISO C99 and ISO C++ allow declarations and code to be freely mixed within compound statements. As an extension, GNU C also allows this in C90 mode. For example, you could do: @smallexample int i; /* @r{@dots{}} */ i++; int j = i + 2; @end smallexample Each identifier is visible from where it is declared until the end of the enclosing block. @node Function Attributes @section Declaring Attributes of Functions @cindex function attributes @cindex declaring attributes of functions @cindex @code{volatile} applied to function @cindex @code{const} applied to function In GNU C, you can use function attributes to declare certain things about functions called in your program which help the compiler optimize calls and check your code more carefully. For example, you can use attributes to declare that a function never returns (@code{noreturn}), returns a value depending only on its arguments (@code{pure}), or has @code{printf}-style arguments (@code{format}). You can also use attributes to control memory placement, code generation options or call/return conventions within the function being annotated. Many of these attributes are target-specific. For example, many targets support attributes for defining interrupt handler functions, which typically must follow special register usage and return conventions. Function attributes are introduced by the @code{__attribute__} keyword on a declaration, followed by an attribute specification inside double parentheses. You can specify multiple attributes in a declaration by separating them by commas within the double parentheses or by immediately following an attribute declaration with another attribute declaration. @xref{Attribute Syntax}, for the exact rules on attribute syntax and placement. GCC also supports attributes on variable declarations (@pxref{Variable Attributes}), labels (@pxref{Label Attributes}), enumerators (@pxref{Enumerator Attributes}), statements (@pxref{Statement Attributes}), and types (@pxref{Type Attributes}). There is some overlap between the purposes of attributes and pragmas (@pxref{Pragmas,,Pragmas Accepted by GCC}). It has been found convenient to use @code{__attribute__} to achieve a natural attachment of attributes to their corresponding declarations, whereas @code{#pragma} is of use for compatibility with other compilers or constructs that do not naturally form part of the grammar. In addition to the attributes documented here, GCC plugins may provide their own attributes. @menu * Common Function Attributes:: * AArch64 Function Attributes:: * ARC Function Attributes:: * ARM Function Attributes:: * AVR Function Attributes:: * Blackfin Function Attributes:: * CR16 Function Attributes:: * Epiphany Function Attributes:: * H8/300 Function Attributes:: * IA-64 Function Attributes:: * M32C Function Attributes:: * M32R/D Function Attributes:: * m68k Function Attributes:: * MCORE Function Attributes:: * MeP Function Attributes:: * MicroBlaze Function Attributes:: * Microsoft Windows Function Attributes:: * MIPS Function Attributes:: * MSP430 Function Attributes:: * NDS32 Function Attributes:: * Nios II Function Attributes:: * Nvidia PTX Function Attributes:: * PowerPC Function Attributes:: * RL78 Function Attributes:: * RX Function Attributes:: * S/390 Function Attributes:: * SH Function Attributes:: * SPU Function Attributes:: * Symbian OS Function Attributes:: * V850 Function Attributes:: * Visium Function Attributes:: * x86 Function Attributes:: * Xstormy16 Function Attributes:: @end menu @node Common Function Attributes @subsection Common Function Attributes The following attributes are supported on most targets. @table @code @c Keep this table alphabetized by attribute name. Treat _ as space. @item alias ("@var{target}") @cindex @code{alias} function attribute The @code{alias} attribute causes the declaration to be emitted as an alias for another symbol, which must be specified. For instance, @smallexample void __f () @{ /* @r{Do something.} */; @} void f () __attribute__ ((weak, alias ("__f"))); @end smallexample @noindent defines @samp{f} to be a weak alias for @samp{__f}. In C++, the mangled name for the target must be used. It is an error if @samp{__f} is not defined in the same translation unit. This attribute requires assembler and object file support, and may not be available on all targets. @item aligned (@var{alignment}) @cindex @code{aligned} function attribute This attribute specifies a minimum alignment for the function, measured in bytes. You cannot use this attribute to decrease the alignment of a function, only to increase it. However, when you explicitly specify a function alignment this overrides the effect of the @option{-falign-functions} (@pxref{Optimize Options}) option for this function. Note that the effectiveness of @code{aligned} attributes may be limited by inherent limitations in your linker. On many systems, the linker is only able to arrange for functions to be aligned up to a certain maximum alignment. (For some linkers, the maximum supported alignment may be very very small.) See your linker documentation for further information. The @code{aligned} attribute can also be used for variables and fields (@pxref{Variable Attributes}.) @item alloc_align @cindex @code{alloc_align} function attribute The @code{alloc_align} attribute is used to tell the compiler that the function return value points to memory, where the returned pointer minimum alignment is given by one of the functions parameters. GCC uses this information to improve pointer alignment analysis. The function parameter denoting the allocated alignment is specified by one integer argument, whose number is the argument of the attribute. Argument numbering starts at one. For instance, @smallexample void* my_memalign(size_t, size_t) __attribute__((alloc_align(1))) @end smallexample @noindent declares that @code{my_memalign} returns memory with minimum alignment given by parameter 1. @item alloc_size @cindex @code{alloc_size} function attribute The @code{alloc_size} attribute is used to tell the compiler that the function return value points to memory, where the size is given by one or two of the functions parameters. GCC uses this information to improve the correctness of @code{__builtin_object_size}. The function parameter(s) denoting the allocated size are specified by one or two integer arguments supplied to the attribute. The allocated size is either the value of the single function argument specified or the product of the two function arguments specified. Argument numbering starts at one. For instance, @smallexample void* my_calloc(size_t, size_t) __attribute__((alloc_size(1,2))) void* my_realloc(void*, size_t) __attribute__((alloc_size(2))) @end smallexample @noindent declares that @code{my_calloc} returns memory of the size given by the product of parameter 1 and 2 and that @code{my_realloc} returns memory of the size given by parameter 2. @item always_inline @cindex @code{always_inline} function attribute Generally, functions are not inlined unless optimization is specified. For functions declared inline, this attribute inlines the function independent of any restrictions that otherwise apply to inlining. Failure to inline such a function is diagnosed as an error. Note that if such a function is called indirectly the compiler may or may not inline it depending on optimization level and a failure to inline an indirect call may or may not be diagnosed. @item artificial @cindex @code{artificial} function attribute This attribute is useful for small inline wrappers that if possible should appear during debugging as a unit. Depending on the debug info format it either means marking the function as artificial or using the caller location for all instructions within the inlined body. @item assume_aligned @cindex @code{assume_aligned} function attribute The @code{assume_aligned} attribute is used to tell the compiler that the function return value points to memory, where the returned pointer minimum alignment is given by the first argument. If the attribute has two arguments, the second argument is misalignment offset. For instance @smallexample void* my_alloc1(size_t) __attribute__((assume_aligned(16))) void* my_alloc2(size_t) __attribute__((assume_aligned(32, 8))) @end smallexample @noindent declares that @code{my_alloc1} returns 16-byte aligned pointer and that @code{my_alloc2} returns a pointer whose value modulo 32 is equal to 8. @item bnd_instrument @cindex @code{bnd_instrument} function attribute The @code{bnd_instrument} attribute on functions is used to inform the compiler that the function should be instrumented when compiled with the @option{-fchkp-instrument-marked-only} option. @item bnd_legacy @cindex @code{bnd_legacy} function attribute @cindex Pointer Bounds Checker attributes The @code{bnd_legacy} attribute on functions is used to inform the compiler that the function should not be instrumented when compiled with the @option{-fcheck-pointer-bounds} option. @item cold @cindex @code{cold} function attribute The @code{cold} attribute on functions is used to inform the compiler that the function is unlikely to be executed. The function is optimized for size rather than speed and on many targets it is placed into a special subsection of the text section so all cold functions appear close together, improving code locality of non-cold parts of program. The paths leading to calls of cold functions within code are marked as unlikely by the branch prediction mechanism. It is thus useful to mark functions used to handle unlikely conditions, such as @code{perror}, as cold to improve optimization of hot functions that do call marked functions in rare occasions. When profile feedback is available, via @option{-fprofile-use}, cold functions are automatically detected and this attribute is ignored. @item const @cindex @code{const} function attribute @cindex functions that have no side effects Many functions do not examine any values except their arguments, and have no effects except the return value. Basically this is just slightly more strict class than the @code{pure} attribute below, since function is not allowed to read global memory. @cindex pointer arguments Note that a function that has pointer arguments and examines the data pointed to must @emph{not} be declared @code{const}. Likewise, a function that calls a non-@code{const} function usually must not be @code{const}. It does not make sense for a @code{const} function to return @code{void}. @item constructor @itemx destructor @itemx constructor (@var{priority}) @itemx destructor (@var{priority}) @cindex @code{constructor} function attribute @cindex @code{destructor} function attribute The @code{constructor} attribute causes the function to be called automatically before execution enters @code{main ()}. Similarly, the @code{destructor} attribute causes the function to be called automatically after @code{main ()} completes or @code{exit ()} is called. Functions with these attributes are useful for initializing data that is used implicitly during the execution of the program. You may provide an optional integer priority to control the order in which constructor and destructor functions are run. A constructor with a smaller priority number runs before a constructor with a larger priority number; the opposite relationship holds for destructors. So, if you have a constructor that allocates a resource and a destructor that deallocates the same resource, both functions typically have the same priority. The priorities for constructor and destructor functions are the same as those specified for namespace-scope C++ objects (@pxref{C++ Attributes}). However, at present, the order in which constructors for C++ objects with static storage duration and functions decorated with attribute @code{constructor} are invoked is unspecified. In mixed declarations, attribute @code{init_priority} can be used to impose a specific ordering. @item deprecated @itemx deprecated (@var{msg}) @cindex @code{deprecated} function attribute The @code{deprecated} attribute results in a warning if the function is used anywhere in the source file. This is useful when identifying functions that are expected to be removed in a future version of a program. The warning also includes the location of the declaration of the deprecated function, to enable users to easily find further information about why the function is deprecated, or what they should do instead. Note that the warnings only occurs for uses: @smallexample int old_fn () __attribute__ ((deprecated)); int old_fn (); int (*fn_ptr)() = old_fn; @end smallexample @noindent results in a warning on line 3 but not line 2. The optional @var{msg} argument, which must be a string, is printed in the warning if present. The @code{deprecated} attribute can also be used for variables and types (@pxref{Variable Attributes}, @pxref{Type Attributes}.) @item error ("@var{message}") @itemx warning ("@var{message}") @cindex @code{error} function attribute @cindex @code{warning} function attribute If the @code{error} or @code{warning} attribute is used on a function declaration and a call to such a function is not eliminated through dead code elimination or other optimizations, an error or warning (respectively) that includes @var{message} is diagnosed. This is useful for compile-time checking, especially together with @code{__builtin_constant_p} and inline functions where checking the inline function arguments is not possible through @code{extern char [(condition) ? 1 : -1];} tricks. While it is possible to leave the function undefined and thus invoke a link failure (to define the function with a message in @code{.gnu.warning*} section), when using these attributes the problem is diagnosed earlier and with exact location of the call even in presence of inline functions or when not emitting debugging information. @item externally_visible @cindex @code{externally_visible} function attribute This attribute, attached to a global variable or function, nullifies the effect of the @option{-fwhole-program} command-line option, so the object remains visible outside the current compilation unit. If @option{-fwhole-program} is used together with @option{-flto} and @command{gold} is used as the linker plugin, @code{externally_visible} attributes are automatically added to functions (not variable yet due to a current @command{gold} issue) that are accessed outside of LTO objects according to resolution file produced by @command{gold}. For other linkers that cannot generate resolution file, explicit @code{externally_visible} attributes are still necessary. @item flatten @cindex @code{flatten} function attribute Generally, inlining into a function is limited. For a function marked with this attribute, every call inside this function is inlined, if possible. Whether the function itself is considered for inlining depends on its size and the current inlining parameters. @item format (@var{archetype}, @var{string-index}, @var{first-to-check}) @cindex @code{format} function attribute @cindex functions with @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style arguments @opindex Wformat The @code{format} attribute specifies that a function takes @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style arguments that should be type-checked against a format string. For example, the declaration: @smallexample extern int my_printf (void *my_object, const char *my_format, ...) __attribute__ ((format (printf, 2, 3))); @end smallexample @noindent causes the compiler to check the arguments in calls to @code{my_printf} for consistency with the @code{printf} style format string argument @code{my_format}. The parameter @var{archetype} determines how the format string is interpreted, and should be @code{printf}, @code{scanf}, @code{strftime}, @code{gnu_printf}, @code{gnu_scanf}, @code{gnu_strftime} or @code{strfmon}. (You can also use @code{__printf__}, @code{__scanf__}, @code{__strftime__} or @code{__strfmon__}.) On MinGW targets, @code{ms_printf}, @code{ms_scanf}, and @code{ms_strftime} are also present. @var{archetype} values such as @code{printf} refer to the formats accepted by the system's C runtime library, while values prefixed with @samp{gnu_} always refer to the formats accepted by the GNU C Library. On Microsoft Windows targets, values prefixed with @samp{ms_} refer to the formats accepted by the @file{msvcrt.dll} library. The parameter @var{string-index} specifies which argument is the format string argument (starting from 1), while @var{first-to-check} is the number of the first argument to check against the format string. For functions where the arguments are not available to be checked (such as @code{vprintf}), specify the third parameter as zero. In this case the compiler only checks the format string for consistency. For @code{strftime} formats, the third parameter is required to be zero. Since non-static C++ methods have an implicit @code{this} argument, the arguments of such methods should be counted from two, not one, when giving values for @var{string-index} and @var{first-to-check}. In the example above, the format string (@code{my_format}) is the second argument of the function @code{my_print}, and the arguments to check start with the third argument, so the correct parameters for the format attribute are 2 and 3. @opindex ffreestanding @opindex fno-builtin The @code{format} attribute allows you to identify your own functions that take format strings as arguments, so that GCC can check the calls to these functions for errors. The compiler always (unless @option{-ffreestanding} or @option{-fno-builtin} is used) checks formats for the standard library functions @code{printf}, @code{fprintf}, @code{sprintf}, @code{scanf}, @code{fscanf}, @code{sscanf}, @code{strftime}, @code{vprintf}, @code{vfprintf} and @code{vsprintf} whenever such warnings are requested (using @option{-Wformat}), so there is no need to modify the header file @file{stdio.h}. In C99 mode, the functions @code{snprintf}, @code{vsnprintf}, @code{vscanf}, @code{vfscanf} and @code{vsscanf} are also checked. Except in strictly conforming C standard modes, the X/Open function @code{strfmon} is also checked as are @code{printf_unlocked} and @code{fprintf_unlocked}. @xref{C Dialect Options,,Options Controlling C Dialect}. For Objective-C dialects, @code{NSString} (or @code{__NSString__}) is recognized in the same context. Declarations including these format attributes are parsed for correct syntax, however the result of checking of such format strings is not yet defined, and is not carried out by this version of the compiler. The target may also provide additional types of format checks. @xref{Target Format Checks,,Format Checks Specific to Particular Target Machines}. @item format_arg (@var{string-index}) @cindex @code{format_arg} function attribute @opindex Wformat-nonliteral The @code{format_arg} attribute specifies that a function takes a format string for a @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style function and modifies it (for example, to translate it into another language), so the result can be passed to a @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style function (with the remaining arguments to the format function the same as they would have been for the unmodified string). For example, the declaration: @smallexample extern char * my_dgettext (char *my_domain, const char *my_format) __attribute__ ((format_arg (2))); @end smallexample @noindent causes the compiler to check the arguments in calls to a @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} type function, whose format string argument is a call to the @code{my_dgettext} function, for consistency with the format string argument @code{my_format}. If the @code{format_arg} attribute had not been specified, all the compiler could tell in such calls to format functions would be that the format string argument is not constant; this would generate a warning when @option{-Wformat-nonliteral} is used, but the calls could not be checked without the attribute. The parameter @var{string-index} specifies which argument is the format string argument (starting from one). Since non-static C++ methods have an implicit @code{this} argument, the arguments of such methods should be counted from two. The @code{format_arg} attribute allows you to identify your own functions that modify format strings, so that GCC can check the calls to @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} type function whose operands are a call to one of your own function. The compiler always treats @code{gettext}, @code{dgettext}, and @code{dcgettext} in this manner except when strict ISO C support is requested by @option{-ansi} or an appropriate @option{-std} option, or @option{-ffreestanding} or @option{-fno-builtin} is used. @xref{C Dialect Options,,Options Controlling C Dialect}. For Objective-C dialects, the @code{format-arg} attribute may refer to an @code{NSString} reference for compatibility with the @code{format} attribute above. The target may also allow additional types in @code{format-arg} attributes. @xref{Target Format Checks,,Format Checks Specific to Particular Target Machines}. @item gnu_inline @cindex @code{gnu_inline} function attribute This attribute should be used with a function that is also declared with the @code{inline} keyword. It directs GCC to treat the function as if it were defined in gnu90 mode even when compiling in C99 or gnu99 mode. If the function is declared @code{extern}, then this definition of the function is used only for inlining. In no case is the function compiled as a standalone function, not even if you take its address explicitly. Such an address becomes an external reference, as if you had only declared the function, and had not defined it. This has almost the effect of a macro. The way to use this is to put a function definition in a header file with this attribute, and put another copy of the function, without @code{extern}, in a library file. The definition in the header file causes most calls to the function to be inlined. If any uses of the function remain, they refer to the single copy in the library. Note that the two definitions of the functions need not be precisely the same, although if they do not have the same effect your program may behave oddly. In C, if the function is neither @code{extern} nor @code{static}, then the function is compiled as a standalone function, as well as being inlined where possible. This is how GCC traditionally handled functions declared @code{inline}. Since ISO C99 specifies a different semantics for @code{inline}, this function attribute is provided as a transition measure and as a useful feature in its own right. This attribute is available in GCC 4.1.3 and later. It is available if either of the preprocessor macros @code{__GNUC_GNU_INLINE__} or @code{__GNUC_STDC_INLINE__} are defined. @xref{Inline,,An Inline Function is As Fast As a Macro}. In C++, this attribute does not depend on @code{extern} in any way, but it still requires the @code{inline} keyword to enable its special behavior. @item hot @cindex @code{hot} function attribute The @code{hot} attribute on a function is used to inform the compiler that the function is a hot spot of the compiled program. The function is optimized more aggressively and on many targets it is placed into a special subsection of the text section so all hot functions appear close together, improving locality. When profile feedback is available, via @option{-fprofile-use}, hot functions are automatically detected and this attribute is ignored. @item ifunc ("@var{resolver}") @cindex @code{ifunc} function attribute @cindex indirect functions @cindex functions that are dynamically resolved The @code{ifunc} attribute is used to mark a function as an indirect function using the STT_GNU_IFUNC symbol type extension to the ELF standard. This allows the resolution of the symbol value to be determined dynamically at load time, and an optimized version of the routine to be selected for the particular processor or other system characteristics determined then. To use this attribute, first define the implementation functions available, and a resolver function that returns a pointer to the selected implementation function. The implementation functions' declarations must match the API of the function being implemented. The resolver should be declared to be a function taking no arguments and returning a pointer to a function of the same type as the implementation. For example: @smallexample void *my_memcpy (void *dst, const void *src, size_t len) @{ @dots{} return dst; @} static void * (*resolve_memcpy (void))(void *, const void *, size_t) @{ return my_memcpy; // we will just always select this routine @} @end smallexample @noindent The exported header file declaring the function the user calls would contain: @smallexample extern void *memcpy (void *, const void *, size_t); @end smallexample @noindent allowing the user to call @code{memcpy} as a regular function, unaware of the actual implementation. Finally, the indirect function needs to be defined in the same translation unit as the resolver function: @smallexample void *memcpy (void *, const void *, size_t) __attribute__ ((ifunc ("resolve_memcpy"))); @end smallexample In C++, the @code{ifunc} attribute takes a string that is the mangled name of the resolver function. A C++ resolver for a non-static member function of class @code{C} should be declared to return a pointer to a non-member function taking pointer to @code{C} as the first argument, followed by the same arguments as of the implementation function. G++ checks the signatures of the two functions and issues a @option{-Wattribute-alias} warning for mismatches. To suppress a warning for the necessary cast from a pointer to the implementation member function to the type of the corresponding non-member function use the @option{-Wno-pmf-conversions} option. For example: @smallexample class S @{ private: int debug_impl (int); int optimized_impl (int); typedef int Func (S*, int); static Func* resolver (); public: int interface (int); @}; int S::debug_impl (int) @{ /* @r{@dots{}} */ @} int S::optimized_impl (int) @{ /* @r{@dots{}} */ @} S::Func* S::resolver () @{ int (S::*pimpl) (int) = getenv ("DEBUG") ? &S::debug_impl : &S::optimized_impl; // Cast triggers -Wno-pmf-conversions. return reinterpret_cast<Func*>(pimpl); @} int S::interface (int) __attribute__ ((ifunc ("_ZN1S8resolverEv"))); @end smallexample Indirect functions cannot be weak. Binutils version 2.20.1 or higher and GNU C Library version 2.11.1 are required to use this feature. @item interrupt @itemx interrupt_handler Many GCC back ends support attributes to indicate that a function is an interrupt handler, which tells the compiler to generate function entry and exit sequences that differ from those from regular functions. The exact syntax and behavior are target-specific; refer to the following subsections for details. @item leaf @cindex @code{leaf} function attribute Calls to external functions with this attribute must return to the current compilation unit only by return or by exception handling. In particular, a leaf function is not allowed to invoke callback functions passed to it from the current compilation unit, directly call functions exported by the unit, or @code{longjmp} into the unit. Leaf functions might still call functions from other compilation units and thus they are not necessarily leaf in the sense that they contain no function calls at all. The attribute is intended for library functions to improve dataflow analysis. The compiler takes the hint that any data not escaping the current compilation unit cannot be used or modified by the leaf function. For example, the @code{sin} function is a leaf function, but @code{qsort} is not. Note that leaf functions might indirectly run a signal handler defined in the current compilation unit that uses static variables. Similarly, when lazy symbol resolution is in effect, leaf functions might invoke indirect functions whose resolver function or implementation function is defined in the current compilation unit and uses static variables. There is no standard-compliant way to write such a signal handler, resolver function, or implementation function, and the best that you can do is to remove the @code{leaf} attribute or mark all such static variables @code{volatile}. Lastly, for ELF-based systems that support symbol interposition, care should be taken that functions defined in the current compilation unit do not unexpectedly interpose other symbols based on the defined standards mode and defined feature test macros; otherwise an inadvertent callback would be added. The attribute has no effect on functions defined within the current compilation unit. This is to allow easy merging of multiple compilation units into one, for example, by using the link-time optimization. For this reason the attribute is not allowed on types to annotate indirect calls. @item malloc @cindex @code{malloc} function attribute @cindex functions that behave like malloc This tells the compiler that a function is @code{malloc}-like, i.e., that the pointer @var{P} returned by the function cannot alias any other pointer valid when the function returns, and moreover no pointers to valid objects occur in any storage addressed by @var{P}. Using this attribute can improve optimization. Functions like @code{malloc} and @code{calloc} have this property because they return a pointer to uninitialized or zeroed-out storage. However, functions like @code{realloc} do not have this property, as they can return a pointer to storage containing pointers. @item no_icf @cindex @code{no_icf} function attribute This function attribute prevents a functions from being merged with another semantically equivalent function. @item no_instrument_function @cindex @code{no_instrument_function} function attribute @opindex finstrument-functions If @option{-finstrument-functions} is given, profiling function calls are generated at entry and exit of most user-compiled functions. Functions with this attribute are not so instrumented. @item no_profile_instrument_function @cindex @code{no_profile_instrument_function} function attribute The @code{no_profile_instrument_function} attribute on functions is used to inform the compiler that it should not process any profile feedback based optimization code instrumentation. @item no_reorder @cindex @code{no_reorder} function attribute Do not reorder functions or variables marked @code{no_reorder} against each other or top level assembler statements the executable. The actual order in the program will depend on the linker command line. Static variables marked like this are also not removed. This has a similar effect as the @option{-fno-toplevel-reorder} option, but only applies to the marked symbols. @item no_sanitize ("@var{sanitize_option}") @cindex @code{no_sanitize} function attribute The @code{no_sanitize} attribute on functions is used to inform the compiler that it should not do sanitization of all options mentioned in @var{sanitize_option}. A list of values acceptable by @option{-fsanitize} option can be provided. @smallexample void __attribute__ ((no_sanitize ("alignment", "object-size"))) f () @{ /* @r{Do something.} */; @} @end smallexample @item no_sanitize_address @itemx no_address_safety_analysis @cindex @code{no_sanitize_address} function attribute The @code{no_sanitize_address} attribute on functions is used to inform the compiler that it should not instrument memory accesses in the function when compiling with the @option{-fsanitize=address} option. The @code{no_address_safety_analysis} is a deprecated alias of the @code{no_sanitize_address} attribute, new code should use @code{no_sanitize_address}. @item no_sanitize_thread @cindex @code{no_sanitize_thread} function attribute The @code{no_sanitize_thread} attribute on functions is used to inform the compiler that it should not instrument memory accesses in the function when compiling with the @option{-fsanitize=thread} option. @item no_sanitize_undefined @cindex @code{no_sanitize_undefined} function attribute The @code{no_sanitize_undefined} attribute on functions is used to inform the compiler that it should not check for undefined behavior in the function when compiling with the @option{-fsanitize=undefined} option. @item no_split_stack @cindex @code{no_split_stack} function attribute @opindex fsplit-stack If @option{-fsplit-stack} is given, functions have a small prologue which decides whether to split the stack. Functions with the @code{no_split_stack} attribute do not have that prologue, and thus may run with only a small amount of stack space available. @item no_stack_limit @cindex @code{no_stack_limit} function attribute This attribute locally overrides the @option{-fstack-limit-register} and @option{-fstack-limit-symbol} command-line options; it has the effect of disabling stack limit checking in the function it applies to. @item noclone @cindex @code{noclone} function attribute This function attribute prevents a function from being considered for cloning---a mechanism that produces specialized copies of functions and which is (currently) performed by interprocedural constant propagation. @item noinline @cindex @code{noinline} function attribute This function attribute prevents a function from being considered for inlining. @c Don't enumerate the optimizations by name here; we try to be @c future-compatible with this mechanism. If the function does not have side-effects, there are optimizations other than inlining that cause function calls to be optimized away, although the function call is live. To keep such calls from being optimized away, put @smallexample asm (""); @end smallexample @noindent (@pxref{Extended Asm}) in the called function, to serve as a special side-effect. @item noipa @cindex @code{noipa} function attribute Disable interprocedural optimizations between the function with this attribute and its callers, as if the body of the function is not available when optimizing callers and the callers are unavailable when optimizing the body. This attribute implies @code{noinline}, @code{noclone} and @code{no_icf} attributes. However, this attribute is not equivalent to a combination of other attributes, because its purpose is to suppress existing and future optimizations employing interprocedural analysis, including those that do not have an attribute suitable for disabling them individually. This attribute is supported mainly for the purpose of testing the compiler. @item nonnull (@var{arg-index}, @dots{}) @cindex @code{nonnull} function attribute @cindex functions with non-null pointer arguments The @code{nonnull} attribute specifies that some function parameters should be non-null pointers. For instance, the declaration: @smallexample extern void * my_memcpy (void *dest, const void *src, size_t len) __attribute__((nonnull (1, 2))); @end smallexample @noindent causes the compiler to check that, in calls to @code{my_memcpy}, arguments @var{dest} and @var{src} are non-null. If the compiler determines that a null pointer is passed in an argument slot marked as non-null, and the @option{-Wnonnull} option is enabled, a warning is issued. The compiler may also choose to make optimizations based on the knowledge that certain function arguments will never be null. If no argument index list is given to the @code{nonnull} attribute, all pointer arguments are marked as non-null. To illustrate, the following declaration is equivalent to the previous example: @smallexample extern void * my_memcpy (void *dest, const void *src, size_t len) __attribute__((nonnull)); @end smallexample @item noplt @cindex @code{noplt} function attribute The @code{noplt} attribute is the counterpart to option @option{-fno-plt}. Calls to functions marked with this attribute in position-independent code do not use the PLT. @smallexample @group /* Externally defined function foo. */ int foo () __attribute__ ((noplt)); int main (/* @r{@dots{}} */) @{ /* @r{@dots{}} */ foo (); /* @r{@dots{}} */ @} @end group @end smallexample The @code{noplt} attribute on function @code{foo} tells the compiler to assume that the function @code{foo} is externally defined and that the call to @code{foo} must avoid the PLT in position-independent code. In position-dependent code, a few targets also convert calls to functions that are marked to not use the PLT to use the GOT instead. @item noreturn @cindex @code{noreturn} function attribute @cindex functions that never return A few standard library functions, such as @code{abort} and @code{exit}, cannot return. GCC knows this automatically. Some programs define their own functions that never return. You can declare them @code{noreturn} to tell the compiler this fact. For example, @smallexample @group void fatal () __attribute__ ((noreturn)); void fatal (/* @r{@dots{}} */) @{ /* @r{@dots{}} */ /* @r{Print error message.} */ /* @r{@dots{}} */ exit (1); @} @end group @end smallexample The @code{noreturn} keyword tells the compiler to assume that @code{fatal} cannot return. It can then optimize without regard to what would happen if @code{fatal} ever did return. This makes slightly better code. More importantly, it helps avoid spurious warnings of uninitialized variables. The @code{noreturn} keyword does not affect the exceptional path when that applies: a @code{noreturn}-marked function may still return to the caller by throwing an exception or calling @code{longjmp}. Do not assume that registers saved by the calling function are restored before calling the @code{noreturn} function. It does not make sense for a @code{noreturn} function to have a return type other than @code{void}. @item nothrow @cindex @code{nothrow} function attribute The @code{nothrow} attribute is used to inform the compiler that a function cannot throw an exception. For example, most functions in the standard C library can be guaranteed not to throw an exception with the notable exceptions of @code{qsort} and @code{bsearch} that take function pointer arguments. @item optimize @cindex @code{optimize} function attribute The @code{optimize} attribute is used to specify that a function is to be compiled with different optimization options than specified on the command line. Arguments can either be numbers or strings. Numbers are assumed to be an optimization level. Strings that begin with @code{O} are assumed to be an optimization option, while other options are assumed to be used with a @code{-f} prefix. You can also use the @samp{#pragma GCC optimize} pragma to set the optimization options that affect more than one function. @xref{Function Specific Option Pragmas}, for details about the @samp{#pragma GCC optimize} pragma. This attribute should be used for debugging purposes only. It is not suitable in production code. @item patchable_function_entry @cindex @code{patchable_function_entry} function attribute @cindex extra NOP instructions at the function entry point In case the target's text segment can be made writable at run time by any means, padding the function entry with a number of NOPs can be used to provide a universal tool for instrumentation. The @code{patchable_function_entry} function attribute can be used to change the number of NOPs to any desired value. The two-value syntax is the same as for the command-line switch @option{-fpatchable-function-entry=N,M}, generating @var{N} NOPs, with the function entry point before the @var{M}th NOP instruction. @var{M} defaults to 0 if omitted e.g. function entry point is before the first NOP. If patchable function entries are enabled globally using the command-line option @option{-fpatchable-function-entry=N,M}, then you must disable instrumentation on all functions that are part of the instrumentation framework with the attribute @code{patchable_function_entry (0)} to prevent recursion. @item pure @cindex @code{pure} function attribute @cindex functions that have no side effects Many functions have no effects except the return value and their return value depends only on the parameters and/or global variables. Such a function can be subject to common subexpression elimination and loop optimization just as an arithmetic operator would be. These functions should be declared with the attribute @code{pure}. For example, @smallexample int square (int) __attribute__ ((pure)); @end smallexample @noindent says that the hypothetical function @code{square} is safe to call fewer times than the program says. Some common examples of pure functions are @code{strlen} or @code{memcmp}. Interesting non-pure functions are functions with infinite loops or those depending on volatile memory or other system resource, that may change between two consecutive calls (such as @code{feof} in a multithreading environment). @item returns_nonnull @cindex @code{returns_nonnull} function attribute The @code{returns_nonnull} attribute specifies that the function return value should be a non-null pointer. For instance, the declaration: @smallexample extern void * mymalloc (size_t len) __attribute__((returns_nonnull)); @end smallexample @noindent lets the compiler optimize callers based on the knowledge that the return value will never be null. @item returns_twice @cindex @code{returns_twice} function attribute @cindex functions that return more than once The @code{returns_twice} attribute tells the compiler that a function may return more than one time. The compiler ensures that all registers are dead before calling such a function and emits a warning about the variables that may be clobbered after the second return from the function. Examples of such functions are @code{setjmp} and @code{vfork}. The @code{longjmp}-like counterpart of such function, if any, might need to be marked with the @code{noreturn} attribute. @item section ("@var{section-name}") @cindex @code{section} function attribute @cindex functions in arbitrary sections Normally, the compiler places the code it generates in the @code{text} section. Sometimes, however, you need additional sections, or you need certain particular functions to appear in special sections. The @code{section} attribute specifies that a function lives in a particular section. For example, the declaration: @smallexample extern void foobar (void) __attribute__ ((section ("bar"))); @end smallexample @noindent puts the function @code{foobar} in the @code{bar} section. Some file formats do not support arbitrary sections so the @code{section} attribute is not available on all platforms. If you need to map the entire contents of a module to a particular section, consider using the facilities of the linker instead. @item sentinel @cindex @code{sentinel} function attribute This function attribute ensures that a parameter in a function call is an explicit @code{NULL}. The attribute is only valid on variadic functions. By default, the sentinel is located at position zero, the last parameter of the function call. If an optional integer position argument P is supplied to the attribute, the sentinel must be located at position P counting backwards from the end of the argument list. @smallexample __attribute__ ((sentinel)) is equivalent to __attribute__ ((sentinel(0))) @end smallexample The attribute is automatically set with a position of 0 for the built-in functions @code{execl} and @code{execlp}. The built-in function @code{execle} has the attribute set with a position of 1. A valid @code{NULL} in this context is defined as zero with any pointer type. If your system defines the @code{NULL} macro with an integer type then you need to add an explicit cast. GCC replaces @code{stddef.h} with a copy that redefines NULL appropriately. The warnings for missing or incorrect sentinels are enabled with @option{-Wformat}. @item simd @itemx simd("@var{mask}") @cindex @code{simd} function attribute This attribute enables creation of one or more function versions that can process multiple arguments using SIMD instructions from a single invocation. Specifying this attribute allows compiler to assume that such versions are available at link time (provided in the same or another translation unit). Generated versions are target-dependent and described in the corresponding Vector ABI document. For x86_64 target this document can be found @w{@uref{https://sourceware.org/glibc/wiki/libmvec?action=AttachFile&do=view&target=VectorABI.txt,here}}. The optional argument @var{mask} may have the value @code{notinbranch} or @code{inbranch}, and instructs the compiler to generate non-masked or masked clones correspondingly. By default, all clones are generated. The attribute should not be used together with Cilk Plus @code{vector} attribute on the same function. If the attribute is specified and @code{#pragma omp declare simd} is present on a declaration and the @option{-fopenmp} or @option{-fopenmp-simd} switch is specified, then the attribute is ignored. @item stack_protect @cindex @code{stack_protect} function attribute This attribute adds stack protection code to the function if flags @option{-fstack-protector}, @option{-fstack-protector-strong} or @option{-fstack-protector-explicit} are set. @item target (@var{options}) @cindex @code{target} function attribute Multiple target back ends implement the @code{target} attribute to specify that a function is to be compiled with different target options than specified on the command line. This can be used for instance to have functions compiled with a different ISA (instruction set architecture) than the default. You can also use the @samp{#pragma GCC target} pragma to set more than one function to be compiled with specific target options. @xref{Function Specific Option Pragmas}, for details about the @samp{#pragma GCC target} pragma. For instance, on an x86, you could declare one function with the @code{target("sse4.1,arch=core2")} attribute and another with @code{target("sse4a,arch=amdfam10")}. This is equivalent to compiling the first function with @option{-msse4.1} and @option{-march=core2} options, and the second function with @option{-msse4a} and @option{-march=amdfam10} options. It is up to you to make sure that a function is only invoked on a machine that supports the particular ISA it is compiled for (for example by using @code{cpuid} on x86 to determine what feature bits and architecture family are used). @smallexample int core2_func (void) __attribute__ ((__target__ ("arch=core2"))); int sse3_func (void) __attribute__ ((__target__ ("sse3"))); @end smallexample You can either use multiple strings separated by commas to specify multiple options, or separate the options with a comma (@samp{,}) within a single string. The options supported are specific to each target; refer to @ref{x86 Function Attributes}, @ref{PowerPC Function Attributes}, @ref{ARM Function Attributes}, @ref{AArch64 Function Attributes}, @ref{Nios II Function Attributes}, and @ref{S/390 Function Attributes} for details. @item target_clones (@var{options}) @cindex @code{target_clones} function attribute The @code{target_clones} attribute is used to specify that a function be cloned into multiple versions compiled with different target options than specified on the command line. The supported options and restrictions are the same as for @code{target} attribute. For instance, on an x86, you could compile a function with @code{target_clones("sse4.1,avx")}. GCC creates two function clones, one compiled with @option{-msse4.1} and another with @option{-mavx}. On a PowerPC, you can compile a function with @code{target_clones("cpu=power9,default")}. GCC will create two function clones, one compiled with @option{-mcpu=power9} and another with the default options. GCC must be configured to use GLIBC 2.23 or newer in order to use the @code{target_clones} attribute. It also creates a resolver function (see the @code{ifunc} attribute above) that dynamically selects a clone suitable for current architecture. The resolver is created only if there is a usage of a function with @code{target_clones} attribute. @item unused @cindex @code{unused} function attribute This attribute, attached to a function, means that the function is meant to be possibly unused. GCC does not produce a warning for this function. @item used @cindex @code{used} function attribute This attribute, attached to a function, means that code must be emitted for the function even if it appears that the function is not referenced. This is useful, for example, when the function is referenced only in inline assembly. When applied to a member function of a C++ class template, the attribute also means that the function is instantiated if the class itself is instantiated. @item visibility ("@var{visibility_type}") @cindex @code{visibility} function attribute This attribute affects the linkage of the declaration to which it is attached. It can be applied to variables (@pxref{Common Variable Attributes}) and types (@pxref{Common Type Attributes}) as well as functions. There are four supported @var{visibility_type} values: default, hidden, protected or internal visibility. @smallexample void __attribute__ ((visibility ("protected"))) f () @{ /* @r{Do something.} */; @} int i __attribute__ ((visibility ("hidden"))); @end smallexample The possible values of @var{visibility_type} correspond to the visibility settings in the ELF gABI. @table @code @c keep this list of visibilities in alphabetical order. @item default Default visibility is the normal case for the object file format. This value is available for the visibility attribute to override other options that may change the assumed visibility of entities. On ELF, default visibility means that the declaration is visible to other modules and, in shared libraries, means that the declared entity may be overridden. On Darwin, default visibility means that the declaration is visible to other modules. Default visibility corresponds to ``external linkage'' in the language. @item hidden Hidden visibility indicates that the entity declared has a new form of linkage, which we call ``hidden linkage''. Two declarations of an object with hidden linkage refer to the same object if they are in the same shared object. @item internal Internal visibility is like hidden visibility, but with additional processor specific semantics. Unless otherwise specified by the psABI, GCC defines internal visibility to mean that a function is @emph{never} called from another module. Compare this with hidden functions which, while they cannot be referenced directly by other modules, can be referenced indirectly via function pointers. By indicating that a function cannot be called from outside the module, GCC may for instance omit the load of a PIC register since it is known that the calling function loaded the correct value. @item protected Protected visibility is like default visibility except that it indicates that references within the defining module bind to the definition in that module. That is, the declared entity cannot be overridden by another module. @end table All visibilities are supported on many, but not all, ELF targets (supported when the assembler supports the @samp{.visibility} pseudo-op). Default visibility is supported everywhere. Hidden visibility is supported on Darwin targets. The visibility attribute should be applied only to declarations that would otherwise have external linkage. The attribute should be applied consistently, so that the same entity should not be declared with different settings of the attribute. In C++, the visibility attribute applies to types as well as functions and objects, because in C++ types have linkage. A class must not have greater visibility than its non-static data member types and bases, and class members default to the visibility of their class. Also, a declaration without explicit visibility is limited to the visibility of its type. In C++, you can mark member functions and static member variables of a class with the visibility attribute. This is useful if you know a particular method or static member variable should only be used from one shared object; then you can mark it hidden while the rest of the class has default visibility. Care must be taken to avoid breaking the One Definition Rule; for example, it is usually not useful to mark an inline method as hidden without marking the whole class as hidden. A C++ namespace declaration can also have the visibility attribute. @smallexample namespace nspace1 __attribute__ ((visibility ("protected"))) @{ /* @r{Do something.} */; @} @end smallexample This attribute applies only to the particular namespace body, not to other definitions of the same namespace; it is equivalent to using @samp{#pragma GCC visibility} before and after the namespace definition (@pxref{Visibility Pragmas}). In C++, if a template argument has limited visibility, this restriction is implicitly propagated to the template instantiation. Otherwise, template instantiations and specializations default to the visibility of their template. If both the template and enclosing class have explicit visibility, the visibility from the template is used. @item warn_unused_result @cindex @code{warn_unused_result} function attribute The @code{warn_unused_result} attribute causes a warning to be emitted if a caller of the function with this attribute does not use its return value. This is useful for functions where not checking the result is either a security problem or always a bug, such as @code{realloc}. @smallexample int fn () __attribute__ ((warn_unused_result)); int foo () @{ if (fn () < 0) return -1; fn (); return 0; @} @end smallexample @noindent results in warning on line 5. @item weak @cindex @code{weak} function attribute The @code{weak} attribute causes the declaration to be emitted as a weak symbol rather than a global. This is primarily useful in defining library functions that can be overridden in user code, though it can also be used with non-function declarations. Weak symbols are supported for ELF targets, and also for a.out targets when using the GNU assembler and linker. @item weakref @itemx weakref ("@var{target}") @cindex @code{weakref} function attribute The @code{weakref} attribute marks a declaration as a weak reference. Without arguments, it should be accompanied by an @code{alias} attribute naming the target symbol. Optionally, the @var{target} may be given as an argument to @code{weakref} itself. In either case, @code{weakref} implicitly marks the declaration as @code{weak}. Without a @var{target}, given as an argument to @code{weakref} or to @code{alias}, @code{weakref} is equivalent to @code{weak}. @smallexample static int x() __attribute__ ((weakref ("y"))); /* is equivalent to... */ static int x() __attribute__ ((weak, weakref, alias ("y"))); /* and to... */ static int x() __attribute__ ((weakref)); static int x() __attribute__ ((alias ("y"))); @end smallexample A weak reference is an alias that does not by itself require a definition to be given for the target symbol. If the target symbol is only referenced through weak references, then it becomes a @code{weak} undefined symbol. If it is directly referenced, however, then such strong references prevail, and a definition is required for the symbol, not necessarily in the same translation unit. The effect is equivalent to moving all references to the alias to a separate translation unit, renaming the alias to the aliased symbol, declaring it as weak, compiling the two separate translation units and performing a reloadable link on them. At present, a declaration to which @code{weakref} is attached can only be @code{static}. @end table @c This is the end of the target-independent attribute table @node AArch64 Function Attributes @subsection AArch64 Function Attributes The following target-specific function attributes are available for the AArch64 target. For the most part, these options mirror the behavior of similar command-line options (@pxref{AArch64 Options}), but on a per-function basis. @table @code @item general-regs-only @cindex @code{general-regs-only} function attribute, AArch64 Indicates that no floating-point or Advanced SIMD registers should be used when generating code for this function. If the function explicitly uses floating-point code, then the compiler gives an error. This is the same behavior as that of the command-line option @option{-mgeneral-regs-only}. @item fix-cortex-a53-835769 @cindex @code{fix-cortex-a53-835769} function attribute, AArch64 Indicates that the workaround for the Cortex-A53 erratum 835769 should be applied to this function. To explicitly disable the workaround for this function specify the negated form: @code{no-fix-cortex-a53-835769}. This corresponds to the behavior of the command line options @option{-mfix-cortex-a53-835769} and @option{-mno-fix-cortex-a53-835769}. @item cmodel= @cindex @code{cmodel=} function attribute, AArch64 Indicates that code should be generated for a particular code model for this function. The behavior and permissible arguments are the same as for the command line option @option{-mcmodel=}. @item strict-align @cindex @code{strict-align} function attribute, AArch64 Indicates that the compiler should not assume that unaligned memory references are handled by the system. The behavior is the same as for the command-line option @option{-mstrict-align}. @item omit-leaf-frame-pointer @cindex @code{omit-leaf-frame-pointer} function attribute, AArch64 Indicates that the frame pointer should be omitted for a leaf function call. To keep the frame pointer, the inverse attribute @code{no-omit-leaf-frame-pointer} can be specified. These attributes have the same behavior as the command-line options @option{-momit-leaf-frame-pointer} and @option{-mno-omit-leaf-frame-pointer}. @item tls-dialect= @cindex @code{tls-dialect=} function attribute, AArch64 Specifies the TLS dialect to use for this function. The behavior and permissible arguments are the same as for the command-line option @option{-mtls-dialect=}. @item arch= @cindex @code{arch=} function attribute, AArch64 Specifies the architecture version and architectural extensions to use for this function. The behavior and permissible arguments are the same as for the @option{-march=} command-line option. @item tune= @cindex @code{tune=} function attribute, AArch64 Specifies the core for which to tune the performance of this function. The behavior and permissible arguments are the same as for the @option{-mtune=} command-line option. @item cpu= @cindex @code{cpu=} function attribute, AArch64 Specifies the core for which to tune the performance of this function and also whose architectural features to use. The behavior and valid arguments are the same as for the @option{-mcpu=} command-line option. @item sign-return-address @cindex @code{sign-return-address} function attribute, AArch64 Select the function scope on which return address signing will be applied. The behavior and permissible arguments are the same as for the command-line option @option{-msign-return-address=}. The default value is @code{none}. @end table The above target attributes can be specified as follows: @smallexample __attribute__((target("@var{attr-string}"))) int f (int a) @{ return a + 5; @} @end smallexample where @code{@var{attr-string}} is one of the attribute strings specified above. Additionally, the architectural extension string may be specified on its own. This can be used to turn on and off particular architectural extensions without having to specify a particular architecture version or core. Example: @smallexample __attribute__((target("+crc+nocrypto"))) int foo (int a) @{ return a + 5; @} @end smallexample In this example @code{target("+crc+nocrypto")} enables the @code{crc} extension and disables the @code{crypto} extension for the function @code{foo} without modifying an existing @option{-march=} or @option{-mcpu} option. Multiple target function attributes can be specified by separating them with a comma. For example: @smallexample __attribute__((target("arch=armv8-a+crc+crypto,tune=cortex-a53"))) int foo (int a) @{ return a + 5; @} @end smallexample is valid and compiles function @code{foo} for ARMv8-A with @code{crc} and @code{crypto} extensions and tunes it for @code{cortex-a53}. @subsubsection Inlining rules Specifying target attributes on individual functions or performing link-time optimization across translation units compiled with different target options can affect function inlining rules: In particular, a caller function can inline a callee function only if the architectural features available to the callee are a subset of the features available to the caller. For example: A function @code{foo} compiled with @option{-march=armv8-a+crc}, or tagged with the equivalent @code{arch=armv8-a+crc} attribute, can inline a function @code{bar} compiled with @option{-march=armv8-a+nocrc} because the all the architectural features that function @code{bar} requires are available to function @code{foo}. Conversely, function @code{bar} cannot inline function @code{foo}. Additionally inlining a function compiled with @option{-mstrict-align} into a function compiled without @code{-mstrict-align} is not allowed. However, inlining a function compiled without @option{-mstrict-align} into a function compiled with @option{-mstrict-align} is allowed. Note that CPU tuning options and attributes such as the @option{-mcpu=}, @option{-mtune=} do not inhibit inlining unless the CPU specified by the @option{-mcpu=} option or the @code{cpu=} attribute conflicts with the architectural feature rules specified above. @node ARC Function Attributes @subsection ARC Function Attributes These function attributes are supported by the ARC back end: @table @code @item interrupt @cindex @code{interrupt} function attribute, ARC Use this attribute to indicate that the specified function is an interrupt handler. The compiler generates function entry and exit sequences suitable for use in an interrupt handler when this attribute is present. On the ARC, you must specify the kind of interrupt to be handled in a parameter to the interrupt attribute like this: @smallexample void f () __attribute__ ((interrupt ("ilink1"))); @end smallexample Permissible values for this parameter are: @w{@code{ilink1}} and @w{@code{ilink2}}. @item long_call @itemx medium_call @itemx short_call @cindex @code{long_call} function attribute, ARC @cindex @code{medium_call} function attribute, ARC @cindex @code{short_call} function attribute, ARC @cindex indirect calls, ARC These attributes specify how a particular function is called. These attributes override the @option{-mlong-calls} and @option{-mmedium-calls} (@pxref{ARC Options}) command-line switches and @code{#pragma long_calls} settings. For ARC, a function marked with the @code{long_call} attribute is always called using register-indirect jump-and-link instructions, thereby enabling the called function to be placed anywhere within the 32-bit address space. A function marked with the @code{medium_call} attribute will always be close enough to be called with an unconditional branch-and-link instruction, which has a 25-bit offset from the call site. A function marked with the @code{short_call} attribute will always be close enough to be called with a conditional branch-and-link instruction, which has a 21-bit offset from the call site. @end table @node ARM Function Attributes @subsection ARM Function Attributes These function attributes are supported for ARM targets: @table @code @item interrupt @cindex @code{interrupt} function attribute, ARM Use this attribute to indicate that the specified function is an interrupt handler. The compiler generates function entry and exit sequences suitable for use in an interrupt handler when this attribute is present. You can specify the kind of interrupt to be handled by adding an optional parameter to the interrupt attribute like this: @smallexample void f () __attribute__ ((interrupt ("IRQ"))); @end smallexample @noindent Permissible values for this parameter are: @code{IRQ}, @code{FIQ}, @code{SWI}, @code{ABORT} and @code{UNDEF}. On ARMv7-M the interrupt type is ignored, and the attribute means the function may be called with a word-aligned stack pointer. @item isr @cindex @code{isr} function attribute, ARM Use this attribute on ARM to write Interrupt Service Routines. This is an alias to the @code{interrupt} attribute above. @item long_call @itemx short_call @cindex @code{long_call} function attribute, ARM @cindex @code{short_call} function attribute, ARM @cindex indirect calls, ARM These attributes specify how a particular function is called. These attributes override the @option{-mlong-calls} (@pxref{ARM Options}) command-line switch and @code{#pragma long_calls} settings. For ARM, the @code{long_call} attribute indicates that the function might be far away from the call site and require a different (more expensive) calling sequence. The @code{short_call} attribute always places the offset to the function from the call site into the @samp{BL} instruction directly. @item naked @cindex @code{naked} function attribute, ARM This attribute allows the compiler to construct the requisite function declaration, while allowing the body of the function to be assembly code. The specified function will not have prologue/epilogue sequences generated by the compiler. Only basic @code{asm} statements can safely be included in naked functions (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of basic @code{asm} and C code may appear to work, they cannot be depended upon to work reliably and are not supported. @item pcs @cindex @code{pcs} function attribute, ARM The @code{pcs} attribute can be used to control the calling convention used for a function on ARM. The attribute takes an argument that specifies the calling convention to use. When compiling using the AAPCS ABI (or a variant of it) then valid values for the argument are @code{"aapcs"} and @code{"aapcs-vfp"}. In order to use a variant other than @code{"aapcs"} then the compiler must be permitted to use the appropriate co-processor registers (i.e., the VFP registers must be available in order to use @code{"aapcs-vfp"}). For example, @smallexample /* Argument passed in r0, and result returned in r0+r1. */ double f2d (float) __attribute__((pcs("aapcs"))); @end smallexample Variadic functions always use the @code{"aapcs"} calling convention and the compiler rejects attempts to specify an alternative. @item target (@var{options}) @cindex @code{target} function attribute As discussed in @ref{Common Function Attributes}, this attribute allows specification of target-specific compilation options. On ARM, the following options are allowed: @table @samp @item thumb @cindex @code{target("thumb")} function attribute, ARM Force code generation in the Thumb (T16/T32) ISA, depending on the architecture level. @item arm @cindex @code{target("arm")} function attribute, ARM Force code generation in the ARM (A32) ISA. Functions from different modes can be inlined in the caller's mode. @item fpu= @cindex @code{target("fpu=")} function attribute, ARM Specifies the fpu for which to tune the performance of this function. The behavior and permissible arguments are the same as for the @option{-mfpu=} command-line option. @end table @end table @node AVR Function Attributes @subsection AVR Function Attributes These function attributes are supported by the AVR back end: @table @code @item interrupt @cindex @code{interrupt} function attribute, AVR Use this attribute to indicate that the specified function is an interrupt handler. The compiler generates function entry and exit sequences suitable for use in an interrupt handler when this attribute is present. On the AVR, the hardware globally disables interrupts when an interrupt is executed. The first instruction of an interrupt handler declared with this attribute is a @code{SEI} instruction to re-enable interrupts. See also the @code{signal} function attribute that does not insert a @code{SEI} instruction. If both @code{signal} and @code{interrupt} are specified for the same function, @code{signal} is silently ignored. @item naked @cindex @code{naked} function attribute, AVR This attribute allows the compiler to construct the requisite function declaration, while allowing the body of the function to be assembly code. The specified function will not have prologue/epilogue sequences generated by the compiler. Only basic @code{asm} statements can safely be included in naked functions (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of basic @code{asm} and C code may appear to work, they cannot be depended upon to work reliably and are not supported. @item no_gccisr @cindex @code{no_gccisr} function attribute, AVR Do not use @code{__gcc_isr} pseudo instructions in a function with the @code{interrupt} or @code{signal} attribute aka. interrupt service routine (ISR). Use this attribute if the preamble of the ISR prologue should always read @example push __zero_reg__ push __tmp_reg__ in __tmp_reg__, __SREG__ push __tmp_reg__ clr __zero_reg__ @end example and accordingly for the postamble of the epilogue --- no matter whether the mentioned registers are actually used in the ISR or not. Situations where you might want to use this attribute include: @itemize @bullet @item Code that (effectively) clobbers bits of @code{SREG} other than the @code{I}-flag by writing to the memory location of @code{SREG}. @item Code that uses inline assembler to jump to a different function which expects (parts of) the prologue code as outlined above to be present. @end itemize To disable @code{__gcc_isr} generation for the whole compilation unit, there is option @option{-mno-gas-isr-prologues}, @pxref{AVR Options}. @item OS_main @itemx OS_task @cindex @code{OS_main} function attribute, AVR @cindex @code{OS_task} function attribute, AVR On AVR, functions with the @code{OS_main} or @code{OS_task} attribute do not save/restore any call-saved register in their prologue/epilogue. The @code{OS_main} attribute can be used when there @emph{is guarantee} that interrupts are disabled at the time when the function is entered. This saves resources when the stack pointer has to be changed to set up a frame for local variables. The @code{OS_task} attribute can be used when there is @emph{no guarantee} that interrupts are disabled at that time when the function is entered like for, e@.g@. task functions in a multi-threading operating system. In that case, changing the stack pointer register is guarded by save/clear/restore of the global interrupt enable flag. The differences to the @code{naked} function attribute are: @itemize @bullet @item @code{naked} functions do not have a return instruction whereas @code{OS_main} and @code{OS_task} functions have a @code{RET} or @code{RETI} return instruction. @item @code{naked} functions do not set up a frame for local variables or a frame pointer whereas @code{OS_main} and @code{OS_task} do this as needed. @end itemize @item signal @cindex @code{signal} function attribute, AVR Use this attribute on the AVR to indicate that the specified function is an interrupt handler. The compiler generates function entry and exit sequences suitable for use in an interrupt handler when this attribute is present. See also the @code{interrupt} function attribute. The AVR hardware globally disables interrupts when an interrupt is executed. Interrupt handler functions defined with the @code{signal} attribute do not re-enable interrupts. It is save to enable interrupts in a @code{signal} handler. This ``save'' only applies to the code generated by the compiler and not to the IRQ layout of the application which is responsibility of the application. If both @code{signal} and @code{interrupt} are specified for the same function, @code{signal} is silently ignored. @end table @node Blackfin Function Attributes @subsection Blackfin Function Attributes These function attributes are supported by the Blackfin back end: @table @code @item exception_handler @cindex @code{exception_handler} function attribute @cindex exception handler functions, Blackfin Use this attribute on the Blackfin to indicate that the specified function is an exception handler. The compiler generates function entry and exit sequences suitable for use in an exception handler when this attribute is present. @item interrupt_handler @cindex @code{interrupt_handler} function attribute, Blackfin Use this attribute to indicate that the specified function is an interrupt handler. The compiler generates function entry and exit sequences suitable for use in an interrupt handler when this attribute is present. @item kspisusp @cindex @code{kspisusp} function attribute, Blackfin @cindex User stack pointer in interrupts on the Blackfin When used together with @code{interrupt_handler}, @code{exception_handler} or @code{nmi_handler}, code is generated to load the stack pointer from the USP register in the function prologue. @item l1_text @cindex @code{l1_text} function attribute, Blackfin This attribute specifies a function to be placed into L1 Instruction SRAM@. The function is put into a specific section named @code{.l1.text}. With @option{-mfdpic}, function calls with a such function as the callee or caller uses inlined PLT. @item l2 @cindex @code{l2} function attribute, Blackfin This attribute specifies a function to be placed into L2 SRAM. The function is put into a specific section named @code{.l2.text}. With @option{-mfdpic}, callers of such functions use an inlined PLT. @item longcall @itemx shortcall @cindex indirect calls, Blackfin @cindex @code{longcall} function attribute, Blackfin @cindex @code{shortcall} function attribute, Blackfin The @code{longcall} attribute indicates that the function might be far away from the call site and require a different (more expensive) calling sequence. The @code{shortcall} attribute indicates that the function is always close enough for the shorter calling sequence to be used. These attributes override the @option{-mlongcall} switch. @item nesting @cindex @code{nesting} function attribute, Blackfin @cindex Allow nesting in an interrupt handler on the Blackfin processor Use this attribute together with @code{interrupt_handler}, @code{exception_handler} or @code{nmi_handler} to indicate that the function entry code should enable nested interrupts or exceptions. @item nmi_handler @cindex @code{nmi_handler} function attribute, Blackfin @cindex NMI handler functions on the Blackfin processor Use this attribute on the Blackfin to indicate that the specified function is an NMI handler. The compiler generates function entry and exit sequences suitable for use in an NMI handler when this attribute is present. @item saveall @cindex @code{saveall} function attribute, Blackfin @cindex save all registers on the Blackfin Use this attribute to indicate that all registers except the stack pointer should be saved in the prologue regardless of whether they are used or not. @end table @node CR16 Function Attributes @subsection CR16 Function Attributes These function attributes are supported by the CR16 back end: @table @code @item interrupt @cindex @code{interrupt} function attribute, CR16 Use this attribute to indicate that the specified function is an interrupt handler. The compiler generates function entry and exit sequences suitable for use in an interrupt handler when this attribute is present. @end table @node Epiphany Function Attributes @subsection Epiphany Function Attributes These function attributes are supported by the Epiphany back end: @table @code @item disinterrupt @cindex @code{disinterrupt} function attribute, Epiphany This attribute causes the compiler to emit instructions to disable interrupts for the duration of the given function. @item forwarder_section @cindex @code{forwarder_section} function attribute, Epiphany This attribute modifies the behavior of an interrupt handler. The interrupt handler may be in external memory which cannot be reached by a branch instruction, so generate a local memory trampoline to transfer control. The single parameter identifies the section where the trampoline is placed. @item interrupt @cindex @code{interrupt} function attribute, Epiphany Use this attribute to indicate that the specified function is an interrupt handler. The compiler generates function entry and exit sequences suitable for use in an interrupt handler when this attribute is present. It may also generate a special section with code to initialize the interrupt vector table. On Epiphany targets one or more optional parameters can be added like this: @smallexample void __attribute__ ((interrupt ("dma0, dma1"))) universal_dma_handler (); @end smallexample Permissible values for these parameters are: @w{@code{reset}}, @w{@code{software_exception}}, @w{@code{page_miss}}, @w{@code{timer0}}, @w{@code{timer1}}, @w{@code{message}}, @w{@code{dma0}}, @w{@code{dma1}}, @w{@code{wand}} and @w{@code{swi}}. Multiple parameters indicate that multiple entries in the interrupt vector table should be initialized for this function, i.e.@: for each parameter @w{@var{name}}, a jump to the function is emitted in the section @w{ivt_entry_@var{name}}. The parameter(s) may be omitted entirely, in which case no interrupt vector table entry is provided. Note that interrupts are enabled inside the function unless the @code{disinterrupt} attribute is also specified. The following examples are all valid uses of these attributes on Epiphany targets: @smallexample void __attribute__ ((interrupt)) universal_handler (); void __attribute__ ((interrupt ("dma1"))) dma1_handler (); void __attribute__ ((interrupt ("dma0, dma1"))) universal_dma_handler (); void __attribute__ ((interrupt ("timer0"), disinterrupt)) fast_timer_handler (); void __attribute__ ((interrupt ("dma0, dma1"), forwarder_section ("tramp"))) external_dma_handler (); @end smallexample @item long_call @itemx short_call @cindex @code{long_call} function attribute, Epiphany @cindex @code{short_call} function attribute, Epiphany @cindex indirect calls, Epiphany These attributes specify how a particular function is called. These attributes override the @option{-mlong-calls} (@pxref{Adapteva Epiphany Options}) command-line switch and @code{#pragma long_calls} settings. @end table @node H8/300 Function Attributes @subsection H8/300 Function Attributes These function attributes are available for H8/300 targets: @table @code @item function_vector @cindex @code{function_vector} function attribute, H8/300 Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified function should be called through the function vector. Calling a function through the function vector reduces code size; however, the function vector has a limited size (maximum 128 entries on the H8/300 and 64 entries on the H8/300H and H8S) and shares space with the interrupt vector. @item interrupt_handler @cindex @code{interrupt_handler} function attribute, H8/300 Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified function is an interrupt handler. The compiler generates function entry and exit sequences suitable for use in an interrupt handler when this attribute is present. @item saveall @cindex @code{saveall} function attribute, H8/300 @cindex save all registers on the H8/300, H8/300H, and H8S Use this attribute on the H8/300, H8/300H, and H8S to indicate that all registers except the stack pointer should be saved in the prologue regardless of whether they are used or not. @end table @node IA-64 Function Attributes @subsection IA-64 Function Attributes These function attributes are supported on IA-64 targets: @table @code @item syscall_linkage @cindex @code{syscall_linkage} function attribute, IA-64 This attribute is used to modify the IA-64 calling convention by marking all input registers as live at all function exits. This makes it possible to restart a system call after an interrupt without having to save/restore the input registers. This also prevents kernel data from leaking into application code. @item version_id @cindex @code{version_id} function attribute, IA-64 This IA-64 HP-UX attribute, attached to a global variable or function, renames a symbol to contain a version string, thus allowing for function level versioning. HP-UX system header files may use function level versioning for some system calls. @smallexample extern int foo () __attribute__((version_id ("20040821"))); @end smallexample @noindent Calls to @code{foo} are mapped to calls to @code{foo@{20040821@}}. @end table @node M32C Function Attributes @subsection M32C Function Attributes These function attributes are supported by the M32C back end: @table @code @item bank_switch @cindex @code{bank_switch} function attribute, M32C When added to an interrupt handler with the M32C port, causes the prologue and epilogue to use bank switching to preserve the registers rather than saving them on the stack. @item fast_interrupt @cindex @code{fast_interrupt} function attribute, M32C Use this attribute on the M32C port to indicate that the specified function is a fast interrupt handler. This is just like the @code{interrupt} attribute, except that @code{freit} is used to return instead of @code{reit}. @item function_vector @cindex @code{function_vector} function attribute, M16C/M32C On M16C/M32C targets, the @code{function_vector} attribute declares a special page subroutine call function. Use of this attribute reduces the code size by 2 bytes for each call generated to the subroutine. The argument to the attribute is the vector number entry from the special page vector table which contains the 16 low-order bits of the subroutine's entry address. Each vector table has special page number (18 to 255) that is used in @code{jsrs} instructions. Jump addresses of the routines are generated by adding 0x0F0000 (in case of M16C targets) or 0xFF0000 (in case of M32C targets), to the 2-byte addresses set in the vector table. Therefore you need to ensure that all the special page vector routines should get mapped within the address range 0x0F0000 to 0x0FFFFF (for M16C) and 0xFF0000 to 0xFFFFFF (for M32C). In the following example 2 bytes are saved for each call to function @code{foo}. @smallexample void foo (void) __attribute__((function_vector(0x18))); void foo (void) @{ @} void bar (void) @{ foo(); @} @end smallexample If functions are defined in one file and are called in another file, then be sure to write this declaration in both files. This attribute is ignored for R8C target. @item interrupt @cindex @code{interrupt} function attribute, M32C Use this attribute to indicate that the specified function is an interrupt handler. The compiler generates function entry and exit sequences suitable for use in an interrupt handler when this attribute is present. @end table @node M32R/D Function Attributes @subsection M32R/D Function Attributes These function attributes are supported by the M32R/D back end: @table @code @item interrupt @cindex @code{interrupt} function attribute, M32R/D Use this attribute to indicate that the specified function is an interrupt handler. The compiler generates function entry and exit sequences suitable for use in an interrupt handler when this attribute is present. @item model (@var{model-name}) @cindex @code{model} function attribute, M32R/D @cindex function addressability on the M32R/D On the M32R/D, use this attribute to set the addressability of an object, and of the code generated for a function. The identifier @var{model-name} is one of @code{small}, @code{medium}, or @code{large}, representing each of the code models. Small model objects live in the lower 16MB of memory (so that their addresses can be loaded with the @code{ld24} instruction), and are callable with the @code{bl} instruction. Medium model objects may live anywhere in the 32-bit address space (the compiler generates @code{seth/add3} instructions to load their addresses), and are callable with the @code{bl} instruction. Large model objects may live anywhere in the 32-bit address space (the compiler generates @code{seth/add3} instructions to load their addresses), and may not be reachable with the @code{bl} instruction (the compiler generates the much slower @code{seth/add3/jl} instruction sequence). @end table @node m68k Function Attributes @subsection m68k Function Attributes These function attributes are supported by the m68k back end: @table @code @item interrupt @itemx interrupt_handler @cindex @code{interrupt} function attribute, m68k @cindex @code{interrupt_handler} function attribute, m68k Use this attribute to indicate that the specified function is an interrupt handler. The compiler generates function entry and exit sequences suitable for use in an interrupt handler when this attribute is present. Either name may be used. @item interrupt_thread @cindex @code{interrupt_thread} function attribute, fido Use this attribute on fido, a subarchitecture of the m68k, to indicate that the specified function is an interrupt handler that is designed to run as a thread. The compiler omits generate prologue/epilogue sequences and replaces the return instruction with a @code{sleep} instruction. This attribute is available only on fido. @end table @node MCORE Function Attributes @subsection MCORE Function Attributes These function attributes are supported by the MCORE back end: @table @code @item naked @cindex @code{naked} function attribute, MCORE This attribute allows the compiler to construct the requisite function declaration, while allowing the body of the function to be assembly code. The specified function will not have prologue/epilogue sequences generated by the compiler. Only basic @code{asm} statements can safely be included in naked functions (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of basic @code{asm} and C code may appear to work, they cannot be depended upon to work reliably and are not supported. @end table @node MeP Function Attributes @subsection MeP Function Attributes These function attributes are supported by the MeP back end: @table @code @item disinterrupt @cindex @code{disinterrupt} function attribute, MeP On MeP targets, this attribute causes the compiler to emit instructions to disable interrupts for the duration of the given function. @item interrupt @cindex @code{interrupt} function attribute, MeP Use this attribute to indicate that the specified function is an interrupt handler. The compiler generates function entry and exit sequences suitable for use in an interrupt handler when this attribute is present. @item near @cindex @code{near} function attribute, MeP This attribute causes the compiler to assume the called function is close enough to use the normal calling convention, overriding the @option{-mtf} command-line option. @item far @cindex @code{far} function attribute, MeP On MeP targets this causes the compiler to use a calling convention that assumes the called function is too far away for the built-in addressing modes. @item vliw @cindex @code{vliw} function attribute, MeP The @code{vliw} attribute tells the compiler to emit instructions in VLIW mode instead of core mode. Note that this attribute is not allowed unless a VLIW coprocessor has been configured and enabled through command-line options. @end table @node MicroBlaze Function Attributes @subsection MicroBlaze Function Attributes These function attributes are supported on MicroBlaze targets: @table @code @item save_volatiles @cindex @code{save_volatiles} function attribute, MicroBlaze Use this attribute to indicate that the function is an interrupt handler. All volatile registers (in addition to non-volatile registers) are saved in the function prologue. If the function is a leaf function, only volatiles used by the function are saved. A normal function return is generated instead of a return from interrupt. @item break_handler @cindex @code{break_handler} function attribute, MicroBlaze @cindex break handler functions Use this attribute to indicate that the specified function is a break handler. The compiler generates function entry and exit sequences suitable for use in an break handler when this attribute is present. The return from @code{break_handler} is done through the @code{rtbd} instead of @code{rtsd}. @smallexample void f () __attribute__ ((break_handler)); @end smallexample @item interrupt_handler @itemx fast_interrupt @cindex @code{interrupt_handler} function attribute, MicroBlaze @cindex @code{fast_interrupt} function attribute, MicroBlaze These attributes indicate that the specified function is an interrupt handler. Use the @code{fast_interrupt} attribute to indicate handlers used in low-latency interrupt mode, and @code{interrupt_handler} for interrupts that do not use low-latency handlers. In both cases, GCC emits appropriate prologue code and generates a return from the handler using @code{rtid} instead of @code{rtsd}. @end table @node Microsoft Windows Function Attributes @subsection Microsoft Windows Function Attributes The following attributes are available on Microsoft Windows and Symbian OS targets. @table @code @item dllexport @cindex @code{dllexport} function attribute @cindex @code{__declspec(dllexport)} On Microsoft Windows targets and Symbian OS targets the @code{dllexport} attribute causes the compiler to provide a global pointer to a pointer in a DLL, so that it can be referenced with the @code{dllimport} attribute. On Microsoft Windows targets, the pointer name is formed by combining @code{_imp__} and the function or variable name. You can use @code{__declspec(dllexport)} as a synonym for @code{__attribute__ ((dllexport))} for compatibility with other compilers. On systems that support the @code{visibility} attribute, this attribute also implies ``default'' visibility. It is an error to explicitly specify any other visibility. GCC's default behavior is to emit all inline functions with the @code{dllexport} attribute. Since this can cause object file-size bloat, you can use @option{-fno-keep-inline-dllexport}, which tells GCC to ignore the attribute for inlined functions unless the @option{-fkeep-inline-functions} flag is used instead. The attribute is ignored for undefined symbols. When applied to C++ classes, the attribute marks defined non-inlined member functions and static data members as exports. Static consts initialized in-class are not marked unless they are also defined out-of-class. For Microsoft Windows targets there are alternative methods for including the symbol in the DLL's export table such as using a @file{.def} file with an @code{EXPORTS} section or, with GNU ld, using the @option{--export-all} linker flag. @item dllimport @cindex @code{dllimport} function attribute @cindex @code{__declspec(dllimport)} On Microsoft Windows and Symbian OS targets, the @code{dllimport} attribute causes the compiler to reference a function or variable via a global pointer to a pointer that is set up by the DLL exporting the symbol. The attribute implies @code{extern}. On Microsoft Windows targets, the pointer name is formed by combining @code{_imp__} and the function or variable name. You can use @code{__declspec(dllimport)} as a synonym for @code{__attribute__ ((dllimport))} for compatibility with other compilers. On systems that support the @code{visibility} attribute, this attribute also implies ``default'' visibility. It is an error to explicitly specify any other visibility. Currently, the attribute is ignored for inlined functions. If the attribute is applied to a symbol @emph{definition}, an error is reported. If a symbol previously declared @code{dllimport} is later defined, the attribute is ignored in subsequent references, and a warning is emitted. The attribute is also overridden by a subsequent declaration as @code{dllexport}. When applied to C++ classes, the attribute marks non-inlined member functions and static data members as imports. However, the attribute is ignored for virtual methods to allow creation of vtables using thunks. On the SH Symbian OS target the @code{dllimport} attribute also has another affect---it can cause the vtable and run-time type information for a class to be exported. This happens when the class has a dllimported constructor or a non-inline, non-pure virtual function and, for either of those two conditions, the class also has an inline constructor or destructor and has a key function that is defined in the current translation unit. For Microsoft Windows targets the use of the @code{dllimport} attribute on functions is not necessary, but provides a small performance benefit by eliminating a thunk in the DLL@. The use of the @code{dllimport} attribute on imported variables can be avoided by passing the @option{--enable-auto-import} switch to the GNU linker. As with functions, using the attribute for a variable eliminates a thunk in the DLL@. One drawback to using this attribute is that a pointer to a @emph{variable} marked as @code{dllimport} cannot be used as a constant address. However, a pointer to a @emph{function} with the @code{dllimport} attribute can be used as a constant initializer; in this case, the address of a stub function in the import lib is referenced. On Microsoft Windows targets, the attribute can be disabled for functions by setting the @option{-mnop-fun-dllimport} flag. @end table @node MIPS Function Attributes @subsection MIPS Function Attributes These function attributes are supported by the MIPS back end: @table @code @item interrupt @cindex @code{interrupt} function attribute, MIPS Use this attribute to indicate that the specified function is an interrupt handler. The compiler generates function entry and exit sequences suitable for use in an interrupt handler when this attribute is present. An optional argument is supported for the interrupt attribute which allows the interrupt mode to be described. By default GCC assumes the external interrupt controller (EIC) mode is in use, this can be explicitly set using @code{eic}. When interrupts are non-masked then the requested Interrupt Priority Level (IPL) is copied to the current IPL which has the effect of only enabling higher priority interrupts. To use vectored interrupt mode use the argument @code{vector=[sw0|sw1|hw0|hw1|hw2|hw3|hw4|hw5]}, this will change the behavior of the non-masked interrupt support and GCC will arrange to mask all interrupts from sw0 up to and including the specified interrupt vector. You can use the following attributes to modify the behavior of an interrupt handler: @table @code @item use_shadow_register_set @cindex @code{use_shadow_register_set} function attribute, MIPS Assume that the handler uses a shadow register set, instead of the main general-purpose registers. An optional argument @code{intstack} is supported to indicate that the shadow register set contains a valid stack pointer. @item keep_interrupts_masked @cindex @code{keep_interrupts_masked} function attribute, MIPS Keep interrupts masked for the whole function. Without this attribute, GCC tries to reenable interrupts for as much of the function as it can. @item use_debug_exception_return @cindex @code{use_debug_exception_return} function attribute, MIPS Return using the @code{deret} instruction. Interrupt handlers that don't have this attribute return using @code{eret} instead. @end table You can use any combination of these attributes, as shown below: @smallexample void __attribute__ ((interrupt)) v0 (); void __attribute__ ((interrupt, use_shadow_register_set)) v1 (); void __attribute__ ((interrupt, keep_interrupts_masked)) v2 (); void __attribute__ ((interrupt, use_debug_exception_return)) v3 (); void __attribute__ ((interrupt, use_shadow_register_set, keep_interrupts_masked)) v4 (); void __attribute__ ((interrupt, use_shadow_register_set, use_debug_exception_return)) v5 (); void __attribute__ ((interrupt, keep_interrupts_masked, use_debug_exception_return)) v6 (); void __attribute__ ((interrupt, use_shadow_register_set, keep_interrupts_masked, use_debug_exception_return)) v7 (); void __attribute__ ((interrupt("eic"))) v8 (); void __attribute__ ((interrupt("vector=hw3"))) v9 (); @end smallexample @item long_call @itemx short_call @itemx near @itemx far @cindex indirect calls, MIPS @cindex @code{long_call} function attribute, MIPS @cindex @code{short_call} function attribute, MIPS @cindex @code{near} function attribute, MIPS @cindex @code{far} function attribute, MIPS These attributes specify how a particular function is called on MIPS@. The attributes override the @option{-mlong-calls} (@pxref{MIPS Options}) command-line switch. The @code{long_call} and @code{far} attributes are synonyms, and cause the compiler to always call the function by first loading its address into a register, and then using the contents of that register. The @code{short_call} and @code{near} attributes are synonyms, and have the opposite effect; they specify that non-PIC calls should be made using the more efficient @code{jal} instruction. @item mips16 @itemx nomips16 @cindex @code{mips16} function attribute, MIPS @cindex @code{nomips16} function attribute, MIPS On MIPS targets, you can use the @code{mips16} and @code{nomips16} function attributes to locally select or turn off MIPS16 code generation. A function with the @code{mips16} attribute is emitted as MIPS16 code, while MIPS16 code generation is disabled for functions with the @code{nomips16} attribute. These attributes override the @option{-mips16} and @option{-mno-mips16} options on the command line (@pxref{MIPS Options}). When compiling files containing mixed MIPS16 and non-MIPS16 code, the preprocessor symbol @code{__mips16} reflects the setting on the command line, not that within individual functions. Mixed MIPS16 and non-MIPS16 code may interact badly with some GCC extensions such as @code{__builtin_apply} (@pxref{Constructing Calls}). @item micromips, MIPS @itemx nomicromips, MIPS @cindex @code{micromips} function attribute @cindex @code{nomicromips} function attribute On MIPS targets, you can use the @code{micromips} and @code{nomicromips} function attributes to locally select or turn off microMIPS code generation. A function with the @code{micromips} attribute is emitted as microMIPS code, while microMIPS code generation is disabled for functions with the @code{nomicromips} attribute. These attributes override the @option{-mmicromips} and @option{-mno-micromips} options on the command line (@pxref{MIPS Options}). When compiling files containing mixed microMIPS and non-microMIPS code, the preprocessor symbol @code{__mips_micromips} reflects the setting on the command line, not that within individual functions. Mixed microMIPS and non-microMIPS code may interact badly with some GCC extensions such as @code{__builtin_apply} (@pxref{Constructing Calls}). @item nocompression @cindex @code{nocompression} function attribute, MIPS On MIPS targets, you can use the @code{nocompression} function attribute to locally turn off MIPS16 and microMIPS code generation. This attribute overrides the @option{-mips16} and @option{-mmicromips} options on the command line (@pxref{MIPS Options}). @end table @node MSP430 Function Attributes @subsection MSP430 Function Attributes These function attributes are supported by the MSP430 back end: @table @code @item critical @cindex @code{critical} function attribute, MSP430 Critical functions disable interrupts upon entry and restore the previous interrupt state upon exit. Critical functions cannot also have the @code{naked} or @code{reentrant} attributes. They can have the @code{interrupt} attribute. @item interrupt @cindex @code{interrupt} function attribute, MSP430 Use this attribute to indicate that the specified function is an interrupt handler. The compiler generates function entry and exit sequences suitable for use in an interrupt handler when this attribute is present. You can provide an argument to the interrupt attribute which specifies a name or number. If the argument is a number it indicates the slot in the interrupt vector table (0 - 31) to which this handler should be assigned. If the argument is a name it is treated as a symbolic name for the vector slot. These names should match up with appropriate entries in the linker script. By default the names @code{watchdog} for vector 26, @code{nmi} for vector 30 and @code{reset} for vector 31 are recognized. @item naked @cindex @code{naked} function attribute, MSP430 This attribute allows the compiler to construct the requisite function declaration, while allowing the body of the function to be assembly code. The specified function will not have prologue/epilogue sequences generated by the compiler. Only basic @code{asm} statements can safely be included in naked functions (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of basic @code{asm} and C code may appear to work, they cannot be depended upon to work reliably and are not supported. @item reentrant @cindex @code{reentrant} function attribute, MSP430 Reentrant functions disable interrupts upon entry and enable them upon exit. Reentrant functions cannot also have the @code{naked} or @code{critical} attributes. They can have the @code{interrupt} attribute. @item wakeup @cindex @code{wakeup} function attribute, MSP430 This attribute only applies to interrupt functions. It is silently ignored if applied to a non-interrupt function. A wakeup interrupt function will rouse the processor from any low-power state that it might be in when the function exits. @item lower @itemx upper @itemx either @cindex @code{lower} function attribute, MSP430 @cindex @code{upper} function attribute, MSP430 @cindex @code{either} function attribute, MSP430 On the MSP430 target these attributes can be used to specify whether the function or variable should be placed into low memory, high memory, or the placement should be left to the linker to decide. The attributes are only significant if compiling for the MSP430X architecture. The attributes work in conjunction with a linker script that has been augmented to specify where to place sections with a @code{.lower} and a @code{.upper} prefix. So, for example, as well as placing the @code{.data} section, the script also specifies the placement of a @code{.lower.data} and a @code{.upper.data} section. The intention is that @code{lower} sections are placed into a small but easier to access memory region and the upper sections are placed into a larger, but slower to access, region. The @code{either} attribute is special. It tells the linker to place the object into the corresponding @code{lower} section if there is room for it. If there is insufficient room then the object is placed into the corresponding @code{upper} section instead. Note that the placement algorithm is not very sophisticated. It does not attempt to find an optimal packing of the @code{lower} sections. It just makes one pass over the objects and does the best that it can. Using the @option{-ffunction-sections} and @option{-fdata-sections} command-line options can help the packing, however, since they produce smaller, easier to pack regions. @end table @node NDS32 Function Attributes @subsection NDS32 Function Attributes These function attributes are supported by the NDS32 back end: @table @code @item exception @cindex @code{exception} function attribute @cindex exception handler functions, NDS32 Use this attribute on the NDS32 target to indicate that the specified function is an exception handler. The compiler will generate corresponding sections for use in an exception handler. @item interrupt @cindex @code{interrupt} function attribute, NDS32 On NDS32 target, this attribute indicates that the specified function is an interrupt handler. The compiler generates corresponding sections for use in an interrupt handler. You can use the following attributes to modify the behavior: @table @code @item nested @cindex @code{nested} function attribute, NDS32 This interrupt service routine is interruptible. @item not_nested @cindex @code{not_nested} function attribute, NDS32 This interrupt service routine is not interruptible. @item nested_ready @cindex @code{nested_ready} function attribute, NDS32 This interrupt service routine is interruptible after @code{PSW.GIE} (global interrupt enable) is set. This allows interrupt service routine to finish some short critical code before enabling interrupts. @item save_all @cindex @code{save_all} function attribute, NDS32 The system will help save all registers into stack before entering interrupt handler. @item partial_save @cindex @code{partial_save} function attribute, NDS32 The system will help save caller registers into stack before entering interrupt handler. @end table @item naked @cindex @code{naked} function attribute, NDS32 This attribute allows the compiler to construct the requisite function declaration, while allowing the body of the function to be assembly code. The specified function will not have prologue/epilogue sequences generated by the compiler. Only basic @code{asm} statements can safely be included in naked functions (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of basic @code{asm} and C code may appear to work, they cannot be depended upon to work reliably and are not supported. @item reset @cindex @code{reset} function attribute, NDS32 @cindex reset handler functions Use this attribute on the NDS32 target to indicate that the specified function is a reset handler. The compiler will generate corresponding sections for use in a reset handler. You can use the following attributes to provide extra exception handling: @table @code @item nmi @cindex @code{nmi} function attribute, NDS32 Provide a user-defined function to handle NMI exception. @item warm @cindex @code{warm} function attribute, NDS32 Provide a user-defined function to handle warm reset exception. @end table @end table @node Nios II Function Attributes @subsection Nios II Function Attributes These function attributes are supported by the Nios II back end: @table @code @item target (@var{options}) @cindex @code{target} function attribute As discussed in @ref{Common Function Attributes}, this attribute allows specification of target-specific compilation options. When compiling for Nios II, the following options are allowed: @table @samp @item custom-@var{insn}=@var{N} @itemx no-custom-@var{insn} @cindex @code{target("custom-@var{insn}=@var{N}")} function attribute, Nios II @cindex @code{target("no-custom-@var{insn}")} function attribute, Nios II Each @samp{custom-@var{insn}=@var{N}} attribute locally enables use of a custom instruction with encoding @var{N} when generating code that uses @var{insn}. Similarly, @samp{no-custom-@var{insn}} locally inhibits use of the custom instruction @var{insn}. These target attributes correspond to the @option{-mcustom-@var{insn}=@var{N}} and @option{-mno-custom-@var{insn}} command-line options, and support the same set of @var{insn} keywords. @xref{Nios II Options}, for more information. @item custom-fpu-cfg=@var{name} @cindex @code{target("custom-fpu-cfg=@var{name}")} function attribute, Nios II This attribute corresponds to the @option{-mcustom-fpu-cfg=@var{name}} command-line option, to select a predefined set of custom instructions named @var{name}. @xref{Nios II Options}, for more information. @end table @end table @node Nvidia PTX Function Attributes @subsection Nvidia PTX Function Attributes These function attributes are supported by the Nvidia PTX back end: @table @code @item kernel @cindex @code{kernel} attribute, Nvidia PTX This attribute indicates that the corresponding function should be compiled as a kernel function, which can be invoked from the host via the CUDA RT library. By default functions are only callable only from other PTX functions. Kernel functions must have @code{void} return type. @end table @node PowerPC Function Attributes @subsection PowerPC Function Attributes These function attributes are supported by the PowerPC back end: @table @code @item longcall @itemx shortcall @cindex indirect calls, PowerPC @cindex @code{longcall} function attribute, PowerPC @cindex @code{shortcall} function attribute, PowerPC The @code{longcall} attribute indicates that the function might be far away from the call site and require a different (more expensive) calling sequence. The @code{shortcall} attribute indicates that the function is always close enough for the shorter calling sequence to be used. These attributes override both the @option{-mlongcall} switch and the @code{#pragma longcall} setting. @xref{RS/6000 and PowerPC Options}, for more information on whether long calls are necessary. @item target (@var{options}) @cindex @code{target} function attribute As discussed in @ref{Common Function Attributes}, this attribute allows specification of target-specific compilation options. On the PowerPC, the following options are allowed: @table @samp @item altivec @itemx no-altivec @cindex @code{target("altivec")} function attribute, PowerPC Generate code that uses (does not use) AltiVec instructions. In 32-bit code, you cannot enable AltiVec instructions unless @option{-mabi=altivec} is used on the command line. @item cmpb @itemx no-cmpb @cindex @code{target("cmpb")} function attribute, PowerPC Generate code that uses (does not use) the compare bytes instruction implemented on the POWER6 processor and other processors that support the PowerPC V2.05 architecture. @item dlmzb @itemx no-dlmzb @cindex @code{target("dlmzb")} function attribute, PowerPC Generate code that uses (does not use) the string-search @samp{dlmzb} instruction on the IBM 405, 440, 464 and 476 processors. This instruction is generated by default when targeting those processors. @item fprnd @itemx no-fprnd @cindex @code{target("fprnd")} function attribute, PowerPC Generate code that uses (does not use) the FP round to integer instructions implemented on the POWER5+ processor and other processors that support the PowerPC V2.03 architecture. @item hard-dfp @itemx no-hard-dfp @cindex @code{target("hard-dfp")} function attribute, PowerPC Generate code that uses (does not use) the decimal floating-point instructions implemented on some POWER processors. @item isel @itemx no-isel @cindex @code{target("isel")} function attribute, PowerPC Generate code that uses (does not use) ISEL instruction. @item mfcrf @itemx no-mfcrf @cindex @code{target("mfcrf")} function attribute, PowerPC Generate code that uses (does not use) the move from condition register field instruction implemented on the POWER4 processor and other processors that support the PowerPC V2.01 architecture. @item mfpgpr @itemx no-mfpgpr @cindex @code{target("mfpgpr")} function attribute, PowerPC Generate code that uses (does not use) the FP move to/from general purpose register instructions implemented on the POWER6X processor and other processors that support the extended PowerPC V2.05 architecture. @item mulhw @itemx no-mulhw @cindex @code{target("mulhw")} function attribute, PowerPC Generate code that uses (does not use) the half-word multiply and multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors. These instructions are generated by default when targeting those processors. @item multiple @itemx no-multiple @cindex @code{target("multiple")} function attribute, PowerPC Generate code that uses (does not use) the load multiple word instructions and the store multiple word instructions. @item update @itemx no-update @cindex @code{target("update")} function attribute, PowerPC Generate code that uses (does not use) the load or store instructions that update the base register to the address of the calculated memory location. @item popcntb @itemx no-popcntb @cindex @code{target("popcntb")} function attribute, PowerPC Generate code that uses (does not use) the popcount and double-precision FP reciprocal estimate instruction implemented on the POWER5 processor and other processors that support the PowerPC V2.02 architecture. @item popcntd @itemx no-popcntd @cindex @code{target("popcntd")} function attribute, PowerPC Generate code that uses (does not use) the popcount instruction implemented on the POWER7 processor and other processors that support the PowerPC V2.06 architecture. @item powerpc-gfxopt @itemx no-powerpc-gfxopt @cindex @code{target("powerpc-gfxopt")} function attribute, PowerPC Generate code that uses (does not use) the optional PowerPC architecture instructions in the Graphics group, including floating-point select. @item powerpc-gpopt @itemx no-powerpc-gpopt @cindex @code{target("powerpc-gpopt")} function attribute, PowerPC Generate code that uses (does not use) the optional PowerPC architecture instructions in the General Purpose group, including floating-point square root. @item recip-precision @itemx no-recip-precision @cindex @code{target("recip-precision")} function attribute, PowerPC Assume (do not assume) that the reciprocal estimate instructions provide higher-precision estimates than is mandated by the PowerPC ABI. @item string @itemx no-string @cindex @code{target("string")} function attribute, PowerPC Generate code that uses (does not use) the load string instructions and the store string word instructions to save multiple registers and do small block moves. @item vsx @itemx no-vsx @cindex @code{target("vsx")} function attribute, PowerPC Generate code that uses (does not use) vector/scalar (VSX) instructions, and also enable the use of built-in functions that allow more direct access to the VSX instruction set. In 32-bit code, you cannot enable VSX or AltiVec instructions unless @option{-mabi=altivec} is used on the command line. @item friz @itemx no-friz @cindex @code{target("friz")} function attribute, PowerPC Generate (do not generate) the @code{friz} instruction when the @option{-funsafe-math-optimizations} option is used to optimize rounding a floating-point value to 64-bit integer and back to floating point. The @code{friz} instruction does not return the same value if the floating-point number is too large to fit in an integer. @item avoid-indexed-addresses @itemx no-avoid-indexed-addresses @cindex @code{target("avoid-indexed-addresses")} function attribute, PowerPC Generate code that tries to avoid (not avoid) the use of indexed load or store instructions. @item paired @itemx no-paired @cindex @code{target("paired")} function attribute, PowerPC Generate code that uses (does not use) the generation of PAIRED simd instructions. @item longcall @itemx no-longcall @cindex @code{target("longcall")} function attribute, PowerPC Generate code that assumes (does not assume) that all calls are far away so that a longer more expensive calling sequence is required. @item cpu=@var{CPU} @cindex @code{target("cpu=@var{CPU}")} function attribute, PowerPC Specify the architecture to generate code for when compiling the function. If you select the @code{target("cpu=power7")} attribute when generating 32-bit code, VSX and AltiVec instructions are not generated unless you use the @option{-mabi=altivec} option on the command line. @item tune=@var{TUNE} @cindex @code{target("tune=@var{TUNE}")} function attribute, PowerPC Specify the architecture to tune for when compiling the function. If you do not specify the @code{target("tune=@var{TUNE}")} attribute and you do specify the @code{target("cpu=@var{CPU}")} attribute, compilation tunes for the @var{CPU} architecture, and not the default tuning specified on the command line. @end table On the PowerPC, the inliner does not inline a function that has different target options than the caller, unless the callee has a subset of the target options of the caller. @end table @node RL78 Function Attributes @subsection RL78 Function Attributes These function attributes are supported by the RL78 back end: @table @code @item interrupt @itemx brk_interrupt @cindex @code{interrupt} function attribute, RL78 @cindex @code{brk_interrupt} function attribute, RL78 These attributes indicate that the specified function is an interrupt handler. The compiler generates function entry and exit sequences suitable for use in an interrupt handler when this attribute is present. Use @code{brk_interrupt} instead of @code{interrupt} for handlers intended to be used with the @code{BRK} opcode (i.e.@: those that must end with @code{RETB} instead of @code{RETI}). @item naked @cindex @code{naked} function attribute, RL78 This attribute allows the compiler to construct the requisite function declaration, while allowing the body of the function to be assembly code. The specified function will not have prologue/epilogue sequences generated by the compiler. Only basic @code{asm} statements can safely be included in naked functions (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of basic @code{asm} and C code may appear to work, they cannot be depended upon to work reliably and are not supported. @end table @node RX Function Attributes @subsection RX Function Attributes These function attributes are supported by the RX back end: @table @code @item fast_interrupt @cindex @code{fast_interrupt} function attribute, RX Use this attribute on the RX port to indicate that the specified function is a fast interrupt handler. This is just like the @code{interrupt} attribute, except that @code{freit} is used to return instead of @code{reit}. @item interrupt @cindex @code{interrupt} function attribute, RX Use this attribute to indicate that the specified function is an interrupt handler. The compiler generates function entry and exit sequences suitable for use in an interrupt handler when this attribute is present. On RX targets, you may specify one or more vector numbers as arguments to the attribute, as well as naming an alternate table name. Parameters are handled sequentially, so one handler can be assigned to multiple entries in multiple tables. One may also pass the magic string @code{"$default"} which causes the function to be used for any unfilled slots in the current table. This example shows a simple assignment of a function to one vector in the default table (note that preprocessor macros may be used for chip-specific symbolic vector names): @smallexample void __attribute__ ((interrupt (5))) txd1_handler (); @end smallexample This example assigns a function to two slots in the default table (using preprocessor macros defined elsewhere) and makes it the default for the @code{dct} table: @smallexample void __attribute__ ((interrupt (RXD1_VECT,RXD2_VECT,"dct","$default"))) txd1_handler (); @end smallexample @item naked @cindex @code{naked} function attribute, RX This attribute allows the compiler to construct the requisite function declaration, while allowing the body of the function to be assembly code. The specified function will not have prologue/epilogue sequences generated by the compiler. Only basic @code{asm} statements can safely be included in naked functions (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of basic @code{asm} and C code may appear to work, they cannot be depended upon to work reliably and are not supported. @item vector @cindex @code{vector} function attribute, RX This RX attribute is similar to the @code{interrupt} attribute, including its parameters, but does not make the function an interrupt-handler type function (i.e. it retains the normal C function calling ABI). See the @code{interrupt} attribute for a description of its arguments. @end table @node S/390 Function Attributes @subsection S/390 Function Attributes These function attributes are supported on the S/390: @table @code @item hotpatch (@var{halfwords-before-function-label},@var{halfwords-after-function-label}) @cindex @code{hotpatch} function attribute, S/390 On S/390 System z targets, you can use this function attribute to make GCC generate a ``hot-patching'' function prologue. If the @option{-mhotpatch=} command-line option is used at the same time, the @code{hotpatch} attribute takes precedence. The first of the two arguments specifies the number of halfwords to be added before the function label. A second argument can be used to specify the number of halfwords to be added after the function label. For both arguments the maximum allowed value is 1000000. If both arguments are zero, hotpatching is disabled. @item target (@var{options}) @cindex @code{target} function attribute As discussed in @ref{Common Function Attributes}, this attribute allows specification of target-specific compilation options. On S/390, the following options are supported: @table @samp @item arch= @item tune= @item stack-guard= @item stack-size= @item branch-cost= @item warn-framesize= @item backchain @itemx no-backchain @item hard-dfp @itemx no-hard-dfp @item hard-float @itemx soft-float @item htm @itemx no-htm @item vx @itemx no-vx @item packed-stack @itemx no-packed-stack @item small-exec @itemx no-small-exec @item mvcle @itemx no-mvcle @item warn-dynamicstack @itemx no-warn-dynamicstack @end table The options work exactly like the S/390 specific command line options (without the prefix @option{-m}) except that they do not change any feature macros. For example, @smallexample @code{target("no-vx")} @end smallexample does not undefine the @code{__VEC__} macro. @end table @node SH Function Attributes @subsection SH Function Attributes These function attributes are supported on the SH family of processors: @table @code @item function_vector @cindex @code{function_vector} function attribute, SH @cindex calling functions through the function vector on SH2A On SH2A targets, this attribute declares a function to be called using the TBR relative addressing mode. The argument to this attribute is the entry number of the same function in a vector table containing all the TBR relative addressable functions. For correct operation the TBR must be setup accordingly to point to the start of the vector table before any functions with this attribute are invoked. Usually a good place to do the initialization is the startup routine. The TBR relative vector table can have at max 256 function entries. The jumps to these functions are generated using a SH2A specific, non delayed branch instruction JSR/N @@(disp8,TBR). You must use GAS and GLD from GNU binutils version 2.7 or later for this attribute to work correctly. In an application, for a function being called once, this attribute saves at least 8 bytes of code; and if other successive calls are being made to the same function, it saves 2 bytes of code per each of these calls. @item interrupt_handler @cindex @code{interrupt_handler} function attribute, SH Use this attribute to indicate that the specified function is an interrupt handler. The compiler generates function entry and exit sequences suitable for use in an interrupt handler when this attribute is present. @item nosave_low_regs @cindex @code{nosave_low_regs} function attribute, SH Use this attribute on SH targets to indicate that an @code{interrupt_handler} function should not save and restore registers R0..R7. This can be used on SH3* and SH4* targets that have a second R0..R7 register bank for non-reentrant interrupt handlers. @item renesas @cindex @code{renesas} function attribute, SH On SH targets this attribute specifies that the function or struct follows the Renesas ABI. @item resbank @cindex @code{resbank} function attribute, SH On the SH2A target, this attribute enables the high-speed register saving and restoration using a register bank for @code{interrupt_handler} routines. Saving to the bank is performed automatically after the CPU accepts an interrupt that uses a register bank. The nineteen 32-bit registers comprising general register R0 to R14, control register GBR, and system registers MACH, MACL, and PR and the vector table address offset are saved into a register bank. Register banks are stacked in first-in last-out (FILO) sequence. Restoration from the bank is executed by issuing a RESBANK instruction. @item sp_switch @cindex @code{sp_switch} function attribute, SH Use this attribute on the SH to indicate an @code{interrupt_handler} function should switch to an alternate stack. It expects a string argument that names a global variable holding the address of the alternate stack. @smallexample void *alt_stack; void f () __attribute__ ((interrupt_handler, sp_switch ("alt_stack"))); @end smallexample @item trap_exit @cindex @code{trap_exit} function attribute, SH Use this attribute on the SH for an @code{interrupt_handler} to return using @code{trapa} instead of @code{rte}. This attribute expects an integer argument specifying the trap number to be used. @item trapa_handler @cindex @code{trapa_handler} function attribute, SH On SH targets this function attribute is similar to @code{interrupt_handler} but it does not save and restore all registers. @end table @node SPU Function Attributes @subsection SPU Function Attributes These function attributes are supported by the SPU back end: @table @code @item naked @cindex @code{naked} function attribute, SPU This attribute allows the compiler to construct the requisite function declaration, while allowing the body of the function to be assembly code. The specified function will not have prologue/epilogue sequences generated by the compiler. Only basic @code{asm} statements can safely be included in naked functions (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of basic @code{asm} and C code may appear to work, they cannot be depended upon to work reliably and are not supported. @end table @node Symbian OS Function Attributes @subsection Symbian OS Function Attributes @xref{Microsoft Windows Function Attributes}, for discussion of the @code{dllexport} and @code{dllimport} attributes. @node V850 Function Attributes @subsection V850 Function Attributes The V850 back end supports these function attributes: @table @code @item interrupt @itemx interrupt_handler @cindex @code{interrupt} function attribute, V850 @cindex @code{interrupt_handler} function attribute, V850 Use these attributes to indicate that the specified function is an interrupt handler. The compiler generates function entry and exit sequences suitable for use in an interrupt handler when either attribute is present. @end table @node Visium Function Attributes @subsection Visium Function Attributes These function attributes are supported by the Visium back end: @table @code @item interrupt @cindex @code{interrupt} function attribute, Visium Use this attribute to indicate that the specified function is an interrupt handler. The compiler generates function entry and exit sequences suitable for use in an interrupt handler when this attribute is present. @end table @node x86 Function Attributes @subsection x86 Function Attributes These function attributes are supported by the x86 back end: @table @code @item cdecl @cindex @code{cdecl} function attribute, x86-32 @cindex functions that pop the argument stack on x86-32 @opindex mrtd On the x86-32 targets, the @code{cdecl} attribute causes the compiler to assume that the calling function pops off the stack space used to pass arguments. This is useful to override the effects of the @option{-mrtd} switch. @item fastcall @cindex @code{fastcall} function attribute, x86-32 @cindex functions that pop the argument stack on x86-32 On x86-32 targets, the @code{fastcall} attribute causes the compiler to pass the first argument (if of integral type) in the register ECX and the second argument (if of integral type) in the register EDX@. Subsequent and other typed arguments are passed on the stack. The called function pops the arguments off the stack. If the number of arguments is variable all arguments are pushed on the stack. @item thiscall @cindex @code{thiscall} function attribute, x86-32 @cindex functions that pop the argument stack on x86-32 On x86-32 targets, the @code{thiscall} attribute causes the compiler to pass the first argument (if of integral type) in the register ECX. Subsequent and other typed arguments are passed on the stack. The called function pops the arguments off the stack. If the number of arguments is variable all arguments are pushed on the stack. The @code{thiscall} attribute is intended for C++ non-static member functions. As a GCC extension, this calling convention can be used for C functions and for static member methods. @item ms_abi @itemx sysv_abi @cindex @code{ms_abi} function attribute, x86 @cindex @code{sysv_abi} function attribute, x86 On 32-bit and 64-bit x86 targets, you can use an ABI attribute to indicate which calling convention should be used for a function. The @code{ms_abi} attribute tells the compiler to use the Microsoft ABI, while the @code{sysv_abi} attribute tells the compiler to use the ABI used on GNU/Linux and other systems. The default is to use the Microsoft ABI when targeting Windows. On all other systems, the default is the x86/AMD ABI. Note, the @code{ms_abi} attribute for Microsoft Windows 64-bit targets currently requires the @option{-maccumulate-outgoing-args} option. @item callee_pop_aggregate_return (@var{number}) @cindex @code{callee_pop_aggregate_return} function attribute, x86 On x86-32 targets, you can use this attribute to control how aggregates are returned in memory. If the caller is responsible for popping the hidden pointer together with the rest of the arguments, specify @var{number} equal to zero. If callee is responsible for popping the hidden pointer, specify @var{number} equal to one. The default x86-32 ABI assumes that the callee pops the stack for hidden pointer. However, on x86-32 Microsoft Windows targets, the compiler assumes that the caller pops the stack for hidden pointer. @item ms_hook_prologue @cindex @code{ms_hook_prologue} function attribute, x86 On 32-bit and 64-bit x86 targets, you can use this function attribute to make GCC generate the ``hot-patching'' function prologue used in Win32 API functions in Microsoft Windows XP Service Pack 2 and newer. @item naked @cindex @code{naked} function attribute, x86 This attribute allows the compiler to construct the requisite function declaration, while allowing the body of the function to be assembly code. The specified function will not have prologue/epilogue sequences generated by the compiler. Only basic @code{asm} statements can safely be included in naked functions (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of basic @code{asm} and C code may appear to work, they cannot be depended upon to work reliably and are not supported. @item regparm (@var{number}) @cindex @code{regparm} function attribute, x86 @cindex functions that are passed arguments in registers on x86-32 On x86-32 targets, the @code{regparm} attribute causes the compiler to pass arguments number one to @var{number} if they are of integral type in registers EAX, EDX, and ECX instead of on the stack. Functions that take a variable number of arguments continue to be passed all of their arguments on the stack. Beware that on some ELF systems this attribute is unsuitable for global functions in shared libraries with lazy binding (which is the default). Lazy binding sends the first call via resolving code in the loader, which might assume EAX, EDX and ECX can be clobbered, as per the standard calling conventions. Solaris 8 is affected by this. Systems with the GNU C Library version 2.1 or higher and FreeBSD are believed to be safe since the loaders there save EAX, EDX and ECX. (Lazy binding can be disabled with the linker or the loader if desired, to avoid the problem.) @item sseregparm @cindex @code{sseregparm} function attribute, x86 On x86-32 targets with SSE support, the @code{sseregparm} attribute causes the compiler to pass up to 3 floating-point arguments in SSE registers instead of on the stack. Functions that take a variable number of arguments continue to pass all of their floating-point arguments on the stack. @item force_align_arg_pointer @cindex @code{force_align_arg_pointer} function attribute, x86 On x86 targets, the @code{force_align_arg_pointer} attribute may be applied to individual function definitions, generating an alternate prologue and epilogue that realigns the run-time stack if necessary. This supports mixing legacy codes that run with a 4-byte aligned stack with modern codes that keep a 16-byte stack for SSE compatibility. @item stdcall @cindex @code{stdcall} function attribute, x86-32 @cindex functions that pop the argument stack on x86-32 On x86-32 targets, the @code{stdcall} attribute causes the compiler to assume that the called function pops off the stack space used to pass arguments, unless it takes a variable number of arguments. @item no_caller_saved_registers @cindex @code{no_caller_saved_registers} function attribute, x86 Use this attribute to indicate that the specified function has no caller-saved registers. That is, all registers are callee-saved. For example, this attribute can be used for a function called from an interrupt handler. The compiler generates proper function entry and exit sequences to save and restore any modified registers, except for the EFLAGS register. Since GCC doesn't preserve MPX, SSE, MMX nor x87 states, the GCC option @option{-mgeneral-regs-only} should be used to compile functions with @code{no_caller_saved_registers} attribute. @item interrupt @cindex @code{interrupt} function attribute, x86 Use this attribute to indicate that the specified function is an interrupt handler or an exception handler (depending on parameters passed to the function, explained further). The compiler generates function entry and exit sequences suitable for use in an interrupt handler when this attribute is present. The @code{IRET} instruction, instead of the @code{RET} instruction, is used to return from interrupt handlers. All registers, except for the EFLAGS register which is restored by the @code{IRET} instruction, are preserved by the compiler. Since GCC doesn't preserve MPX, SSE, MMX nor x87 states, the GCC option @option{-mgeneral-regs-only} should be used to compile interrupt and exception handlers. Any interruptible-without-stack-switch code must be compiled with @option{-mno-red-zone} since interrupt handlers can and will, because of the hardware design, touch the red zone. An interrupt handler must be declared with a mandatory pointer argument: @smallexample struct interrupt_frame; __attribute__ ((interrupt)) void f (struct interrupt_frame *frame) @{ @} @end smallexample @noindent and you must define @code{struct interrupt_frame} as described in the processor's manual. Exception handlers differ from interrupt handlers because the system pushes an error code on the stack. An exception handler declaration is similar to that for an interrupt handler, but with a different mandatory function signature. The compiler arranges to pop the error code off the stack before the @code{IRET} instruction. @smallexample #ifdef __x86_64__ typedef unsigned long long int uword_t; #else typedef unsigned int uword_t; #endif struct interrupt_frame; __attribute__ ((interrupt)) void f (struct interrupt_frame *frame, uword_t error_code) @{ ... @} @end smallexample Exception handlers should only be used for exceptions that push an error code; you should use an interrupt handler in other cases. The system will crash if the wrong kind of handler is used. @item target (@var{options}) @cindex @code{target} function attribute As discussed in @ref{Common Function Attributes}, this attribute allows specification of target-specific compilation options. On the x86, the following options are allowed: @table @samp @item abm @itemx no-abm @cindex @code{target("abm")} function attribute, x86 Enable/disable the generation of the advanced bit instructions. @item aes @itemx no-aes @cindex @code{target("aes")} function attribute, x86 Enable/disable the generation of the AES instructions. @item default @cindex @code{target("default")} function attribute, x86 @xref{Function Multiversioning}, where it is used to specify the default function version. @item mmx @itemx no-mmx @cindex @code{target("mmx")} function attribute, x86 Enable/disable the generation of the MMX instructions. @item pclmul @itemx no-pclmul @cindex @code{target("pclmul")} function attribute, x86 Enable/disable the generation of the PCLMUL instructions. @item popcnt @itemx no-popcnt @cindex @code{target("popcnt")} function attribute, x86 Enable/disable the generation of the POPCNT instruction. @item sse @itemx no-sse @cindex @code{target("sse")} function attribute, x86 Enable/disable the generation of the SSE instructions. @item sse2 @itemx no-sse2 @cindex @code{target("sse2")} function attribute, x86 Enable/disable the generation of the SSE2 instructions. @item sse3 @itemx no-sse3 @cindex @code{target("sse3")} function attribute, x86 Enable/disable the generation of the SSE3 instructions. @item sse4 @itemx no-sse4 @cindex @code{target("sse4")} function attribute, x86 Enable/disable the generation of the SSE4 instructions (both SSE4.1 and SSE4.2). @item sse4.1 @itemx no-sse4.1 @cindex @code{target("sse4.1")} function attribute, x86 Enable/disable the generation of the sse4.1 instructions. @item sse4.2 @itemx no-sse4.2 @cindex @code{target("sse4.2")} function attribute, x86 Enable/disable the generation of the sse4.2 instructions. @item sse4a @itemx no-sse4a @cindex @code{target("sse4a")} function attribute, x86 Enable/disable the generation of the SSE4A instructions. @item fma4 @itemx no-fma4 @cindex @code{target("fma4")} function attribute, x86 Enable/disable the generation of the FMA4 instructions. @item xop @itemx no-xop @cindex @code{target("xop")} function attribute, x86 Enable/disable the generation of the XOP instructions. @item lwp @itemx no-lwp @cindex @code{target("lwp")} function attribute, x86 Enable/disable the generation of the LWP instructions. @item ssse3 @itemx no-ssse3 @cindex @code{target("ssse3")} function attribute, x86 Enable/disable the generation of the SSSE3 instructions. @item cld @itemx no-cld @cindex @code{target("cld")} function attribute, x86 Enable/disable the generation of the CLD before string moves. @item fancy-math-387 @itemx no-fancy-math-387 @cindex @code{target("fancy-math-387")} function attribute, x86 Enable/disable the generation of the @code{sin}, @code{cos}, and @code{sqrt} instructions on the 387 floating-point unit. @item ieee-fp @itemx no-ieee-fp @cindex @code{target("ieee-fp")} function attribute, x86 Enable/disable the generation of floating point that depends on IEEE arithmetic. @item inline-all-stringops @itemx no-inline-all-stringops @cindex @code{target("inline-all-stringops")} function attribute, x86 Enable/disable inlining of string operations. @item inline-stringops-dynamically @itemx no-inline-stringops-dynamically @cindex @code{target("inline-stringops-dynamically")} function attribute, x86 Enable/disable the generation of the inline code to do small string operations and calling the library routines for large operations. @item align-stringops @itemx no-align-stringops @cindex @code{target("align-stringops")} function attribute, x86 Do/do not align destination of inlined string operations. @item recip @itemx no-recip @cindex @code{target("recip")} function attribute, x86 Enable/disable the generation of RCPSS, RCPPS, RSQRTSS and RSQRTPS instructions followed an additional Newton-Raphson step instead of doing a floating-point division. @item arch=@var{ARCH} @cindex @code{target("arch=@var{ARCH}")} function attribute, x86 Specify the architecture to generate code for in compiling the function. @item tune=@var{TUNE} @cindex @code{target("tune=@var{TUNE}")} function attribute, x86 Specify the architecture to tune for in compiling the function. @item fpmath=@var{FPMATH} @cindex @code{target("fpmath=@var{FPMATH}")} function attribute, x86 Specify which floating-point unit to use. You must specify the @code{target("fpmath=sse,387")} option as @code{target("fpmath=sse+387")} because the comma would separate different options. @item nocf_check @cindex @code{nocf_check} function attribute The @code{nocf_check} attribute on a function is used to inform the compiler that the function's prologue should not be instrumented when compiled with the @option{-fcf-protection=branch} option. The compiler assumes that the function's address is a valid target for a control-flow transfer. The @code{nocf_check} attribute on a type of pointer to function is used to inform the compiler that a call through the pointer should not be instrumented when compiled with the @option{-fcf-protection=branch} option. The compiler assumes that the function's address from the pointer is a valid target for a control-flow transfer. A direct function call through a function name is assumed to be a safe call thus direct calls are not instrumented by the compiler. The @code{nocf_check} attribute is applied to an object's type. In case of assignment of a function address or a function pointer to another pointer, the attribute is not carried over from the right-hand object's type; the type of left-hand object stays unchanged. The compiler checks for @code{nocf_check} attribute mismatch and reports a warning in case of mismatch. @smallexample @{ int foo (void) __attribute__(nocf_check); void (*foo1)(void) __attribute__(nocf_check); void (*foo2)(void); int foo (void) /* The function's address is assumed to be valid. */ /* This call site is not checked for control-flow validity. */ (*foo1)(); foo1 = foo2; /* A warning is printed about attribute mismatch. */ /* This call site is still not checked for control-flow validity. */ (*foo1)(); /* This call site is checked for control-flow validity. */ (*foo2)(); foo2 = foo1; /* A warning is printed about attribute mismatch. */ /* This call site is still checked for control-flow validity. */ (*foo2)(); return 0; @} @end smallexample @end table On the x86, the inliner does not inline a function that has different target options than the caller, unless the callee has a subset of the target options of the caller. For example a function declared with @code{target("sse3")} can inline a function with @code{target("sse2")}, since @code{-msse3} implies @code{-msse2}. @end table @node Xstormy16 Function Attributes @subsection Xstormy16 Function Attributes These function attributes are supported by the Xstormy16 back end: @table @code @item interrupt @cindex @code{interrupt} function attribute, Xstormy16 Use this attribute to indicate that the specified function is an interrupt handler. The compiler generates function entry and exit sequences suitable for use in an interrupt handler when this attribute is present. @end table @node Variable Attributes @section Specifying Attributes of Variables @cindex attribute of variables @cindex variable attributes The keyword @code{__attribute__} allows you to specify special attributes of variables or structure fields. This keyword is followed by an attribute specification inside double parentheses. Some attributes are currently defined generically for variables. Other attributes are defined for variables on particular target systems. Other attributes are available for functions (@pxref{Function Attributes}), labels (@pxref{Label Attributes}), enumerators (@pxref{Enumerator Attributes}), statements (@pxref{Statement Attributes}), and for types (@pxref{Type Attributes}). Other front ends might define more attributes (@pxref{C++ Extensions,,Extensions to the C++ Language}). @xref{Attribute Syntax}, for details of the exact syntax for using attributes. @menu * Common Variable Attributes:: * AVR Variable Attributes:: * Blackfin Variable Attributes:: * H8/300 Variable Attributes:: * IA-64 Variable Attributes:: * M32R/D Variable Attributes:: * MeP Variable Attributes:: * Microsoft Windows Variable Attributes:: * MSP430 Variable Attributes:: * Nvidia PTX Variable Attributes:: * PowerPC Variable Attributes:: * RL78 Variable Attributes:: * SPU Variable Attributes:: * V850 Variable Attributes:: * x86 Variable Attributes:: * Xstormy16 Variable Attributes:: @end menu @node Common Variable Attributes @subsection Common Variable Attributes The following attributes are supported on most targets. @table @code @cindex @code{aligned} variable attribute @item aligned (@var{alignment}) This attribute specifies a minimum alignment for the variable or structure field, measured in bytes. For example, the declaration: @smallexample int x __attribute__ ((aligned (16))) = 0; @end smallexample @noindent causes the compiler to allocate the global variable @code{x} on a 16-byte boundary. On a 68040, this could be used in conjunction with an @code{asm} expression to access the @code{move16} instruction which requires 16-byte aligned operands. You can also specify the alignment of structure fields. For example, to create a double-word aligned @code{int} pair, you could write: @smallexample struct foo @{ int x[2] __attribute__ ((aligned (8))); @}; @end smallexample @noindent This is an alternative to creating a union with a @code{double} member, which forces the union to be double-word aligned. As in the preceding examples, you can explicitly specify the alignment (in bytes) that you wish the compiler to use for a given variable or structure field. Alternatively, you can leave out the alignment factor and just ask the compiler to align a variable or field to the default alignment for the target architecture you are compiling for. The default alignment is sufficient for all scalar types, but may not be enough for all vector types on a target that supports vector operations. The default alignment is fixed for a particular target ABI. GCC also provides a target specific macro @code{__BIGGEST_ALIGNMENT__}, which is the largest alignment ever used for any data type on the target machine you are compiling for. For example, you could write: @smallexample short array[3] __attribute__ ((aligned (__BIGGEST_ALIGNMENT__))); @end smallexample The compiler automatically sets the alignment for the declared variable or field to @code{__BIGGEST_ALIGNMENT__}. Doing this can often make copy operations more efficient, because the compiler can use whatever instructions copy the biggest chunks of memory when performing copies to or from the variables or fields that you have aligned this way. Note that the value of @code{__BIGGEST_ALIGNMENT__} may change depending on command-line options. When used on a struct, or struct member, the @code{aligned} attribute can only increase the alignment; in order to decrease it, the @code{packed} attribute must be specified as well. When used as part of a typedef, the @code{aligned} attribute can both increase and decrease alignment, and specifying the @code{packed} attribute generates a warning. Note that the effectiveness of @code{aligned} attributes may be limited by inherent limitations in your linker. On many systems, the linker is only able to arrange for variables to be aligned up to a certain maximum alignment. (For some linkers, the maximum supported alignment may be very very small.) If your linker is only able to align variables up to a maximum of 8-byte alignment, then specifying @code{aligned(16)} in an @code{__attribute__} still only provides you with 8-byte alignment. See your linker documentation for further information. The @code{aligned} attribute can also be used for functions (@pxref{Common Function Attributes}.) @cindex @code{warn_if_not_aligned} variable attribute @item warn_if_not_aligned (@var{alignment}) This attribute specifies a threshold for the structure field, measured in bytes. If the structure field is aligned below the threshold, a warning will be issued. For example, the declaration: @smallexample struct foo @{ int i1; int i2; unsigned long long x __attribute__((warn_if_not_aligned(16))); @}; @end smallexample @noindent causes the compiler to issue an warning on @code{struct foo}, like @samp{warning: alignment 8 of 'struct foo' is less than 16}. The compiler also issues a warning, like @samp{warning: 'x' offset 8 in 'struct foo' isn't aligned to 16}, when the structure field has the misaligned offset: @smallexample struct foo @{ int i1; int i2; unsigned long long x __attribute__((warn_if_not_aligned(16))); @} __attribute__((aligned(16))); @end smallexample This warning can be disabled by @option{-Wno-if-not-aligned}. The @code{warn_if_not_aligned} attribute can also be used for types (@pxref{Common Type Attributes}.) @item cleanup (@var{cleanup_function}) @cindex @code{cleanup} variable attribute The @code{cleanup} attribute runs a function when the variable goes out of scope. This attribute can only be applied to auto function scope variables; it may not be applied to parameters or variables with static storage duration. The function must take one parameter, a pointer to a type compatible with the variable. The return value of the function (if any) is ignored. If @option{-fexceptions} is enabled, then @var{cleanup_function} is run during the stack unwinding that happens during the processing of the exception. Note that the @code{cleanup} attribute does not allow the exception to be caught, only to perform an action. It is undefined what happens if @var{cleanup_function} does not return normally. @item common @itemx nocommon @cindex @code{common} variable attribute @cindex @code{nocommon} variable attribute @opindex fcommon @opindex fno-common The @code{common} attribute requests GCC to place a variable in ``common'' storage. The @code{nocommon} attribute requests the opposite---to allocate space for it directly. These attributes override the default chosen by the @option{-fno-common} and @option{-fcommon} flags respectively. @item deprecated @itemx deprecated (@var{msg}) @cindex @code{deprecated} variable attribute The @code{deprecated} attribute results in a warning if the variable is used anywhere in the source file. This is useful when identifying variables that are expected to be removed in a future version of a program. The warning also includes the location of the declaration of the deprecated variable, to enable users to easily find further information about why the variable is deprecated, or what they should do instead. Note that the warning only occurs for uses: @smallexample extern int old_var __attribute__ ((deprecated)); extern int old_var; int new_fn () @{ return old_var; @} @end smallexample @noindent results in a warning on line 3 but not line 2. The optional @var{msg} argument, which must be a string, is printed in the warning if present. The @code{deprecated} attribute can also be used for functions and types (@pxref{Common Function Attributes}, @pxref{Common Type Attributes}). @item nonstring (@var{nonstring}) @cindex @code{nonstring} variable attribute The @code{nonstring} variable attribute specifies that an object or member declaration with type array of @code{char} or pointer to @code{char} is intended to store character arrays that do not necessarily contain a terminating @code{NUL} character. This is useful to avoid warnings when such an array or pointer is used as an argument to a bounded string manipulation function such as @code{strncpy}. For example, without the attribute, GCC will issue a warning for the call below because it may truncate the copy without appending the terminating NUL character. Using the attribute makes it possible to suppress the warning. @smallexample struct Data @{ char name [32] __attribute__ ((nonstring)); @}; void f (struct Data *pd, const char *s) @{ strncpy (pd->name, s, sizeof pd->name); @dots{} @} @end smallexample @item mode (@var{mode}) @cindex @code{mode} variable attribute This attribute specifies the data type for the declaration---whichever type corresponds to the mode @var{mode}. This in effect lets you request an integer or floating-point type according to its width. @xref{Machine Modes,,, gccint, GNU Compiler Collection (GCC) Internals}, for a list of the possible keywords for @var{mode}. You may also specify a mode of @code{byte} or @code{__byte__} to indicate the mode corresponding to a one-byte integer, @code{word} or @code{__word__} for the mode of a one-word integer, and @code{pointer} or @code{__pointer__} for the mode used to represent pointers. @item packed @cindex @code{packed} variable attribute The @code{packed} attribute specifies that a variable or structure field should have the smallest possible alignment---one byte for a variable, and one bit for a field, unless you specify a larger value with the @code{aligned} attribute. Here is a structure in which the field @code{x} is packed, so that it immediately follows @code{a}: @smallexample struct foo @{ char a; int x[2] __attribute__ ((packed)); @}; @end smallexample @emph{Note:} The 4.1, 4.2 and 4.3 series of GCC ignore the @code{packed} attribute on bit-fields of type @code{char}. This has been fixed in GCC 4.4 but the change can lead to differences in the structure layout. See the documentation of @option{-Wpacked-bitfield-compat} for more information. @item section ("@var{section-name}") @cindex @code{section} variable attribute Normally, the compiler places the objects it generates in sections like @code{data} and @code{bss}. Sometimes, however, you need additional sections, or you need certain particular variables to appear in special sections, for example to map to special hardware. The @code{section} attribute specifies that a variable (or function) lives in a particular section. For example, this small program uses several specific section names: @smallexample struct duart a __attribute__ ((section ("DUART_A"))) = @{ 0 @}; struct duart b __attribute__ ((section ("DUART_B"))) = @{ 0 @}; char stack[10000] __attribute__ ((section ("STACK"))) = @{ 0 @}; int init_data __attribute__ ((section ("INITDATA"))); main() @{ /* @r{Initialize stack pointer} */ init_sp (stack + sizeof (stack)); /* @r{Initialize initialized data} */ memcpy (&init_data, &data, &edata - &data); /* @r{Turn on the serial ports} */ init_duart (&a); init_duart (&b); @} @end smallexample @noindent Use the @code{section} attribute with @emph{global} variables and not @emph{local} variables, as shown in the example. You may use the @code{section} attribute with initialized or uninitialized global variables but the linker requires each object be defined once, with the exception that uninitialized variables tentatively go in the @code{common} (or @code{bss}) section and can be multiply ``defined''. Using the @code{section} attribute changes what section the variable goes into and may cause the linker to issue an error if an uninitialized variable has multiple definitions. You can force a variable to be initialized with the @option{-fno-common} flag or the @code{nocommon} attribute. Some file formats do not support arbitrary sections so the @code{section} attribute is not available on all platforms. If you need to map the entire contents of a module to a particular section, consider using the facilities of the linker instead. @item tls_model ("@var{tls_model}") @cindex @code{tls_model} variable attribute The @code{tls_model} attribute sets thread-local storage model (@pxref{Thread-Local}) of a particular @code{__thread} variable, overriding @option{-ftls-model=} command-line switch on a per-variable basis. The @var{tls_model} argument should be one of @code{global-dynamic}, @code{local-dynamic}, @code{initial-exec} or @code{local-exec}. Not all targets support this attribute. @item unused @cindex @code{unused} variable attribute This attribute, attached to a variable, means that the variable is meant to be possibly unused. GCC does not produce a warning for this variable. @item used @cindex @code{used} variable attribute This attribute, attached to a variable with static storage, means that the variable must be emitted even if it appears that the variable is not referenced. When applied to a static data member of a C++ class template, the attribute also means that the member is instantiated if the class itself is instantiated. @item vector_size (@var{bytes}) @cindex @code{vector_size} variable attribute This attribute specifies the vector size for the variable, measured in bytes. For example, the declaration: @smallexample int foo __attribute__ ((vector_size (16))); @end smallexample @noindent causes the compiler to set the mode for @code{foo}, to be 16 bytes, divided into @code{int} sized units. Assuming a 32-bit int (a vector of 4 units of 4 bytes), the corresponding mode of @code{foo} is V4SI@. This attribute is only applicable to integral and float scalars, although arrays, pointers, and function return values are allowed in conjunction with this construct. Aggregates with this attribute are invalid, even if they are of the same size as a corresponding scalar. For example, the declaration: @smallexample struct S @{ int a; @}; struct S __attribute__ ((vector_size (16))) foo; @end smallexample @noindent is invalid even if the size of the structure is the same as the size of the @code{int}. @item visibility ("@var{visibility_type}") @cindex @code{visibility} variable attribute This attribute affects the linkage of the declaration to which it is attached. The @code{visibility} attribute is described in @ref{Common Function Attributes}. @item weak @cindex @code{weak} variable attribute The @code{weak} attribute is described in @ref{Common Function Attributes}. @end table @node AVR Variable Attributes @subsection AVR Variable Attributes @table @code @item progmem @cindex @code{progmem} variable attribute, AVR The @code{progmem} attribute is used on the AVR to place read-only data in the non-volatile program memory (flash). The @code{progmem} attribute accomplishes this by putting respective variables into a section whose name starts with @code{.progmem}. This attribute works similar to the @code{section} attribute but adds additional checking. @table @asis @item @bullet{}@tie{} Ordinary AVR cores with 32 general purpose registers: @code{progmem} affects the location of the data but not how this data is accessed. In order to read data located with the @code{progmem} attribute (inline) assembler must be used. @smallexample /* Use custom macros from @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC}} */ #include <avr/pgmspace.h> /* Locate var in flash memory */ const int var[2] PROGMEM = @{ 1, 2 @}; int read_var (int i) @{ /* Access var[] by accessor macro from avr/pgmspace.h */ return (int) pgm_read_word (& var[i]); @} @end smallexample AVR is a Harvard architecture processor and data and read-only data normally resides in the data memory (RAM). See also the @ref{AVR Named Address Spaces} section for an alternate way to locate and access data in flash memory. @item @bullet{}@tie{} AVR cores with flash memory visible in the RAM address range: On such devices, there is no need for attribute @code{progmem} or @ref{AVR Named Address Spaces,,@code{__flash}} qualifier at all. Just use standard C / C++. The compiler will generate @code{LD*} instructions. As flash memory is visible in the RAM address range, and the default linker script does @emph{not} locate @code{.rodata} in RAM, no special features are needed in order not to waste RAM for read-only data or to read from flash. You might even get slightly better performance by avoiding @code{progmem} and @code{__flash}. This applies to devices from families @code{avrtiny} and @code{avrxmega3}, see @ref{AVR Options} for an overview. @item @bullet{}@tie{}Reduced AVR Tiny cores like ATtiny40: The compiler adds @code{0x4000} to the addresses of objects and declarations in @code{progmem} and locates the objects in flash memory, namely in section @code{.progmem.data}. The offset is needed because the flash memory is visible in the RAM address space starting at address @code{0x4000}. Data in @code{progmem} can be accessed by means of ordinary C@tie{}code, no special functions or macros are needed. @smallexample /* var is located in flash memory */ extern const int var[2] __attribute__((progmem)); int read_var (int i) @{ return var[i]; @} @end smallexample Please notice that on these devices, there is no need for @code{progmem} at all. @end table @item io @itemx io (@var{addr}) @cindex @code{io} variable attribute, AVR Variables with the @code{io} attribute are used to address memory-mapped peripherals in the io address range. If an address is specified, the variable is assigned that address, and the value is interpreted as an address in the data address space. Example: @smallexample volatile int porta __attribute__((io (0x22))); @end smallexample The address specified in the address in the data address range. Otherwise, the variable it is not assigned an address, but the compiler will still use in/out instructions where applicable, assuming some other module assigns an address in the io address range. Example: @smallexample extern volatile int porta __attribute__((io)); @end smallexample @item io_low @itemx io_low (@var{addr}) @cindex @code{io_low} variable attribute, AVR This is like the @code{io} attribute, but additionally it informs the compiler that the object lies in the lower half of the I/O area, allowing the use of @code{cbi}, @code{sbi}, @code{sbic} and @code{sbis} instructions. @item address @itemx address (@var{addr}) @cindex @code{address} variable attribute, AVR Variables with the @code{address} attribute are used to address memory-mapped peripherals that may lie outside the io address range. @smallexample volatile int porta __attribute__((address (0x600))); @end smallexample @item absdata @cindex @code{absdata} variable attribute, AVR Variables in static storage and with the @code{absdata} attribute can be accessed by the @code{LDS} and @code{STS} instructions which take absolute addresses. @itemize @bullet @item This attribute is only supported for the reduced AVR Tiny core like ATtiny40. @item You must make sure that respective data is located in the address range @code{0x40}@dots{}@code{0xbf} accessible by @code{LDS} and @code{STS}. One way to achieve this as an appropriate linker description file. @item If the location does not fit the address range of @code{LDS} and @code{STS}, there is currently (Binutils 2.26) just an unspecific warning like @quotation @code{module.c:(.text+0x1c): warning: internal error: out of range error} @end quotation @end itemize See also the @option{-mabsdata} @ref{AVR Options,command-line option}. @end table @node Blackfin Variable Attributes @subsection Blackfin Variable Attributes Three attributes are currently defined for the Blackfin. @table @code @item l1_data @itemx l1_data_A @itemx l1_data_B @cindex @code{l1_data} variable attribute, Blackfin @cindex @code{l1_data_A} variable attribute, Blackfin @cindex @code{l1_data_B} variable attribute, Blackfin Use these attributes on the Blackfin to place the variable into L1 Data SRAM. Variables with @code{l1_data} attribute are put into the specific section named @code{.l1.data}. Those with @code{l1_data_A} attribute are put into the specific section named @code{.l1.data.A}. Those with @code{l1_data_B} attribute are put into the specific section named @code{.l1.data.B}. @item l2 @cindex @code{l2} variable attribute, Blackfin Use this attribute on the Blackfin to place the variable into L2 SRAM. Variables with @code{l2} attribute are put into the specific section named @code{.l2.data}. @end table @node H8/300 Variable Attributes @subsection H8/300 Variable Attributes These variable attributes are available for H8/300 targets: @table @code @item eightbit_data @cindex @code{eightbit_data} variable attribute, H8/300 @cindex eight-bit data on the H8/300, H8/300H, and H8S Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified variable should be placed into the eight-bit data section. The compiler generates more efficient code for certain operations on data in the eight-bit data area. Note the eight-bit data area is limited to 256 bytes of data. You must use GAS and GLD from GNU binutils version 2.7 or later for this attribute to work correctly. @item tiny_data @cindex @code{tiny_data} variable attribute, H8/300 @cindex tiny data section on the H8/300H and H8S Use this attribute on the H8/300H and H8S to indicate that the specified variable should be placed into the tiny data section. The compiler generates more efficient code for loads and stores on data in the tiny data section. Note the tiny data area is limited to slightly under 32KB of data. @end table @node IA-64 Variable Attributes @subsection IA-64 Variable Attributes The IA-64 back end supports the following variable attribute: @table @code @item model (@var{model-name}) @cindex @code{model} variable attribute, IA-64 On IA-64, use this attribute to set the addressability of an object. At present, the only supported identifier for @var{model-name} is @code{small}, indicating addressability via ``small'' (22-bit) addresses (so that their addresses can be loaded with the @code{addl} instruction). Caveat: such addressing is by definition not position independent and hence this attribute must not be used for objects defined by shared libraries. @end table @node M32R/D Variable Attributes @subsection M32R/D Variable Attributes One attribute is currently defined for the M32R/D@. @table @code @item model (@var{model-name}) @cindex @code{model-name} variable attribute, M32R/D @cindex variable addressability on the M32R/D Use this attribute on the M32R/D to set the addressability of an object. The identifier @var{model-name} is one of @code{small}, @code{medium}, or @code{large}, representing each of the code models. Small model objects live in the lower 16MB of memory (so that their addresses can be loaded with the @code{ld24} instruction). Medium and large model objects may live anywhere in the 32-bit address space (the compiler generates @code{seth/add3} instructions to load their addresses). @end table @node MeP Variable Attributes @subsection MeP Variable Attributes The MeP target has a number of addressing modes and busses. The @code{near} space spans the standard memory space's first 16 megabytes (24 bits). The @code{far} space spans the entire 32-bit memory space. The @code{based} space is a 128-byte region in the memory space that is addressed relative to the @code{$tp} register. The @code{tiny} space is a 65536-byte region relative to the @code{$gp} register. In addition to these memory regions, the MeP target has a separate 16-bit control bus which is specified with @code{cb} attributes. @table @code @item based @cindex @code{based} variable attribute, MeP Any variable with the @code{based} attribute is assigned to the @code{.based} section, and is accessed with relative to the @code{$tp} register. @item tiny @cindex @code{tiny} variable attribute, MeP Likewise, the @code{tiny} attribute assigned variables to the @code{.tiny} section, relative to the @code{$gp} register. @item near @cindex @code{near} variable attribute, MeP Variables with the @code{near} attribute are assumed to have addresses that fit in a 24-bit addressing mode. This is the default for large variables (@code{-mtiny=4} is the default) but this attribute can override @code{-mtiny=} for small variables, or override @code{-ml}. @item far @cindex @code{far} variable attribute, MeP Variables with the @code{far} attribute are addressed using a full 32-bit address. Since this covers the entire memory space, this allows modules to make no assumptions about where variables might be stored. @item io @cindex @code{io} variable attribute, MeP @itemx io (@var{addr}) Variables with the @code{io} attribute are used to address memory-mapped peripherals. If an address is specified, the variable is assigned that address, else it is not assigned an address (it is assumed some other module assigns an address). Example: @smallexample int timer_count __attribute__((io(0x123))); @end smallexample @item cb @itemx cb (@var{addr}) @cindex @code{cb} variable attribute, MeP Variables with the @code{cb} attribute are used to access the control bus, using special instructions. @code{addr} indicates the control bus address. Example: @smallexample int cpu_clock __attribute__((cb(0x123))); @end smallexample @end table @node Microsoft Windows Variable Attributes @subsection Microsoft Windows Variable Attributes You can use these attributes on Microsoft Windows targets. @ref{x86 Variable Attributes} for additional Windows compatibility attributes available on all x86 targets. @table @code @item dllimport @itemx dllexport @cindex @code{dllimport} variable attribute @cindex @code{dllexport} variable attribute The @code{dllimport} and @code{dllexport} attributes are described in @ref{Microsoft Windows Function Attributes}. @item selectany @cindex @code{selectany} variable attribute The @code{selectany} attribute causes an initialized global variable to have link-once semantics. When multiple definitions of the variable are encountered by the linker, the first is selected and the remainder are discarded. Following usage by the Microsoft compiler, the linker is told @emph{not} to warn about size or content differences of the multiple definitions. Although the primary usage of this attribute is for POD types, the attribute can also be applied to global C++ objects that are initialized by a constructor. In this case, the static initialization and destruction code for the object is emitted in each translation defining the object, but the calls to the constructor and destructor are protected by a link-once guard variable. The @code{selectany} attribute is only available on Microsoft Windows targets. You can use @code{__declspec (selectany)} as a synonym for @code{__attribute__ ((selectany))} for compatibility with other compilers. @item shared @cindex @code{shared} variable attribute On Microsoft Windows, in addition to putting variable definitions in a named section, the section can also be shared among all running copies of an executable or DLL@. For example, this small program defines shared data by putting it in a named section @code{shared} and marking the section shareable: @smallexample int foo __attribute__((section ("shared"), shared)) = 0; int main() @{ /* @r{Read and write foo. All running copies see the same value.} */ return 0; @} @end smallexample @noindent You may only use the @code{shared} attribute along with @code{section} attribute with a fully-initialized global definition because of the way linkers work. See @code{section} attribute for more information. The @code{shared} attribute is only available on Microsoft Windows@. @end table @node MSP430 Variable Attributes @subsection MSP430 Variable Attributes @table @code @item noinit @cindex @code{noinit} variable attribute, MSP430 Any data with the @code{noinit} attribute will not be initialised by the C runtime startup code, or the program loader. Not initialising data in this way can reduce program startup times. @item persistent @cindex @code{persistent} variable attribute, MSP430 Any variable with the @code{persistent} attribute will not be initialised by the C runtime startup code. Instead its value will be set once, when the application is loaded, and then never initialised again, even if the processor is reset or the program restarts. Persistent data is intended to be placed into FLASH RAM, where its value will be retained across resets. The linker script being used to create the application should ensure that persistent data is correctly placed. @item lower @itemx upper @itemx either @cindex @code{lower} variable attribute, MSP430 @cindex @code{upper} variable attribute, MSP430 @cindex @code{either} variable attribute, MSP430 These attributes are the same as the MSP430 function attributes of the same name (@pxref{MSP430 Function Attributes}). These attributes can be applied to both functions and variables. @end table @node Nvidia PTX Variable Attributes @subsection Nvidia PTX Variable Attributes These variable attributes are supported by the Nvidia PTX back end: @table @code @item shared @cindex @code{shared} attribute, Nvidia PTX Use this attribute to place a variable in the @code{.shared} memory space. This memory space is private to each cooperative thread array; only threads within one thread block refer to the same instance of the variable. The runtime does not initialize variables in this memory space. @end table @node PowerPC Variable Attributes @subsection PowerPC Variable Attributes Three attributes currently are defined for PowerPC configurations: @code{altivec}, @code{ms_struct} and @code{gcc_struct}. @cindex @code{ms_struct} variable attribute, PowerPC @cindex @code{gcc_struct} variable attribute, PowerPC For full documentation of the struct attributes please see the documentation in @ref{x86 Variable Attributes}. @cindex @code{altivec} variable attribute, PowerPC For documentation of @code{altivec} attribute please see the documentation in @ref{PowerPC Type Attributes}. @node RL78 Variable Attributes @subsection RL78 Variable Attributes @cindex @code{saddr} variable attribute, RL78 The RL78 back end supports the @code{saddr} variable attribute. This specifies placement of the corresponding variable in the SADDR area, which can be accessed more efficiently than the default memory region. @node SPU Variable Attributes @subsection SPU Variable Attributes @cindex @code{spu_vector} variable attribute, SPU The SPU supports the @code{spu_vector} attribute for variables. For documentation of this attribute please see the documentation in @ref{SPU Type Attributes}. @node V850 Variable Attributes @subsection V850 Variable Attributes These variable attributes are supported by the V850 back end: @table @code @item sda @cindex @code{sda} variable attribute, V850 Use this attribute to explicitly place a variable in the small data area, which can hold up to 64 kilobytes. @item tda @cindex @code{tda} variable attribute, V850 Use this attribute to explicitly place a variable in the tiny data area, which can hold up to 256 bytes in total. @item zda @cindex @code{zda} variable attribute, V850 Use this attribute to explicitly place a variable in the first 32 kilobytes of memory. @end table @node x86 Variable Attributes @subsection x86 Variable Attributes Two attributes are currently defined for x86 configurations: @code{ms_struct} and @code{gcc_struct}. @table @code @item ms_struct @itemx gcc_struct @cindex @code{ms_struct} variable attribute, x86 @cindex @code{gcc_struct} variable attribute, x86 If @code{packed} is used on a structure, or if bit-fields are used, it may be that the Microsoft ABI lays out the structure differently than the way GCC normally does. Particularly when moving packed data between functions compiled with GCC and the native Microsoft compiler (either via function call or as data in a file), it may be necessary to access either format. The @code{ms_struct} and @code{gcc_struct} attributes correspond to the @option{-mms-bitfields} and @option{-mno-ms-bitfields} command-line options, respectively; see @ref{x86 Options}, for details of how structure layout is affected. @xref{x86 Type Attributes}, for information about the corresponding attributes on types. @end table @node Xstormy16 Variable Attributes @subsection Xstormy16 Variable Attributes One attribute is currently defined for xstormy16 configurations: @code{below100}. @table @code @item below100 @cindex @code{below100} variable attribute, Xstormy16 If a variable has the @code{below100} attribute (@code{BELOW100} is allowed also), GCC places the variable in the first 0x100 bytes of memory and use special opcodes to access it. Such variables are placed in either the @code{.bss_below100} section or the @code{.data_below100} section. @end table @node Type Attributes @section Specifying Attributes of Types @cindex attribute of types @cindex type attributes The keyword @code{__attribute__} allows you to specify special attributes of types. Some type attributes apply only to @code{struct} and @code{union} types, while others can apply to any type defined via a @code{typedef} declaration. Other attributes are defined for functions (@pxref{Function Attributes}), labels (@pxref{Label Attributes}), enumerators (@pxref{Enumerator Attributes}), statements (@pxref{Statement Attributes}), and for variables (@pxref{Variable Attributes}). The @code{__attribute__} keyword is followed by an attribute specification inside double parentheses. You may specify type attributes in an enum, struct or union type declaration or definition by placing them immediately after the @code{struct}, @code{union} or @code{enum} keyword. A less preferred syntax is to place them just past the closing curly brace of the definition. You can also include type attributes in a @code{typedef} declaration. @xref{Attribute Syntax}, for details of the exact syntax for using attributes. @menu * Common Type Attributes:: * ARM Type Attributes:: * MeP Type Attributes:: * PowerPC Type Attributes:: * SPU Type Attributes:: * x86 Type Attributes:: @end menu @node Common Type Attributes @subsection Common Type Attributes The following type attributes are supported on most targets. @table @code @cindex @code{aligned} type attribute @item aligned (@var{alignment}) This attribute specifies a minimum alignment (in bytes) for variables of the specified type. For example, the declarations: @smallexample struct S @{ short f[3]; @} __attribute__ ((aligned (8))); typedef int more_aligned_int __attribute__ ((aligned (8))); @end smallexample @noindent force the compiler to ensure (as far as it can) that each variable whose type is @code{struct S} or @code{more_aligned_int} is allocated and aligned @emph{at least} on a 8-byte boundary. On a SPARC, having all variables of type @code{struct S} aligned to 8-byte boundaries allows the compiler to use the @code{ldd} and @code{std} (doubleword load and store) instructions when copying one variable of type @code{struct S} to another, thus improving run-time efficiency. Note that the alignment of any given @code{struct} or @code{union} type is required by the ISO C standard to be at least a perfect multiple of the lowest common multiple of the alignments of all of the members of the @code{struct} or @code{union} in question. This means that you @emph{can} effectively adjust the alignment of a @code{struct} or @code{union} type by attaching an @code{aligned} attribute to any one of the members of such a type, but the notation illustrated in the example above is a more obvious, intuitive, and readable way to request the compiler to adjust the alignment of an entire @code{struct} or @code{union} type. As in the preceding example, you can explicitly specify the alignment (in bytes) that you wish the compiler to use for a given @code{struct} or @code{union} type. Alternatively, you can leave out the alignment factor and just ask the compiler to align a type to the maximum useful alignment for the target machine you are compiling for. For example, you could write: @smallexample struct S @{ short f[3]; @} __attribute__ ((aligned)); @end smallexample Whenever you leave out the alignment factor in an @code{aligned} attribute specification, the compiler automatically sets the alignment for the type to the largest alignment that is ever used for any data type on the target machine you are compiling for. Doing this can often make copy operations more efficient, because the compiler can use whatever instructions copy the biggest chunks of memory when performing copies to or from the variables that have types that you have aligned this way. In the example above, if the size of each @code{short} is 2 bytes, then the size of the entire @code{struct S} type is 6 bytes. The smallest power of two that is greater than or equal to that is 8, so the compiler sets the alignment for the entire @code{struct S} type to 8 bytes. Note that although you can ask the compiler to select a time-efficient alignment for a given type and then declare only individual stand-alone objects of that type, the compiler's ability to select a time-efficient alignment is primarily useful only when you plan to create arrays of variables having the relevant (efficiently aligned) type. If you declare or use arrays of variables of an efficiently-aligned type, then it is likely that your program also does pointer arithmetic (or subscripting, which amounts to the same thing) on pointers to the relevant type, and the code that the compiler generates for these pointer arithmetic operations is often more efficient for efficiently-aligned types than for other types. Note that the effectiveness of @code{aligned} attributes may be limited by inherent limitations in your linker. On many systems, the linker is only able to arrange for variables to be aligned up to a certain maximum alignment. (For some linkers, the maximum supported alignment may be very very small.) If your linker is only able to align variables up to a maximum of 8-byte alignment, then specifying @code{aligned(16)} in an @code{__attribute__} still only provides you with 8-byte alignment. See your linker documentation for further information. The @code{aligned} attribute can only increase alignment. Alignment can be decreased by specifying the @code{packed} attribute. See below. @cindex @code{warn_if_not_aligned} type attribute @item warn_if_not_aligned (@var{alignment}) This attribute specifies a threshold for the structure field, measured in bytes. If the structure field is aligned below the threshold, a warning will be issued. For example, the declaration: @smallexample typedef unsigned long long __u64 __attribute__((aligned(4),warn_if_not_aligned(8))); struct foo @{ int i1; int i2; __u64 x; @}; @end smallexample @noindent causes the compiler to issue an warning on @code{struct foo}, like @samp{warning: alignment 4 of 'struct foo' is less than 8}. It is used to define @code{struct foo} in such a way that @code{struct foo} has the same layout and the structure field @code{x} has the same alignment when @code{__u64} is aligned at either 4 or 8 bytes. Align @code{struct foo} to 8 bytes: @smallexample struct foo @{ int i1; int i2; __u64 x; @} __attribute__((aligned(8))); @end smallexample @noindent silences the warning. The compiler also issues a warning, like @samp{warning: 'x' offset 12 in 'struct foo' isn't aligned to 8}, when the structure field has the misaligned offset: @smallexample struct foo @{ int i1; int i2; int i3; __u64 x; @} __attribute__((aligned(8))); @end smallexample This warning can be disabled by @option{-Wno-if-not-aligned}. @item bnd_variable_size @cindex @code{bnd_variable_size} type attribute @cindex Pointer Bounds Checker attributes When applied to a structure field, this attribute tells Pointer Bounds Checker that the size of this field should not be computed using static type information. It may be used to mark variably-sized static array fields placed at the end of a structure. @smallexample struct S @{ int size; char data[1]; @} S *p = (S *)malloc (sizeof(S) + 100); p->data[10] = 0; //Bounds violation @end smallexample @noindent By using an attribute for the field we may avoid unwanted bound violation checks: @smallexample struct S @{ int size; char data[1] __attribute__((bnd_variable_size)); @} S *p = (S *)malloc (sizeof(S) + 100); p->data[10] = 0; //OK @end smallexample @item deprecated @itemx deprecated (@var{msg}) @cindex @code{deprecated} type attribute The @code{deprecated} attribute results in a warning if the type is used anywhere in the source file. This is useful when identifying types that are expected to be removed in a future version of a program. If possible, the warning also includes the location of the declaration of the deprecated type, to enable users to easily find further information about why the type is deprecated, or what they should do instead. Note that the warnings only occur for uses and then only if the type is being applied to an identifier that itself is not being declared as deprecated. @smallexample typedef int T1 __attribute__ ((deprecated)); T1 x; typedef T1 T2; T2 y; typedef T1 T3 __attribute__ ((deprecated)); T3 z __attribute__ ((deprecated)); @end smallexample @noindent results in a warning on line 2 and 3 but not lines 4, 5, or 6. No warning is issued for line 4 because T2 is not explicitly deprecated. Line 5 has no warning because T3 is explicitly deprecated. Similarly for line 6. The optional @var{msg} argument, which must be a string, is printed in the warning if present. The @code{deprecated} attribute can also be used for functions and variables (@pxref{Function Attributes}, @pxref{Variable Attributes}.) @item designated_init @cindex @code{designated_init} type attribute This attribute may only be applied to structure types. It indicates that any initialization of an object of this type must use designated initializers rather than positional initializers. The intent of this attribute is to allow the programmer to indicate that a structure's layout may change, and that therefore relying on positional initialization will result in future breakage. GCC emits warnings based on this attribute by default; use @option{-Wno-designated-init} to suppress them. @item may_alias @cindex @code{may_alias} type attribute Accesses through pointers to types with this attribute are not subject to type-based alias analysis, but are instead assumed to be able to alias any other type of objects. In the context of section 6.5 paragraph 7 of the C99 standard, an lvalue expression dereferencing such a pointer is treated like having a character type. See @option{-fstrict-aliasing} for more information on aliasing issues. This extension exists to support some vector APIs, in which pointers to one vector type are permitted to alias pointers to a different vector type. Note that an object of a type with this attribute does not have any special semantics. Example of use: @smallexample typedef short __attribute__((__may_alias__)) short_a; int main (void) @{ int a = 0x12345678; short_a *b = (short_a *) &a; b[1] = 0; if (a == 0x12345678) abort(); exit(0); @} @end smallexample @noindent If you replaced @code{short_a} with @code{short} in the variable declaration, the above program would abort when compiled with @option{-fstrict-aliasing}, which is on by default at @option{-O2} or above. @item packed @cindex @code{packed} type attribute This attribute, attached to @code{struct} or @code{union} type definition, specifies that each member (other than zero-width bit-fields) of the structure or union is placed to minimize the memory required. When attached to an @code{enum} definition, it indicates that the smallest integral type should be used. @opindex fshort-enums Specifying the @code{packed} attribute for @code{struct} and @code{union} types is equivalent to specifying the @code{packed} attribute on each of the structure or union members. Specifying the @option{-fshort-enums} flag on the command line is equivalent to specifying the @code{packed} attribute on all @code{enum} definitions. In the following example @code{struct my_packed_struct}'s members are packed closely together, but the internal layout of its @code{s} member is not packed---to do that, @code{struct my_unpacked_struct} needs to be packed too. @smallexample struct my_unpacked_struct @{ char c; int i; @}; struct __attribute__ ((__packed__)) my_packed_struct @{ char c; int i; struct my_unpacked_struct s; @}; @end smallexample You may only specify the @code{packed} attribute attribute on the definition of an @code{enum}, @code{struct} or @code{union}, not on a @code{typedef} that does not also define the enumerated type, structure or union. @item scalar_storage_order ("@var{endianness}") @cindex @code{scalar_storage_order} type attribute When attached to a @code{union} or a @code{struct}, this attribute sets the storage order, aka endianness, of the scalar fields of the type, as well as the array fields whose component is scalar. The supported endiannesses are @code{big-endian} and @code{little-endian}. The attribute has no effects on fields which are themselves a @code{union}, a @code{struct} or an array whose component is a @code{union} or a @code{struct}, and it is possible for these fields to have a different scalar storage order than the enclosing type. This attribute is supported only for targets that use a uniform default scalar storage order (fortunately, most of them), i.e. targets that store the scalars either all in big-endian or all in little-endian. Additional restrictions are enforced for types with the reverse scalar storage order with regard to the scalar storage order of the target: @itemize @item Taking the address of a scalar field of a @code{union} or a @code{struct} with reverse scalar storage order is not permitted and yields an error. @item Taking the address of an array field, whose component is scalar, of a @code{union} or a @code{struct} with reverse scalar storage order is permitted but yields a warning, unless @option{-Wno-scalar-storage-order} is specified. @item Taking the address of a @code{union} or a @code{struct} with reverse scalar storage order is permitted. @end itemize These restrictions exist because the storage order attribute is lost when the address of a scalar or the address of an array with scalar component is taken, so storing indirectly through this address generally does not work. The second case is nevertheless allowed to be able to perform a block copy from or to the array. Moreover, the use of type punning or aliasing to toggle the storage order is not supported; that is to say, a given scalar object cannot be accessed through distinct types that assign a different storage order to it. @item transparent_union @cindex @code{transparent_union} type attribute This attribute, attached to a @code{union} type definition, indicates that any function parameter having that union type causes calls to that function to be treated in a special way. First, the argument corresponding to a transparent union type can be of any type in the union; no cast is required. Also, if the union contains a pointer type, the corresponding argument can be a null pointer constant or a void pointer expression; and if the union contains a void pointer type, the corresponding argument can be any pointer expression. If the union member type is a pointer, qualifiers like @code{const} on the referenced type must be respected, just as with normal pointer conversions. Second, the argument is passed to the function using the calling conventions of the first member of the transparent union, not the calling conventions of the union itself. All members of the union must have the same machine representation; this is necessary for this argument passing to work properly. Transparent unions are designed for library functions that have multiple interfaces for compatibility reasons. For example, suppose the @code{wait} function must accept either a value of type @code{int *} to comply with POSIX, or a value of type @code{union wait *} to comply with the 4.1BSD interface. If @code{wait}'s parameter were @code{void *}, @code{wait} would accept both kinds of arguments, but it would also accept any other pointer type and this would make argument type checking less useful. Instead, @code{<sys/wait.h>} might define the interface as follows: @smallexample typedef union __attribute__ ((__transparent_union__)) @{ int *__ip; union wait *__up; @} wait_status_ptr_t; pid_t wait (wait_status_ptr_t); @end smallexample @noindent This interface allows either @code{int *} or @code{union wait *} arguments to be passed, using the @code{int *} calling convention. The program can call @code{wait} with arguments of either type: @smallexample int w1 () @{ int w; return wait (&w); @} int w2 () @{ union wait w; return wait (&w); @} @end smallexample @noindent With this interface, @code{wait}'s implementation might look like this: @smallexample pid_t wait (wait_status_ptr_t p) @{ return waitpid (-1, p.__ip, 0); @} @end smallexample @item unused @cindex @code{unused} type attribute When attached to a type (including a @code{union} or a @code{struct}), this attribute means that variables of that type are meant to appear possibly unused. GCC does not produce a warning for any variables of that type, even if the variable appears to do nothing. This is often the case with lock or thread classes, which are usually defined and then not referenced, but contain constructors and destructors that have nontrivial bookkeeping functions. @item visibility @cindex @code{visibility} type attribute In C++, attribute visibility (@pxref{Function Attributes}) can also be applied to class, struct, union and enum types. Unlike other type attributes, the attribute must appear between the initial keyword and the name of the type; it cannot appear after the body of the type. Note that the type visibility is applied to vague linkage entities associated with the class (vtable, typeinfo node, etc.). In particular, if a class is thrown as an exception in one shared object and caught in another, the class must have default visibility. Otherwise the two shared objects are unable to use the same typeinfo node and exception handling will break. @end table To specify multiple attributes, separate them by commas within the double parentheses: for example, @samp{__attribute__ ((aligned (16), packed))}. @node ARM Type Attributes @subsection ARM Type Attributes @cindex @code{notshared} type attribute, ARM On those ARM targets that support @code{dllimport} (such as Symbian OS), you can use the @code{notshared} attribute to indicate that the virtual table and other similar data for a class should not be exported from a DLL@. For example: @smallexample class __declspec(notshared) C @{ public: __declspec(dllimport) C(); virtual void f(); @} __declspec(dllexport) C::C() @{@} @end smallexample @noindent In this code, @code{C::C} is exported from the current DLL, but the virtual table for @code{C} is not exported. (You can use @code{__attribute__} instead of @code{__declspec} if you prefer, but most Symbian OS code uses @code{__declspec}.) @node MeP Type Attributes @subsection MeP Type Attributes @cindex @code{based} type attribute, MeP @cindex @code{tiny} type attribute, MeP @cindex @code{near} type attribute, MeP @cindex @code{far} type attribute, MeP Many of the MeP variable attributes may be applied to types as well. Specifically, the @code{based}, @code{tiny}, @code{near}, and @code{far} attributes may be applied to either. The @code{io} and @code{cb} attributes may not be applied to types. @node PowerPC Type Attributes @subsection PowerPC Type Attributes Three attributes currently are defined for PowerPC configurations: @code{altivec}, @code{ms_struct} and @code{gcc_struct}. @cindex @code{ms_struct} type attribute, PowerPC @cindex @code{gcc_struct} type attribute, PowerPC For full documentation of the @code{ms_struct} and @code{gcc_struct} attributes please see the documentation in @ref{x86 Type Attributes}. @cindex @code{altivec} type attribute, PowerPC The @code{altivec} attribute allows one to declare AltiVec vector data types supported by the AltiVec Programming Interface Manual. The attribute requires an argument to specify one of three vector types: @code{vector__}, @code{pixel__} (always followed by unsigned short), and @code{bool__} (always followed by unsigned). @smallexample __attribute__((altivec(vector__))) __attribute__((altivec(pixel__))) unsigned short __attribute__((altivec(bool__))) unsigned @end smallexample These attributes mainly are intended to support the @code{__vector}, @code{__pixel}, and @code{__bool} AltiVec keywords. @node SPU Type Attributes @subsection SPU Type Attributes @cindex @code{spu_vector} type attribute, SPU The SPU supports the @code{spu_vector} attribute for types. This attribute allows one to declare vector data types supported by the Sony/Toshiba/IBM SPU Language Extensions Specification. It is intended to support the @code{__vector} keyword. @node x86 Type Attributes @subsection x86 Type Attributes Two attributes are currently defined for x86 configurations: @code{ms_struct} and @code{gcc_struct}. @table @code @item ms_struct @itemx gcc_struct @cindex @code{ms_struct} type attribute, x86 @cindex @code{gcc_struct} type attribute, x86 If @code{packed} is used on a structure, or if bit-fields are used it may be that the Microsoft ABI packs them differently than GCC normally packs them. Particularly when moving packed data between functions compiled with GCC and the native Microsoft compiler (either via function call or as data in a file), it may be necessary to access either format. The @code{ms_struct} and @code{gcc_struct} attributes correspond to the @option{-mms-bitfields} and @option{-mno-ms-bitfields} command-line options, respectively; see @ref{x86 Options}, for details of how structure layout is affected. @xref{x86 Variable Attributes}, for information about the corresponding attributes on variables. @end table @node Label Attributes @section Label Attributes @cindex Label Attributes GCC allows attributes to be set on C labels. @xref{Attribute Syntax}, for details of the exact syntax for using attributes. Other attributes are available for functions (@pxref{Function Attributes}), variables (@pxref{Variable Attributes}), enumerators (@pxref{Enumerator Attributes}), statements (@pxref{Statement Attributes}), and for types (@pxref{Type Attributes}). This example uses the @code{cold} label attribute to indicate the @code{ErrorHandling} branch is unlikely to be taken and that the @code{ErrorHandling} label is unused: @smallexample asm goto ("some asm" : : : : NoError); /* This branch (the fall-through from the asm) is less commonly used */ ErrorHandling: __attribute__((cold, unused)); /* Semi-colon is required here */ printf("error\n"); return 0; NoError: printf("no error\n"); return 1; @end smallexample @table @code @item unused @cindex @code{unused} label attribute This feature is intended for program-generated code that may contain unused labels, but which is compiled with @option{-Wall}. It is not normally appropriate to use in it human-written code, though it could be useful in cases where the code that jumps to the label is contained within an @code{#ifdef} conditional. @item hot @cindex @code{hot} label attribute The @code{hot} attribute on a label is used to inform the compiler that the path following the label is more likely than paths that are not so annotated. This attribute is used in cases where @code{__builtin_expect} cannot be used, for instance with computed goto or @code{asm goto}. @item cold @cindex @code{cold} label attribute The @code{cold} attribute on labels is used to inform the compiler that the path following the label is unlikely to be executed. This attribute is used in cases where @code{__builtin_expect} cannot be used, for instance with computed goto or @code{asm goto}. @end table @node Enumerator Attributes @section Enumerator Attributes @cindex Enumerator Attributes GCC allows attributes to be set on enumerators. @xref{Attribute Syntax}, for details of the exact syntax for using attributes. Other attributes are available for functions (@pxref{Function Attributes}), variables (@pxref{Variable Attributes}), labels (@pxref{Label Attributes}), statements (@pxref{Statement Attributes}), and for types (@pxref{Type Attributes}). This example uses the @code{deprecated} enumerator attribute to indicate the @code{oldval} enumerator is deprecated: @smallexample enum E @{ oldval __attribute__((deprecated)), newval @}; int fn (void) @{ return oldval; @} @end smallexample @table @code @item deprecated @cindex @code{deprecated} enumerator attribute The @code{deprecated} attribute results in a warning if the enumerator is used anywhere in the source file. This is useful when identifying enumerators that are expected to be removed in a future version of a program. The warning also includes the location of the declaration of the deprecated enumerator, to enable users to easily find further information about why the enumerator is deprecated, or what they should do instead. Note that the warnings only occurs for uses. @end table @node Statement Attributes @section Statement Attributes @cindex Statement Attributes GCC allows attributes to be set on null statements. @xref{Attribute Syntax}, for details of the exact syntax for using attributes. Other attributes are available for functions (@pxref{Function Attributes}), variables (@pxref{Variable Attributes}), labels (@pxref{Label Attributes}), enumerators (@pxref{Enumerator Attributes}), and for types (@pxref{Type Attributes}). This example uses the @code{fallthrough} statement attribute to indicate that the @option{-Wimplicit-fallthrough} warning should not be emitted: @smallexample switch (cond) @{ case 1: bar (1); __attribute__((fallthrough)); case 2: @dots{} @} @end smallexample @table @code @item fallthrough @cindex @code{fallthrough} statement attribute The @code{fallthrough} attribute with a null statement serves as a fallthrough statement. It hints to the compiler that a statement that falls through to another case label, or user-defined label in a switch statement is intentional and thus the @option{-Wimplicit-fallthrough} warning must not trigger. The fallthrough attribute may appear at most once in each attribute list, and may not be mixed with other attributes. It can only be used in a switch statement (the compiler will issue an error otherwise), after a preceding statement and before a logically succeeding case label, or user-defined label. @end table @node Attribute Syntax @section Attribute Syntax @cindex attribute syntax This section describes the syntax with which @code{__attribute__} may be used, and the constructs to which attribute specifiers bind, for the C language. Some details may vary for C++ and Objective-C@. Because of infelicities in the grammar for attributes, some forms described here may not be successfully parsed in all cases. There are some problems with the semantics of attributes in C++. For example, there are no manglings for attributes, although they may affect code generation, so problems may arise when attributed types are used in conjunction with templates or overloading. Similarly, @code{typeid} does not distinguish between types with different attributes. Support for attributes in C++ may be restricted in future to attributes on declarations only, but not on nested declarators. @xref{Function Attributes}, for details of the semantics of attributes applying to functions. @xref{Variable Attributes}, for details of the semantics of attributes applying to variables. @xref{Type Attributes}, for details of the semantics of attributes applying to structure, union and enumerated types. @xref{Label Attributes}, for details of the semantics of attributes applying to labels. @xref{Enumerator Attributes}, for details of the semantics of attributes applying to enumerators. @xref{Statement Attributes}, for details of the semantics of attributes applying to statements. An @dfn{attribute specifier} is of the form @code{__attribute__ ((@var{attribute-list}))}. An @dfn{attribute list} is a possibly empty comma-separated sequence of @dfn{attributes}, where each attribute is one of the following: @itemize @bullet @item Empty. Empty attributes are ignored. @item An attribute name (which may be an identifier such as @code{unused}, or a reserved word such as @code{const}). @item An attribute name followed by a parenthesized list of parameters for the attribute. These parameters take one of the following forms: @itemize @bullet @item An identifier. For example, @code{mode} attributes use this form. @item An identifier followed by a comma and a non-empty comma-separated list of expressions. For example, @code{format} attributes use this form. @item A possibly empty comma-separated list of expressions. For example, @code{format_arg} attributes use this form with the list being a single integer constant expression, and @code{alias} attributes use this form with the list being a single string constant. @end itemize @end itemize An @dfn{attribute specifier list} is a sequence of one or more attribute specifiers, not separated by any other tokens. You may optionally specify attribute names with @samp{__} preceding and following the name. This allows you to use them in header files without being concerned about a possible macro of the same name. For example, you may use the attribute name @code{__noreturn__} instead of @code{noreturn}. @subsubheading Label Attributes In GNU C, an attribute specifier list may appear after the colon following a label, other than a @code{case} or @code{default} label. GNU C++ only permits attributes on labels if the attribute specifier is immediately followed by a semicolon (i.e., the label applies to an empty statement). If the semicolon is missing, C++ label attributes are ambiguous, as it is permissible for a declaration, which could begin with an attribute list, to be labelled in C++. Declarations cannot be labelled in C90 or C99, so the ambiguity does not arise there. @subsubheading Enumerator Attributes In GNU C, an attribute specifier list may appear as part of an enumerator. The attribute goes after the enumeration constant, before @code{=}, if present. The optional attribute in the enumerator appertains to the enumeration constant. It is not possible to place the attribute after the constant expression, if present. @subsubheading Statement Attributes In GNU C, an attribute specifier list may appear as part of a null statement. The attribute goes before the semicolon. @subsubheading Type Attributes An attribute specifier list may appear as part of a @code{struct}, @code{union} or @code{enum} specifier. It may go either immediately after the @code{struct}, @code{union} or @code{enum} keyword, or after the closing brace. The former syntax is preferred. Where attribute specifiers follow the closing brace, they are considered to relate to the structure, union or enumerated type defined, not to any enclosing declaration the type specifier appears in, and the type defined is not complete until after the attribute specifiers. @c Otherwise, there would be the following problems: a shift/reduce @c conflict between attributes binding the struct/union/enum and @c binding to the list of specifiers/qualifiers; and "aligned" @c attributes could use sizeof for the structure, but the size could be @c changed later by "packed" attributes. @subsubheading All other attributes Otherwise, an attribute specifier appears as part of a declaration, counting declarations of unnamed parameters and type names, and relates to that declaration (which may be nested in another declaration, for example in the case of a parameter declaration), or to a particular declarator within a declaration. Where an attribute specifier is applied to a parameter declared as a function or an array, it should apply to the function or array rather than the pointer to which the parameter is implicitly converted, but this is not yet correctly implemented. Any list of specifiers and qualifiers at the start of a declaration may contain attribute specifiers, whether or not such a list may in that context contain storage class specifiers. (Some attributes, however, are essentially in the nature of storage class specifiers, and only make sense where storage class specifiers may be used; for example, @code{section}.) There is one necessary limitation to this syntax: the first old-style parameter declaration in a function definition cannot begin with an attribute specifier, because such an attribute applies to the function instead by syntax described below (which, however, is not yet implemented in this case). In some other cases, attribute specifiers are permitted by this grammar but not yet supported by the compiler. All attribute specifiers in this place relate to the declaration as a whole. In the obsolescent usage where a type of @code{int} is implied by the absence of type specifiers, such a list of specifiers and qualifiers may be an attribute specifier list with no other specifiers or qualifiers. At present, the first parameter in a function prototype must have some type specifier that is not an attribute specifier; this resolves an ambiguity in the interpretation of @code{void f(int (__attribute__((foo)) x))}, but is subject to change. At present, if the parentheses of a function declarator contain only attributes then those attributes are ignored, rather than yielding an error or warning or implying a single parameter of type int, but this is subject to change. An attribute specifier list may appear immediately before a declarator (other than the first) in a comma-separated list of declarators in a declaration of more than one identifier using a single list of specifiers and qualifiers. Such attribute specifiers apply only to the identifier before whose declarator they appear. For example, in @smallexample __attribute__((noreturn)) void d0 (void), __attribute__((format(printf, 1, 2))) d1 (const char *, ...), d2 (void); @end smallexample @noindent the @code{noreturn} attribute applies to all the functions declared; the @code{format} attribute only applies to @code{d1}. An attribute specifier list may appear immediately before the comma, @code{=} or semicolon terminating the declaration of an identifier other than a function definition. Such attribute specifiers apply to the declared object or function. Where an assembler name for an object or function is specified (@pxref{Asm Labels}), the attribute must follow the @code{asm} specification. An attribute specifier list may, in future, be permitted to appear after the declarator in a function definition (before any old-style parameter declarations or the function body). Attribute specifiers may be mixed with type qualifiers appearing inside the @code{[]} of a parameter array declarator, in the C99 construct by which such qualifiers are applied to the pointer to which the array is implicitly converted. Such attribute specifiers apply to the pointer, not to the array, but at present this is not implemented and they are ignored. An attribute specifier list may appear at the start of a nested declarator. At present, there are some limitations in this usage: the attributes correctly apply to the declarator, but for most individual attributes the semantics this implies are not implemented. When attribute specifiers follow the @code{*} of a pointer declarator, they may be mixed with any type qualifiers present. The following describes the formal semantics of this syntax. It makes the most sense if you are familiar with the formal specification of declarators in the ISO C standard. Consider (as in C99 subclause 6.7.5 paragraph 4) a declaration @code{T D1}, where @code{T} contains declaration specifiers that specify a type @var{Type} (such as @code{int}) and @code{D1} is a declarator that contains an identifier @var{ident}. The type specified for @var{ident} for derived declarators whose type does not include an attribute specifier is as in the ISO C standard. If @code{D1} has the form @code{( @var{attribute-specifier-list} D )}, and the declaration @code{T D} specifies the type ``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then @code{T D1} specifies the type ``@var{derived-declarator-type-list} @var{attribute-specifier-list} @var{Type}'' for @var{ident}. If @code{D1} has the form @code{* @var{type-qualifier-and-attribute-specifier-list} D}, and the declaration @code{T D} specifies the type ``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then @code{T D1} specifies the type ``@var{derived-declarator-type-list} @var{type-qualifier-and-attribute-specifier-list} pointer to @var{Type}'' for @var{ident}. For example, @smallexample void (__attribute__((noreturn)) ****f) (void); @end smallexample @noindent specifies the type ``pointer to pointer to pointer to pointer to non-returning function returning @code{void}''. As another example, @smallexample char *__attribute__((aligned(8))) *f; @end smallexample @noindent specifies the type ``pointer to 8-byte-aligned pointer to @code{char}''. Note again that this does not work with most attributes; for example, the usage of @samp{aligned} and @samp{noreturn} attributes given above is not yet supported. For compatibility with existing code written for compiler versions that did not implement attributes on nested declarators, some laxity is allowed in the placing of attributes. If an attribute that only applies to types is applied to a declaration, it is treated as applying to the type of that declaration. If an attribute that only applies to declarations is applied to the type of a declaration, it is treated as applying to that declaration; and, for compatibility with code placing the attributes immediately before the identifier declared, such an attribute applied to a function return type is treated as applying to the function type, and such an attribute applied to an array element type is treated as applying to the array type. If an attribute that only applies to function types is applied to a pointer-to-function type, it is treated as applying to the pointer target type; if such an attribute is applied to a function return type that is not a pointer-to-function type, it is treated as applying to the function type. @node Function Prototypes @section Prototypes and Old-Style Function Definitions @cindex function prototype declarations @cindex old-style function definitions @cindex promotion of formal parameters GNU C extends ISO C to allow a function prototype to override a later old-style non-prototype definition. Consider the following example: @smallexample /* @r{Use prototypes unless the compiler is old-fashioned.} */ #ifdef __STDC__ #define P(x) x #else #define P(x) () #endif /* @r{Prototype function declaration.} */ int isroot P((uid_t)); /* @r{Old-style function definition.} */ int isroot (x) /* @r{??? lossage here ???} */ uid_t x; @{ return x == 0; @} @end smallexample Suppose the type @code{uid_t} happens to be @code{short}. ISO C does not allow this example, because subword arguments in old-style non-prototype definitions are promoted. Therefore in this example the function definition's argument is really an @code{int}, which does not match the prototype argument type of @code{short}. This restriction of ISO C makes it hard to write code that is portable to traditional C compilers, because the programmer does not know whether the @code{uid_t} type is @code{short}, @code{int}, or @code{long}. Therefore, in cases like these GNU C allows a prototype to override a later old-style definition. More precisely, in GNU C, a function prototype argument type overrides the argument type specified by a later old-style definition if the former type is the same as the latter type before promotion. Thus in GNU C the above example is equivalent to the following: @smallexample int isroot (uid_t); int isroot (uid_t x) @{ return x == 0; @} @end smallexample @noindent GNU C++ does not support old-style function definitions, so this extension is irrelevant. @node C++ Comments @section C++ Style Comments @cindex @code{//} @cindex C++ comments @cindex comments, C++ style In GNU C, you may use C++ style comments, which start with @samp{//} and continue until the end of the line. Many other C implementations allow such comments, and they are included in the 1999 C standard. However, C++ style comments are not recognized if you specify an @option{-std} option specifying a version of ISO C before C99, or @option{-ansi} (equivalent to @option{-std=c90}). @node Dollar Signs @section Dollar Signs in Identifier Names @cindex $ @cindex dollar signs in identifier names @cindex identifier names, dollar signs in In GNU C, you may normally use dollar signs in identifier names. This is because many traditional C implementations allow such identifiers. However, dollar signs in identifiers are not supported on a few target machines, typically because the target assembler does not allow them. @node Character Escapes @section The Character @key{ESC} in Constants You can use the sequence @samp{\e} in a string or character constant to stand for the ASCII character @key{ESC}. @node Alignment @section Inquiring on Alignment of Types or Variables @cindex alignment @cindex type alignment @cindex variable alignment The keyword @code{__alignof__} allows you to inquire about how an object is aligned, or the minimum alignment usually required by a type. Its syntax is just like @code{sizeof}. For example, if the target machine requires a @code{double} value to be aligned on an 8-byte boundary, then @code{__alignof__ (double)} is 8. This is true on many RISC machines. On more traditional machine designs, @code{__alignof__ (double)} is 4 or even 2. Some machines never actually require alignment; they allow reference to any data type even at an odd address. For these machines, @code{__alignof__} reports the smallest alignment that GCC gives the data type, usually as mandated by the target ABI. If the operand of @code{__alignof__} is an lvalue rather than a type, its value is the required alignment for its type, taking into account any minimum alignment specified with GCC's @code{__attribute__} extension (@pxref{Variable Attributes}). For example, after this declaration: @smallexample struct foo @{ int x; char y; @} foo1; @end smallexample @noindent the value of @code{__alignof__ (foo1.y)} is 1, even though its actual alignment is probably 2 or 4, the same as @code{__alignof__ (int)}. It is an error to ask for the alignment of an incomplete type. @node Inline @section An Inline Function is As Fast As a Macro @cindex inline functions @cindex integrating function code @cindex open coding @cindex macros, inline alternative By declaring a function inline, you can direct GCC to make calls to that function faster. One way GCC can achieve this is to integrate that function's code into the code for its callers. This makes execution faster by eliminating the function-call overhead; in addition, if any of the actual argument values are constant, their known values may permit simplifications at compile time so that not all of the inline function's code needs to be included. The effect on code size is less predictable; object code may be larger or smaller with function inlining, depending on the particular case. You can also direct GCC to try to integrate all ``simple enough'' functions into their callers with the option @option{-finline-functions}. GCC implements three different semantics of declaring a function inline. One is available with @option{-std=gnu89} or @option{-fgnu89-inline} or when @code{gnu_inline} attribute is present on all inline declarations, another when @option{-std=c99}, @option{-std=c11}, @option{-std=gnu99} or @option{-std=gnu11} (without @option{-fgnu89-inline}), and the third is used when compiling C++. To declare a function inline, use the @code{inline} keyword in its declaration, like this: @smallexample static inline int inc (int *a) @{ return (*a)++; @} @end smallexample If you are writing a header file to be included in ISO C90 programs, write @code{__inline__} instead of @code{inline}. @xref{Alternate Keywords}. The three types of inlining behave similarly in two important cases: when the @code{inline} keyword is used on a @code{static} function, like the example above, and when a function is first declared without using the @code{inline} keyword and then is defined with @code{inline}, like this: @smallexample extern int inc (int *a); inline int inc (int *a) @{ return (*a)++; @} @end smallexample In both of these common cases, the program behaves the same as if you had not used the @code{inline} keyword, except for its speed. @cindex inline functions, omission of @opindex fkeep-inline-functions When a function is both inline and @code{static}, if all calls to the function are integrated into the caller, and the function's address is never used, then the function's own assembler code is never referenced. In this case, GCC does not actually output assembler code for the function, unless you specify the option @option{-fkeep-inline-functions}. If there is a nonintegrated call, then the function is compiled to assembler code as usual. The function must also be compiled as usual if the program refers to its address, because that cannot be inlined. @opindex Winline Note that certain usages in a function definition can make it unsuitable for inline substitution. Among these usages are: variadic functions, use of @code{alloca}, use of computed goto (@pxref{Labels as Values}), use of nonlocal goto, use of nested functions, use of @code{setjmp}, use of @code{__builtin_longjmp} and use of @code{__builtin_return} or @code{__builtin_apply_args}. Using @option{-Winline} warns when a function marked @code{inline} could not be substituted, and gives the reason for the failure. @cindex automatic @code{inline} for C++ member fns @cindex @code{inline} automatic for C++ member fns @cindex member fns, automatically @code{inline} @cindex C++ member fns, automatically @code{inline} @opindex fno-default-inline As required by ISO C++, GCC considers member functions defined within the body of a class to be marked inline even if they are not explicitly declared with the @code{inline} keyword. You can override this with @option{-fno-default-inline}; @pxref{C++ Dialect Options,,Options Controlling C++ Dialect}. GCC does not inline any functions when not optimizing unless you specify the @samp{always_inline} attribute for the function, like this: @smallexample /* @r{Prototype.} */ inline void foo (const char) __attribute__((always_inline)); @end smallexample The remainder of this section is specific to GNU C90 inlining. @cindex non-static inline function When an inline function is not @code{static}, then the compiler must assume that there may be calls from other source files; since a global symbol can be defined only once in any program, the function must not be defined in the other source files, so the calls therein cannot be integrated. Therefore, a non-@code{static} inline function is always compiled on its own in the usual fashion. If you specify both @code{inline} and @code{extern} in the function definition, then the definition is used only for inlining. In no case is the function compiled on its own, not even if you refer to its address explicitly. Such an address becomes an external reference, as if you had only declared the function, and had not defined it. This combination of @code{inline} and @code{extern} has almost the effect of a macro. The way to use it is to put a function definition in a header file with these keywords, and put another copy of the definition (lacking @code{inline} and @code{extern}) in a library file. The definition in the header file causes most calls to the function to be inlined. If any uses of the function remain, they refer to the single copy in the library. @node Volatiles @section When is a Volatile Object Accessed? @cindex accessing volatiles @cindex volatile read @cindex volatile write @cindex volatile access C has the concept of volatile objects. These are normally accessed by pointers and used for accessing hardware or inter-thread communication. The standard encourages compilers to refrain from optimizations concerning accesses to volatile objects, but leaves it implementation defined as to what constitutes a volatile access. The minimum requirement is that at a sequence point all previous accesses to volatile objects have stabilized and no subsequent accesses have occurred. Thus an implementation is free to reorder and combine volatile accesses that occur between sequence points, but cannot do so for accesses across a sequence point. The use of volatile does not allow you to violate the restriction on updating objects multiple times between two sequence points. Accesses to non-volatile objects are not ordered with respect to volatile accesses. You cannot use a volatile object as a memory barrier to order a sequence of writes to non-volatile memory. For instance: @smallexample int *ptr = @var{something}; volatile int vobj; *ptr = @var{something}; vobj = 1; @end smallexample @noindent Unless @var{*ptr} and @var{vobj} can be aliased, it is not guaranteed that the write to @var{*ptr} occurs by the time the update of @var{vobj} happens. If you need this guarantee, you must use a stronger memory barrier such as: @smallexample int *ptr = @var{something}; volatile int vobj; *ptr = @var{something}; asm volatile ("" : : : "memory"); vobj = 1; @end smallexample A scalar volatile object is read when it is accessed in a void context: @smallexample volatile int *src = @var{somevalue}; *src; @end smallexample Such expressions are rvalues, and GCC implements this as a read of the volatile object being pointed to. Assignments are also expressions and have an rvalue. However when assigning to a scalar volatile, the volatile object is not reread, regardless of whether the assignment expression's rvalue is used or not. If the assignment's rvalue is used, the value is that assigned to the volatile object. For instance, there is no read of @var{vobj} in all the following cases: @smallexample int obj; volatile int vobj; vobj = @var{something}; obj = vobj = @var{something}; obj ? vobj = @var{onething} : vobj = @var{anotherthing}; obj = (@var{something}, vobj = @var{anotherthing}); @end smallexample If you need to read the volatile object after an assignment has occurred, you must use a separate expression with an intervening sequence point. As bit-fields are not individually addressable, volatile bit-fields may be implicitly read when written to, or when adjacent bit-fields are accessed. Bit-field operations may be optimized such that adjacent bit-fields are only partially accessed, if they straddle a storage unit boundary. For these reasons it is unwise to use volatile bit-fields to access hardware. @node Using Assembly Language with C @section How to Use Inline Assembly Language in C Code @cindex @code{asm} keyword @cindex assembly language in C @cindex inline assembly language @cindex mixing assembly language and C The @code{asm} keyword allows you to embed assembler instructions within C code. GCC provides two forms of inline @code{asm} statements. A @dfn{basic @code{asm}} statement is one with no operands (@pxref{Basic Asm}), while an @dfn{extended @code{asm}} statement (@pxref{Extended Asm}) includes one or more operands. The extended form is preferred for mixing C and assembly language within a function, but to include assembly language at top level you must use basic @code{asm}. You can also use the @code{asm} keyword to override the assembler name for a C symbol, or to place a C variable in a specific register. @menu * Basic Asm:: Inline assembler without operands. * Extended Asm:: Inline assembler with operands. * Constraints:: Constraints for @code{asm} operands * Asm Labels:: Specifying the assembler name to use for a C symbol. * Explicit Register Variables:: Defining variables residing in specified registers. * Size of an asm:: How GCC calculates the size of an @code{asm} block. @end menu @node Basic Asm @subsection Basic Asm --- Assembler Instructions Without Operands @cindex basic @code{asm} @cindex assembly language in C, basic A basic @code{asm} statement has the following syntax: @example asm @r{[} volatile @r{]} ( @var{AssemblerInstructions} ) @end example The @code{asm} keyword is a GNU extension. When writing code that can be compiled with @option{-ansi} and the various @option{-std} options, use @code{__asm__} instead of @code{asm} (@pxref{Alternate Keywords}). @subsubheading Qualifiers @table @code @item volatile The optional @code{volatile} qualifier has no effect. All basic @code{asm} blocks are implicitly volatile. @end table @subsubheading Parameters @table @var @item AssemblerInstructions This is a literal string that specifies the assembler code. The string can contain any instructions recognized by the assembler, including directives. GCC does not parse the assembler instructions themselves and does not know what they mean or even whether they are valid assembler input. You may place multiple assembler instructions together in a single @code{asm} string, separated by the characters normally used in assembly code for the system. A combination that works in most places is a newline to break the line, plus a tab character (written as @samp{\n\t}). Some assemblers allow semicolons as a line separator. However, note that some assembler dialects use semicolons to start a comment. @end table @subsubheading Remarks Using extended @code{asm} (@pxref{Extended Asm}) typically produces smaller, safer, and more efficient code, and in most cases it is a better solution than basic @code{asm}. However, there are two situations where only basic @code{asm} can be used: @itemize @bullet @item Extended @code{asm} statements have to be inside a C function, so to write inline assembly language at file scope (``top-level''), outside of C functions, you must use basic @code{asm}. You can use this technique to emit assembler directives, define assembly language macros that can be invoked elsewhere in the file, or write entire functions in assembly language. @item Functions declared with the @code{naked} attribute also require basic @code{asm} (@pxref{Function Attributes}). @end itemize Safely accessing C data and calling functions from basic @code{asm} is more complex than it may appear. To access C data, it is better to use extended @code{asm}. Do not expect a sequence of @code{asm} statements to remain perfectly consecutive after compilation. If certain instructions need to remain consecutive in the output, put them in a single multi-instruction @code{asm} statement. Note that GCC's optimizers can move @code{asm} statements relative to other code, including across jumps. @code{asm} statements may not perform jumps into other @code{asm} statements. GCC does not know about these jumps, and therefore cannot take account of them when deciding how to optimize. Jumps from @code{asm} to C labels are only supported in extended @code{asm}. Under certain circumstances, GCC may duplicate (or remove duplicates of) your assembly code when optimizing. This can lead to unexpected duplicate symbol errors during compilation if your assembly code defines symbols or labels. @strong{Warning:} The C standards do not specify semantics for @code{asm}, making it a potential source of incompatibilities between compilers. These incompatibilities may not produce compiler warnings/errors. GCC does not parse basic @code{asm}'s @var{AssemblerInstructions}, which means there is no way to communicate to the compiler what is happening inside them. GCC has no visibility of symbols in the @code{asm} and may discard them as unreferenced. It also does not know about side effects of the assembler code, such as modifications to memory or registers. Unlike some compilers, GCC assumes that no changes to general purpose registers occur. This assumption may change in a future release. To avoid complications from future changes to the semantics and the compatibility issues between compilers, consider replacing basic @code{asm} with extended @code{asm}. See @uref{https://gcc.gnu.org/wiki/ConvertBasicAsmToExtended, How to convert from basic asm to extended asm} for information about how to perform this conversion. The compiler copies the assembler instructions in a basic @code{asm} verbatim to the assembly language output file, without processing dialects or any of the @samp{%} operators that are available with extended @code{asm}. This results in minor differences between basic @code{asm} strings and extended @code{asm} templates. For example, to refer to registers you might use @samp{%eax} in basic @code{asm} and @samp{%%eax} in extended @code{asm}. On targets such as x86 that support multiple assembler dialects, all basic @code{asm} blocks use the assembler dialect specified by the @option{-masm} command-line option (@pxref{x86 Options}). Basic @code{asm} provides no mechanism to provide different assembler strings for different dialects. For basic @code{asm} with non-empty assembler string GCC assumes the assembler block does not change any general purpose registers, but it may read or write any globally accessible variable. Here is an example of basic @code{asm} for i386: @example /* Note that this code will not compile with -masm=intel */ #define DebugBreak() asm("int $3") @end example @node Extended Asm @subsection Extended Asm - Assembler Instructions with C Expression Operands @cindex extended @code{asm} @cindex assembly language in C, extended With extended @code{asm} you can read and write C variables from assembler and perform jumps from assembler code to C labels. Extended @code{asm} syntax uses colons (@samp{:}) to delimit the operand parameters after the assembler template: @example asm @r{[}volatile@r{]} ( @var{AssemblerTemplate} : @var{OutputOperands} @r{[} : @var{InputOperands} @r{[} : @var{Clobbers} @r{]} @r{]}) asm @r{[}volatile@r{]} goto ( @var{AssemblerTemplate} : : @var{InputOperands} : @var{Clobbers} : @var{GotoLabels}) @end example The @code{asm} keyword is a GNU extension. When writing code that can be compiled with @option{-ansi} and the various @option{-std} options, use @code{__asm__} instead of @code{asm} (@pxref{Alternate Keywords}). @subsubheading Qualifiers @table @code @item volatile The typical use of extended @code{asm} statements is to manipulate input values to produce output values. However, your @code{asm} statements may also produce side effects. If so, you may need to use the @code{volatile} qualifier to disable certain optimizations. @xref{Volatile}. @item goto This qualifier informs the compiler that the @code{asm} statement may perform a jump to one of the labels listed in the @var{GotoLabels}. @xref{GotoLabels}. @end table @subsubheading Parameters @table @var @item AssemblerTemplate This is a literal string that is the template for the assembler code. It is a combination of fixed text and tokens that refer to the input, output, and goto parameters. @xref{AssemblerTemplate}. @item OutputOperands A comma-separated list of the C variables modified by the instructions in the @var{AssemblerTemplate}. An empty list is permitted. @xref{OutputOperands}. @item InputOperands A comma-separated list of C expressions read by the instructions in the @var{AssemblerTemplate}. An empty list is permitted. @xref{InputOperands}. @item Clobbers A comma-separated list of registers or other values changed by the @var{AssemblerTemplate}, beyond those listed as outputs. An empty list is permitted. @xref{Clobbers and Scratch Registers}. @item GotoLabels When you are using the @code{goto} form of @code{asm}, this section contains the list of all C labels to which the code in the @var{AssemblerTemplate} may jump. @xref{GotoLabels}. @code{asm} statements may not perform jumps into other @code{asm} statements, only to the listed @var{GotoLabels}. GCC's optimizers do not know about other jumps; therefore they cannot take account of them when deciding how to optimize. @end table The total number of input + output + goto operands is limited to 30. @subsubheading Remarks The @code{asm} statement allows you to include assembly instructions directly within C code. This may help you to maximize performance in time-sensitive code or to access assembly instructions that are not readily available to C programs. Note that extended @code{asm} statements must be inside a function. Only basic @code{asm} may be outside functions (@pxref{Basic Asm}). Functions declared with the @code{naked} attribute also require basic @code{asm} (@pxref{Function Attributes}). While the uses of @code{asm} are many and varied, it may help to think of an @code{asm} statement as a series of low-level instructions that convert input parameters to output parameters. So a simple (if not particularly useful) example for i386 using @code{asm} might look like this: @example int src = 1; int dst; asm ("mov %1, %0\n\t" "add $1, %0" : "=r" (dst) : "r" (src)); printf("%d\n", dst); @end example This code copies @code{src} to @code{dst} and add 1 to @code{dst}. @anchor{Volatile} @subsubsection Volatile @cindex volatile @code{asm} @cindex @code{asm} volatile GCC's optimizers sometimes discard @code{asm} statements if they determine there is no need for the output variables. Also, the optimizers may move code out of loops if they believe that the code will always return the same result (i.e. none of its input values change between calls). Using the @code{volatile} qualifier disables these optimizations. @code{asm} statements that have no output operands, including @code{asm goto} statements, are implicitly volatile. This i386 code demonstrates a case that does not use (or require) the @code{volatile} qualifier. If it is performing assertion checking, this code uses @code{asm} to perform the validation. Otherwise, @code{dwRes} is unreferenced by any code. As a result, the optimizers can discard the @code{asm} statement, which in turn removes the need for the entire @code{DoCheck} routine. By omitting the @code{volatile} qualifier when it isn't needed you allow the optimizers to produce the most efficient code possible. @example void DoCheck(uint32_t dwSomeValue) @{ uint32_t dwRes; // Assumes dwSomeValue is not zero. asm ("bsfl %1,%0" : "=r" (dwRes) : "r" (dwSomeValue) : "cc"); assert(dwRes > 3); @} @end example The next example shows a case where the optimizers can recognize that the input (@code{dwSomeValue}) never changes during the execution of the function and can therefore move the @code{asm} outside the loop to produce more efficient code. Again, using @code{volatile} disables this type of optimization. @example void do_print(uint32_t dwSomeValue) @{ uint32_t dwRes; for (uint32_t x=0; x < 5; x++) @{ // Assumes dwSomeValue is not zero. asm ("bsfl %1,%0" : "=r" (dwRes) : "r" (dwSomeValue) : "cc"); printf("%u: %u %u\n", x, dwSomeValue, dwRes); @} @} @end example The following example demonstrates a case where you need to use the @code{volatile} qualifier. It uses the x86 @code{rdtsc} instruction, which reads the computer's time-stamp counter. Without the @code{volatile} qualifier, the optimizers might assume that the @code{asm} block will always return the same value and therefore optimize away the second call. @example uint64_t msr; asm volatile ( "rdtsc\n\t" // Returns the time in EDX:EAX. "shl $32, %%rdx\n\t" // Shift the upper bits left. "or %%rdx, %0" // 'Or' in the lower bits. : "=a" (msr) : : "rdx"); printf("msr: %llx\n", msr); // Do other work... // Reprint the timestamp asm volatile ( "rdtsc\n\t" // Returns the time in EDX:EAX. "shl $32, %%rdx\n\t" // Shift the upper bits left. "or %%rdx, %0" // 'Or' in the lower bits. : "=a" (msr) : : "rdx"); printf("msr: %llx\n", msr); @end example GCC's optimizers do not treat this code like the non-volatile code in the earlier examples. They do not move it out of loops or omit it on the assumption that the result from a previous call is still valid. Note that the compiler can move even volatile @code{asm} instructions relative to other code, including across jump instructions. For example, on many targets there is a system register that controls the rounding mode of floating-point operations. Setting it with a volatile @code{asm}, as in the following PowerPC example, does not work reliably. @example asm volatile("mtfsf 255, %0" : : "f" (fpenv)); sum = x + y; @end example The compiler may move the addition back before the volatile @code{asm}. To make it work as expected, add an artificial dependency to the @code{asm} by referencing a variable in the subsequent code, for example: @example asm volatile ("mtfsf 255,%1" : "=X" (sum) : "f" (fpenv)); sum = x + y; @end example Under certain circumstances, GCC may duplicate (or remove duplicates of) your assembly code when optimizing. This can lead to unexpected duplicate symbol errors during compilation if your asm code defines symbols or labels. Using @samp{%=} (@pxref{AssemblerTemplate}) may help resolve this problem. @anchor{AssemblerTemplate} @subsubsection Assembler Template @cindex @code{asm} assembler template An assembler template is a literal string containing assembler instructions. The compiler replaces tokens in the template that refer to inputs, outputs, and goto labels, and then outputs the resulting string to the assembler. The string can contain any instructions recognized by the assembler, including directives. GCC does not parse the assembler instructions themselves and does not know what they mean or even whether they are valid assembler input. However, it does count the statements (@pxref{Size of an asm}). You may place multiple assembler instructions together in a single @code{asm} string, separated by the characters normally used in assembly code for the system. A combination that works in most places is a newline to break the line, plus a tab character to move to the instruction field (written as @samp{\n\t}). Some assemblers allow semicolons as a line separator. However, note that some assembler dialects use semicolons to start a comment. Do not expect a sequence of @code{asm} statements to remain perfectly consecutive after compilation, even when you are using the @code{volatile} qualifier. If certain instructions need to remain consecutive in the output, put them in a single multi-instruction asm statement. Accessing data from C programs without using input/output operands (such as by using global symbols directly from the assembler template) may not work as expected. Similarly, calling functions directly from an assembler template requires a detailed understanding of the target assembler and ABI. Since GCC does not parse the assembler template, it has no visibility of any symbols it references. This may result in GCC discarding those symbols as unreferenced unless they are also listed as input, output, or goto operands. @subsubheading Special format strings In addition to the tokens described by the input, output, and goto operands, these tokens have special meanings in the assembler template: @table @samp @item %% Outputs a single @samp{%} into the assembler code. @item %= Outputs a number that is unique to each instance of the @code{asm} statement in the entire compilation. This option is useful when creating local labels and referring to them multiple times in a single template that generates multiple assembler instructions. @item %@{ @itemx %| @itemx %@} Outputs @samp{@{}, @samp{|}, and @samp{@}} characters (respectively) into the assembler code. When unescaped, these characters have special meaning to indicate multiple assembler dialects, as described below. @end table @subsubheading Multiple assembler dialects in @code{asm} templates On targets such as x86, GCC supports multiple assembler dialects. The @option{-masm} option controls which dialect GCC uses as its default for inline assembler. The target-specific documentation for the @option{-masm} option contains the list of supported dialects, as well as the default dialect if the option is not specified. This information may be important to understand, since assembler code that works correctly when compiled using one dialect will likely fail if compiled using another. @xref{x86 Options}. If your code needs to support multiple assembler dialects (for example, if you are writing public headers that need to support a variety of compilation options), use constructs of this form: @example @{ dialect0 | dialect1 | dialect2... @} @end example This construct outputs @code{dialect0} when using dialect #0 to compile the code, @code{dialect1} for dialect #1, etc. If there are fewer alternatives within the braces than the number of dialects the compiler supports, the construct outputs nothing. For example, if an x86 compiler supports two dialects (@samp{att}, @samp{intel}), an assembler template such as this: @example "bt@{l %[Offset],%[Base] | %[Base],%[Offset]@}; jc %l2" @end example @noindent is equivalent to one of @example "btl %[Offset],%[Base] ; jc %l2" @r{/* att dialect */} "bt %[Base],%[Offset]; jc %l2" @r{/* intel dialect */} @end example Using that same compiler, this code: @example "xchg@{l@}\t@{%%@}ebx, %1" @end example @noindent corresponds to either @example "xchgl\t%%ebx, %1" @r{/* att dialect */} "xchg\tebx, %1" @r{/* intel dialect */} @end example There is no support for nesting dialect alternatives. @anchor{OutputOperands} @subsubsection Output Operands @cindex @code{asm} output operands An @code{asm} statement has zero or more output operands indicating the names of C variables modified by the assembler code. In this i386 example, @code{old} (referred to in the template string as @code{%0}) and @code{*Base} (as @code{%1}) are outputs and @code{Offset} (@code{%2}) is an input: @example bool old; __asm__ ("btsl %2,%1\n\t" // Turn on zero-based bit #Offset in Base. "sbb %0,%0" // Use the CF to calculate old. : "=r" (old), "+rm" (*Base) : "Ir" (Offset) : "cc"); return old; @end example Operands are separated by commas. Each operand has this format: @example @r{[} [@var{asmSymbolicName}] @r{]} @var{constraint} (@var{cvariablename}) @end example @table @var @item asmSymbolicName Specifies a symbolic name for the operand. Reference the name in the assembler template by enclosing it in square brackets (i.e. @samp{%[Value]}). The scope of the name is the @code{asm} statement that contains the definition. Any valid C variable name is acceptable, including names already defined in the surrounding code. No two operands within the same @code{asm} statement can use the same symbolic name. When not using an @var{asmSymbolicName}, use the (zero-based) position of the operand in the list of operands in the assembler template. For example if there are three output operands, use @samp{%0} in the template to refer to the first, @samp{%1} for the second, and @samp{%2} for the third. @item constraint A string constant specifying constraints on the placement of the operand; @xref{Constraints}, for details. Output constraints must begin with either @samp{=} (a variable overwriting an existing value) or @samp{+} (when reading and writing). When using @samp{=}, do not assume the location contains the existing value on entry to the @code{asm}, except when the operand is tied to an input; @pxref{InputOperands,,Input Operands}. After the prefix, there must be one or more additional constraints (@pxref{Constraints}) that describe where the value resides. Common constraints include @samp{r} for register and @samp{m} for memory. When you list more than one possible location (for example, @code{"=rm"}), the compiler chooses the most efficient one based on the current context. If you list as many alternates as the @code{asm} statement allows, you permit the optimizers to produce the best possible code. If you must use a specific register, but your Machine Constraints do not provide sufficient control to select the specific register you want, local register variables may provide a solution (@pxref{Local Register Variables}). @item cvariablename Specifies a C lvalue expression to hold the output, typically a variable name. The enclosing parentheses are a required part of the syntax. @end table When the compiler selects the registers to use to represent the output operands, it does not use any of the clobbered registers (@pxref{Clobbers and Scratch Registers}). Output operand expressions must be lvalues. The compiler cannot check whether the operands have data types that are reasonable for the instruction being executed. For output expressions that are not directly addressable (for example a bit-field), the constraint must allow a register. In that case, GCC uses the register as the output of the @code{asm}, and then stores that register into the output. Operands using the @samp{+} constraint modifier count as two operands (that is, both as input and output) towards the total maximum of 30 operands per @code{asm} statement. Use the @samp{&} constraint modifier (@pxref{Modifiers}) on all output operands that must not overlap an input. Otherwise, GCC may allocate the output operand in the same register as an unrelated input operand, on the assumption that the assembler code consumes its inputs before producing outputs. This assumption may be false if the assembler code actually consists of more than one instruction. The same problem can occur if one output parameter (@var{a}) allows a register constraint and another output parameter (@var{b}) allows a memory constraint. The code generated by GCC to access the memory address in @var{b} can contain registers which @emph{might} be shared by @var{a}, and GCC considers those registers to be inputs to the asm. As above, GCC assumes that such input registers are consumed before any outputs are written. This assumption may result in incorrect behavior if the asm writes to @var{a} before using @var{b}. Combining the @samp{&} modifier with the register constraint on @var{a} ensures that modifying @var{a} does not affect the address referenced by @var{b}. Otherwise, the location of @var{b} is undefined if @var{a} is modified before using @var{b}. @code{asm} supports operand modifiers on operands (for example @samp{%k2} instead of simply @samp{%2}). Typically these qualifiers are hardware dependent. The list of supported modifiers for x86 is found at @ref{x86Operandmodifiers,x86 Operand modifiers}. If the C code that follows the @code{asm} makes no use of any of the output operands, use @code{volatile} for the @code{asm} statement to prevent the optimizers from discarding the @code{asm} statement as unneeded (see @ref{Volatile}). This code makes no use of the optional @var{asmSymbolicName}. Therefore it references the first output operand as @code{%0} (were there a second, it would be @code{%1}, etc). The number of the first input operand is one greater than that of the last output operand. In this i386 example, that makes @code{Mask} referenced as @code{%1}: @example uint32_t Mask = 1234; uint32_t Index; asm ("bsfl %1, %0" : "=r" (Index) : "r" (Mask) : "cc"); @end example That code overwrites the variable @code{Index} (@samp{=}), placing the value in a register (@samp{r}). Using the generic @samp{r} constraint instead of a constraint for a specific register allows the compiler to pick the register to use, which can result in more efficient code. This may not be possible if an assembler instruction requires a specific register. The following i386 example uses the @var{asmSymbolicName} syntax. It produces the same result as the code above, but some may consider it more readable or more maintainable since reordering index numbers is not necessary when adding or removing operands. The names @code{aIndex} and @code{aMask} are only used in this example to emphasize which names get used where. It is acceptable to reuse the names @code{Index} and @code{Mask}. @example uint32_t Mask = 1234; uint32_t Index; asm ("bsfl %[aMask], %[aIndex]" : [aIndex] "=r" (Index) : [aMask] "r" (Mask) : "cc"); @end example Here are some more examples of output operands. @example uint32_t c = 1; uint32_t d; uint32_t *e = &c; asm ("mov %[e], %[d]" : [d] "=rm" (d) : [e] "rm" (*e)); @end example Here, @code{d} may either be in a register or in memory. Since the compiler might already have the current value of the @code{uint32_t} location pointed to by @code{e} in a register, you can enable it to choose the best location for @code{d} by specifying both constraints. @anchor{FlagOutputOperands} @subsubsection Flag Output Operands @cindex @code{asm} flag output operands Some targets have a special register that holds the ``flags'' for the result of an operation or comparison. Normally, the contents of that register are either unmodifed by the asm, or the asm is considered to clobber the contents. On some targets, a special form of output operand exists by which conditions in the flags register may be outputs of the asm. The set of conditions supported are target specific, but the general rule is that the output variable must be a scalar integer, and the value is boolean. When supported, the target defines the preprocessor symbol @code{__GCC_ASM_FLAG_OUTPUTS__}. Because of the special nature of the flag output operands, the constraint may not include alternatives. Most often, the target has only one flags register, and thus is an implied operand of many instructions. In this case, the operand should not be referenced within the assembler template via @code{%0} etc, as there's no corresponding text in the assembly language. @table @asis @item x86 family The flag output constraints for the x86 family are of the form @samp{=@@cc@var{cond}} where @var{cond} is one of the standard conditions defined in the ISA manual for @code{j@var{cc}} or @code{set@var{cc}}. @table @code @item a ``above'' or unsigned greater than @item ae ``above or equal'' or unsigned greater than or equal @item b ``below'' or unsigned less than @item be ``below or equal'' or unsigned less than or equal @item c carry flag set @item e @itemx z ``equal'' or zero flag set @item g signed greater than @item ge signed greater than or equal @item l signed less than @item le signed less than or equal @item o overflow flag set @item p parity flag set @item s sign flag set @item na @itemx nae @itemx nb @itemx nbe @itemx nc @itemx ne @itemx ng @itemx nge @itemx nl @itemx nle @itemx no @itemx np @itemx ns @itemx nz ``not'' @var{flag}, or inverted versions of those above @end table @end table @anchor{InputOperands} @subsubsection Input Operands @cindex @code{asm} input operands @cindex @code{asm} expressions Input operands make values from C variables and expressions available to the assembly code. Operands are separated by commas. Each operand has this format: @example @r{[} [@var{asmSymbolicName}] @r{]} @var{constraint} (@var{cexpression}) @end example @table @var @item asmSymbolicName Specifies a symbolic name for the operand. Reference the name in the assembler template by enclosing it in square brackets (i.e. @samp{%[Value]}). The scope of the name is the @code{asm} statement that contains the definition. Any valid C variable name is acceptable, including names already defined in the surrounding code. No two operands within the same @code{asm} statement can use the same symbolic name. When not using an @var{asmSymbolicName}, use the (zero-based) position of the operand in the list of operands in the assembler template. For example if there are two output operands and three inputs, use @samp{%2} in the template to refer to the first input operand, @samp{%3} for the second, and @samp{%4} for the third. @item constraint A string constant specifying constraints on the placement of the operand; @xref{Constraints}, for details. Input constraint strings may not begin with either @samp{=} or @samp{+}. When you list more than one possible location (for example, @samp{"irm"}), the compiler chooses the most efficient one based on the current context. If you must use a specific register, but your Machine Constraints do not provide sufficient control to select the specific register you want, local register variables may provide a solution (@pxref{Local Register Variables}). Input constraints can also be digits (for example, @code{"0"}). This indicates that the specified input must be in the same place as the output constraint at the (zero-based) index in the output constraint list. When using @var{asmSymbolicName} syntax for the output operands, you may use these names (enclosed in brackets @samp{[]}) instead of digits. @item cexpression This is the C variable or expression being passed to the @code{asm} statement as input. The enclosing parentheses are a required part of the syntax. @end table When the compiler selects the registers to use to represent the input operands, it does not use any of the clobbered registers (@pxref{Clobbers and Scratch Registers}). If there are no output operands but there are input operands, place two consecutive colons where the output operands would go: @example __asm__ ("some instructions" : /* No outputs. */ : "r" (Offset / 8)); @end example @strong{Warning:} Do @emph{not} modify the contents of input-only operands (except for inputs tied to outputs). The compiler assumes that on exit from the @code{asm} statement these operands contain the same values as they had before executing the statement. It is @emph{not} possible to use clobbers to inform the compiler that the values in these inputs are changing. One common work-around is to tie the changing input variable to an output variable that never gets used. Note, however, that if the code that follows the @code{asm} statement makes no use of any of the output operands, the GCC optimizers may discard the @code{asm} statement as unneeded (see @ref{Volatile}). @code{asm} supports operand modifiers on operands (for example @samp{%k2} instead of simply @samp{%2}). Typically these qualifiers are hardware dependent. The list of supported modifiers for x86 is found at @ref{x86Operandmodifiers,x86 Operand modifiers}. In this example using the fictitious @code{combine} instruction, the constraint @code{"0"} for input operand 1 says that it must occupy the same location as output operand 0. Only input operands may use numbers in constraints, and they must each refer to an output operand. Only a number (or the symbolic assembler name) in the constraint can guarantee that one operand is in the same place as another. The mere fact that @code{foo} is the value of both operands is not enough to guarantee that they are in the same place in the generated assembler code. @example asm ("combine %2, %0" : "=r" (foo) : "0" (foo), "g" (bar)); @end example Here is an example using symbolic names. @example asm ("cmoveq %1, %2, %[result]" : [result] "=r"(result) : "r" (test), "r" (new), "[result]" (old)); @end example @anchor{Clobbers and Scratch Registers} @subsubsection Clobbers and Scratch Registers @cindex @code{asm} clobbers @cindex @code{asm} scratch registers While the compiler is aware of changes to entries listed in the output operands, the inline @code{asm} code may modify more than just the outputs. For example, calculations may require additional registers, or the processor may overwrite a register as a side effect of a particular assembler instruction. In order to inform the compiler of these changes, list them in the clobber list. Clobber list items are either register names or the special clobbers (listed below). Each clobber list item is a string constant enclosed in double quotes and separated by commas. Clobber descriptions may not in any way overlap with an input or output operand. For example, you may not have an operand describing a register class with one member when listing that register in the clobber list. Variables declared to live in specific registers (@pxref{Explicit Register Variables}) and used as @code{asm} input or output operands must have no part mentioned in the clobber description. In particular, there is no way to specify that input operands get modified without also specifying them as output operands. When the compiler selects which registers to use to represent input and output operands, it does not use any of the clobbered registers. As a result, clobbered registers are available for any use in the assembler code. Here is a realistic example for the VAX showing the use of clobbered registers: @example asm volatile ("movc3 %0, %1, %2" : /* No outputs. */ : "g" (from), "g" (to), "g" (count) : "r0", "r1", "r2", "r3", "r4", "r5", "memory"); @end example Also, there are two special clobber arguments: @table @code @item "cc" The @code{"cc"} clobber indicates that the assembler code modifies the flags register. On some machines, GCC represents the condition codes as a specific hardware register; @code{"cc"} serves to name this register. On other machines, condition code handling is different, and specifying @code{"cc"} has no effect. But it is valid no matter what the target. @item "memory" The @code{"memory"} clobber tells the compiler that the assembly code performs memory reads or writes to items other than those listed in the input and output operands (for example, accessing the memory pointed to by one of the input parameters). To ensure memory contains correct values, GCC may need to flush specific register values to memory before executing the @code{asm}. Further, the compiler does not assume that any values read from memory before an @code{asm} remain unchanged after that @code{asm}; it reloads them as needed. Using the @code{"memory"} clobber effectively forms a read/write memory barrier for the compiler. Note that this clobber does not prevent the @emph{processor} from doing speculative reads past the @code{asm} statement. To prevent that, you need processor-specific fence instructions. @end table Flushing registers to memory has performance implications and may be an issue for time-sensitive code. You can provide better information to GCC to avoid this, as shown in the following examples. At a minimum, aliasing rules allow GCC to know what memory @emph{doesn't} need to be flushed. Here is a fictitious sum of squares instruction, that takes two pointers to floating point values in memory and produces a floating point register output. Notice that @code{x}, and @code{y} both appear twice in the @code{asm} parameters, once to specify memory accessed, and once to specify a base register used by the @code{asm}. You won't normally be wasting a register by doing this as GCC can use the same register for both purposes. However, it would be foolish to use both @code{%1} and @code{%3} for @code{x} in this @code{asm} and expect them to be the same. In fact, @code{%3} may well not be a register. It might be a symbolic memory reference to the object pointed to by @code{x}. @smallexample asm ("sumsq %0, %1, %2" : "+f" (result) : "r" (x), "r" (y), "m" (*x), "m" (*y)); @end smallexample Here is a fictitious @code{*z++ = *x++ * *y++} instruction. Notice that the @code{x}, @code{y} and @code{z} pointer registers must be specified as input/output because the @code{asm} modifies them. @smallexample asm ("vecmul %0, %1, %2" : "+r" (z), "+r" (x), "+r" (y), "=m" (*z) : "m" (*x), "m" (*y)); @end smallexample An x86 example where the string memory argument is of unknown length. @smallexample asm("repne scasb" : "=c" (count), "+D" (p) : "m" (*(const char (*)[]) p), "0" (-1), "a" (0)); @end smallexample If you know the above will only be reading a ten byte array then you could instead use a memory input like: @code{"m" (*(const char (*)[10]) p)}. Here is an example of a PowerPC vector scale implemented in assembly, complete with vector and condition code clobbers, and some initialized offset registers that are unchanged by the @code{asm}. @smallexample void dscal (size_t n, double *x, double alpha) @{ asm ("/* lots of asm here */" : "+m" (*(double (*)[n]) x), "+&r" (n), "+b" (x) : "d" (alpha), "b" (32), "b" (48), "b" (64), "b" (80), "b" (96), "b" (112) : "cr0", "vs32","vs33","vs34","vs35","vs36","vs37","vs38","vs39", "vs40","vs41","vs42","vs43","vs44","vs45","vs46","vs47"); @} @end smallexample Rather than allocating fixed registers via clobbers to provide scratch registers for an @code{asm} statement, an alternative is to define a variable and make it an early-clobber output as with @code{a2} and @code{a3} in the example below. This gives the compiler register allocator more freedom. You can also define a variable and make it an output tied to an input as with @code{a0} and @code{a1}, tied respectively to @code{ap} and @code{lda}. Of course, with tied outputs your @code{asm} can't use the input value after modifying the output register since they are one and the same register. What's more, if you omit the early-clobber on the output, it is possible that GCC might allocate the same register to another of the inputs if GCC could prove they had the same value on entry to the @code{asm}. This is why @code{a1} has an early-clobber. Its tied input, @code{lda} might conceivably be known to have the value 16 and without an early-clobber share the same register as @code{%11}. On the other hand, @code{ap} can't be the same as any of the other inputs, so an early-clobber on @code{a0} is not needed. It is also not desirable in this case. An early-clobber on @code{a0} would cause GCC to allocate a separate register for the @code{"m" (*(const double (*)[]) ap)} input. Note that tying an input to an output is the way to set up an initialized temporary register modified by an @code{asm} statement. An input not tied to an output is assumed by GCC to be unchanged, for example @code{"b" (16)} below sets up @code{%11} to 16, and GCC might use that register in following code if the value 16 happened to be needed. You can even use a normal @code{asm} output for a scratch if all inputs that might share the same register are consumed before the scratch is used. The VSX registers clobbered by the @code{asm} statement could have used this technique except for GCC's limit on the number of @code{asm} parameters. @smallexample static void dgemv_kernel_4x4 (long n, const double *ap, long lda, const double *x, double *y, double alpha) @{ double *a0; double *a1; double *a2; double *a3; __asm__ ( /* lots of asm here */ "#n=%1 ap=%8=%12 lda=%13 x=%7=%10 y=%0=%2 alpha=%9 o16=%11\n" "#a0=%3 a1=%4 a2=%5 a3=%6" : "+m" (*(double (*)[n]) y), "+&r" (n), // 1 "+b" (y), // 2 "=b" (a0), // 3 "=&b" (a1), // 4 "=&b" (a2), // 5 "=&b" (a3) // 6 : "m" (*(const double (*)[n]) x), "m" (*(const double (*)[]) ap), "d" (alpha), // 9 "r" (x), // 10 "b" (16), // 11 "3" (ap), // 12 "4" (lda) // 13 : "cr0", "vs32","vs33","vs34","vs35","vs36","vs37", "vs40","vs41","vs42","vs43","vs44","vs45","vs46","vs47" ); @} @end smallexample @anchor{GotoLabels} @subsubsection Goto Labels @cindex @code{asm} goto labels @code{asm goto} allows assembly code to jump to one or more C labels. The @var{GotoLabels} section in an @code{asm goto} statement contains a comma-separated list of all C labels to which the assembler code may jump. GCC assumes that @code{asm} execution falls through to the next statement (if this is not the case, consider using the @code{__builtin_unreachable} intrinsic after the @code{asm} statement). Optimization of @code{asm goto} may be improved by using the @code{hot} and @code{cold} label attributes (@pxref{Label Attributes}). An @code{asm goto} statement cannot have outputs. This is due to an internal restriction of the compiler: control transfer instructions cannot have outputs. If the assembler code does modify anything, use the @code{"memory"} clobber to force the optimizers to flush all register values to memory and reload them if necessary after the @code{asm} statement. Also note that an @code{asm goto} statement is always implicitly considered volatile. To reference a label in the assembler template, prefix it with @samp{%l} (lowercase @samp{L}) followed by its (zero-based) position in @var{GotoLabels} plus the number of input operands. For example, if the @code{asm} has three inputs and references two labels, refer to the first label as @samp{%l3} and the second as @samp{%l4}). Alternately, you can reference labels using the actual C label name enclosed in brackets. For example, to reference a label named @code{carry}, you can use @samp{%l[carry]}. The label must still be listed in the @var{GotoLabels} section when using this approach. Here is an example of @code{asm goto} for i386: @example asm goto ( "btl %1, %0\n\t" "jc %l2" : /* No outputs. */ : "r" (p1), "r" (p2) : "cc" : carry); return 0; carry: return 1; @end example The following example shows an @code{asm goto} that uses a memory clobber. @example int frob(int x) @{ int y; asm goto ("frob %%r5, %1; jc %l[error]; mov (%2), %%r5" : /* No outputs. */ : "r"(x), "r"(&y) : "r5", "memory" : error); return y; error: return -1; @} @end example @anchor{x86Operandmodifiers} @subsubsection x86 Operand Modifiers References to input, output, and goto operands in the assembler template of extended @code{asm} statements can use modifiers to affect the way the operands are formatted in the code output to the assembler. For example, the following code uses the @samp{h} and @samp{b} modifiers for x86: @example uint16_t num; asm volatile ("xchg %h0, %b0" : "+a" (num) ); @end example @noindent These modifiers generate this assembler code: @example xchg %ah, %al @end example The rest of this discussion uses the following code for illustrative purposes. @example int main() @{ int iInt = 1; top: asm volatile goto ("some assembler instructions here" : /* No outputs. */ : "q" (iInt), "X" (sizeof(unsigned char) + 1) : /* No clobbers. */ : top); @} @end example With no modifiers, this is what the output from the operands would be for the @samp{att} and @samp{intel} dialects of assembler: @multitable {Operand} {$.L2} {OFFSET FLAT:.L2} @headitem Operand @tab @samp{att} @tab @samp{intel} @item @code{%0} @tab @code{%eax} @tab @code{eax} @item @code{%1} @tab @code{$2} @tab @code{2} @item @code{%2} @tab @code{$.L2} @tab @code{OFFSET FLAT:.L2} @end multitable The table below shows the list of supported modifiers and their effects. @multitable {Modifier} {Print the opcode suffix for the size of th} {Operand} {@samp{att}} {@samp{intel}} @headitem Modifier @tab Description @tab Operand @tab @samp{att} @tab @samp{intel} @item @code{z} @tab Print the opcode suffix for the size of the current integer operand (one of @code{b}/@code{w}/@code{l}/@code{q}). @tab @code{%z0} @tab @code{l} @tab @item @code{b} @tab Print the QImode name of the register. @tab @code{%b0} @tab @code{%al} @tab @code{al} @item @code{h} @tab Print the QImode name for a ``high'' register. @tab @code{%h0} @tab @code{%ah} @tab @code{ah} @item @code{w} @tab Print the HImode name of the register. @tab @code{%w0} @tab @code{%ax} @tab @code{ax} @item @code{k} @tab Print the SImode name of the register. @tab @code{%k0} @tab @code{%eax} @tab @code{eax} @item @code{q} @tab Print the DImode name of the register. @tab @code{%q0} @tab @code{%rax} @tab @code{rax} @item @code{l} @tab Print the label name with no punctuation. @tab @code{%l2} @tab @code{.L2} @tab @code{.L2} @item @code{c} @tab Require a constant operand and print the constant expression with no punctuation. @tab @code{%c1} @tab @code{2} @tab @code{2} @end multitable @anchor{x86floatingpointasmoperands} @subsubsection x86 Floating-Point @code{asm} Operands On x86 targets, there are several rules on the usage of stack-like registers in the operands of an @code{asm}. These rules apply only to the operands that are stack-like registers: @enumerate @item Given a set of input registers that die in an @code{asm}, it is necessary to know which are implicitly popped by the @code{asm}, and which must be explicitly popped by GCC@. An input register that is implicitly popped by the @code{asm} must be explicitly clobbered, unless it is constrained to match an output operand. @item For any input register that is implicitly popped by an @code{asm}, it is necessary to know how to adjust the stack to compensate for the pop. If any non-popped input is closer to the top of the reg-stack than the implicitly popped register, it would not be possible to know what the stack looked like---it's not clear how the rest of the stack ``slides up''. All implicitly popped input registers must be closer to the top of the reg-stack than any input that is not implicitly popped. It is possible that if an input dies in an @code{asm}, the compiler might use the input register for an output reload. Consider this example: @smallexample asm ("foo" : "=t" (a) : "f" (b)); @end smallexample @noindent This code says that input @code{b} is not popped by the @code{asm}, and that the @code{asm} pushes a result onto the reg-stack, i.e., the stack is one deeper after the @code{asm} than it was before. But, it is possible that reload may think that it can use the same register for both the input and the output. To prevent this from happening, if any input operand uses the @samp{f} constraint, all output register constraints must use the @samp{&} early-clobber modifier. The example above is correctly written as: @smallexample asm ("foo" : "=&t" (a) : "f" (b)); @end smallexample @item Some operands need to be in particular places on the stack. All output operands fall in this category---GCC has no other way to know which registers the outputs appear in unless you indicate this in the constraints. Output operands must specifically indicate which register an output appears in after an @code{asm}. @samp{=f} is not allowed: the operand constraints must select a class with a single register. @item Output operands may not be ``inserted'' between existing stack registers. Since no 387 opcode uses a read/write operand, all output operands are dead before the @code{asm}, and are pushed by the @code{asm}. It makes no sense to push anywhere but the top of the reg-stack. Output operands must start at the top of the reg-stack: output operands may not ``skip'' a register. @item Some @code{asm} statements may need extra stack space for internal calculations. This can be guaranteed by clobbering stack registers unrelated to the inputs and outputs. @end enumerate This @code{asm} takes one input, which is internally popped, and produces two outputs. @smallexample asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp)); @end smallexample @noindent This @code{asm} takes two inputs, which are popped by the @code{fyl2xp1} opcode, and replaces them with one output. The @code{st(1)} clobber is necessary for the compiler to know that @code{fyl2xp1} pops both inputs. @smallexample asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)"); @end smallexample @lowersections @include md.texi @raisesections @node Asm Labels @subsection Controlling Names Used in Assembler Code @cindex assembler names for identifiers @cindex names used in assembler code @cindex identifiers, names in assembler code You can specify the name to be used in the assembler code for a C function or variable by writing the @code{asm} (or @code{__asm__}) keyword after the declarator. It is up to you to make sure that the assembler names you choose do not conflict with any other assembler symbols, or reference registers. @subsubheading Assembler names for data: This sample shows how to specify the assembler name for data: @smallexample int foo asm ("myfoo") = 2; @end smallexample @noindent This specifies that the name to be used for the variable @code{foo} in the assembler code should be @samp{myfoo} rather than the usual @samp{_foo}. On systems where an underscore is normally prepended to the name of a C variable, this feature allows you to define names for the linker that do not start with an underscore. GCC does not support using this feature with a non-static local variable since such variables do not have assembler names. If you are trying to put the variable in a particular register, see @ref{Explicit Register Variables}. @subsubheading Assembler names for functions: To specify the assembler name for functions, write a declaration for the function before its definition and put @code{asm} there, like this: @smallexample int func (int x, int y) asm ("MYFUNC"); int func (int x, int y) @{ /* @r{@dots{}} */ @end smallexample @noindent This specifies that the name to be used for the function @code{func} in the assembler code should be @code{MYFUNC}. @node Explicit Register Variables @subsection Variables in Specified Registers @anchor{Explicit Reg Vars} @cindex explicit register variables @cindex variables in specified registers @cindex specified registers GNU C allows you to associate specific hardware registers with C variables. In almost all cases, allowing the compiler to assign registers produces the best code. However under certain unusual circumstances, more precise control over the variable storage is required. Both global and local variables can be associated with a register. The consequences of performing this association are very different between the two, as explained in the sections below. @menu * Global Register Variables:: Variables declared at global scope. * Local Register Variables:: Variables declared within a function. @end menu @node Global Register Variables @subsubsection Defining Global Register Variables @anchor{Global Reg Vars} @cindex global register variables @cindex registers, global variables in @cindex registers, global allocation You can define a global register variable and associate it with a specified register like this: @smallexample register int *foo asm ("r12"); @end smallexample @noindent Here @code{r12} is the name of the register that should be used. Note that this is the same syntax used for defining local register variables, but for a global variable the declaration appears outside a function. The @code{register} keyword is required, and cannot be combined with @code{static}. The register name must be a valid register name for the target platform. Registers are a scarce resource on most systems and allowing the compiler to manage their usage usually results in the best code. However, under special circumstances it can make sense to reserve some globally. For example this may be useful in programs such as programming language interpreters that have a couple of global variables that are accessed very often. After defining a global register variable, for the current compilation unit: @itemize @bullet @item The register is reserved entirely for this use, and will not be allocated for any other purpose. @item The register is not saved and restored by any functions. @item Stores into this register are never deleted even if they appear to be dead, but references may be deleted, moved or simplified. @end itemize Note that these points @emph{only} apply to code that is compiled with the definition. The behavior of code that is merely linked in (for example code from libraries) is not affected. If you want to recompile source files that do not actually use your global register variable so they do not use the specified register for any other purpose, you need not actually add the global register declaration to their source code. It suffices to specify the compiler option @option{-ffixed-@var{reg}} (@pxref{Code Gen Options}) to reserve the register. @subsubheading Declaring the variable Global register variables can not have initial values, because an executable file has no means to supply initial contents for a register. When selecting a register, choose one that is normally saved and restored by function calls on your machine. This ensures that code which is unaware of this reservation (such as library routines) will restore it before returning. On machines with register windows, be sure to choose a global register that is not affected magically by the function call mechanism. @subsubheading Using the variable @cindex @code{qsort}, and global register variables When calling routines that are not aware of the reservation, be cautious if those routines call back into code which uses them. As an example, if you call the system library version of @code{qsort}, it may clobber your registers during execution, but (if you have selected appropriate registers) it will restore them before returning. However it will @emph{not} restore them before calling @code{qsort}'s comparison function. As a result, global values will not reliably be available to the comparison function unless the @code{qsort} function itself is rebuilt. Similarly, it is not safe to access the global register variables from signal handlers or from more than one thread of control. Unless you recompile them specially for the task at hand, the system library routines may temporarily use the register for other things. @cindex register variable after @code{longjmp} @cindex global register after @code{longjmp} @cindex value after @code{longjmp} @findex longjmp @findex setjmp On most machines, @code{longjmp} restores to each global register variable the value it had at the time of the @code{setjmp}. On some machines, however, @code{longjmp} does not change the value of global register variables. To be portable, the function that called @code{setjmp} should make other arrangements to save the values of the global register variables, and to restore them in a @code{longjmp}. This way, the same thing happens regardless of what @code{longjmp} does. Eventually there may be a way of asking the compiler to choose a register automatically, but first we need to figure out how it should choose and how to enable you to guide the choice. No solution is evident. @node Local Register Variables @subsubsection Specifying Registers for Local Variables @anchor{Local Reg Vars} @cindex local variables, specifying registers @cindex specifying registers for local variables @cindex registers for local variables You can define a local register variable and associate it with a specified register like this: @smallexample register int *foo asm ("r12"); @end smallexample @noindent Here @code{r12} is the name of the register that should be used. Note that this is the same syntax used for defining global register variables, but for a local variable the declaration appears within a function. The @code{register} keyword is required, and cannot be combined with @code{static}. The register name must be a valid register name for the target platform. As with global register variables, it is recommended that you choose a register that is normally saved and restored by function calls on your machine, so that calls to library routines will not clobber it. The only supported use for this feature is to specify registers for input and output operands when calling Extended @code{asm} (@pxref{Extended Asm}). This may be necessary if the constraints for a particular machine don't provide sufficient control to select the desired register. To force an operand into a register, create a local variable and specify the register name after the variable's declaration. Then use the local variable for the @code{asm} operand and specify any constraint letter that matches the register: @smallexample register int *p1 asm ("r0") = @dots{}; register int *p2 asm ("r1") = @dots{}; register int *result asm ("r0"); asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2)); @end smallexample @emph{Warning:} In the above example, be aware that a register (for example @code{r0}) can be call-clobbered by subsequent code, including function calls and library calls for arithmetic operators on other variables (for example the initialization of @code{p2}). In this case, use temporary variables for expressions between the register assignments: @smallexample int t1 = @dots{}; register int *p1 asm ("r0") = @dots{}; register int *p2 asm ("r1") = t1; register int *result asm ("r0"); asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2)); @end smallexample Defining a register variable does not reserve the register. Other than when invoking the Extended @code{asm}, the contents of the specified register are not guaranteed. For this reason, the following uses are explicitly @emph{not} supported. If they appear to work, it is only happenstance, and may stop working as intended due to (seemingly) unrelated changes in surrounding code, or even minor changes in the optimization of a future version of gcc: @itemize @bullet @item Passing parameters to or from Basic @code{asm} @item Passing parameters to or from Extended @code{asm} without using input or output operands. @item Passing parameters to or from routines written in assembler (or other languages) using non-standard calling conventions. @end itemize Some developers use Local Register Variables in an attempt to improve gcc's allocation of registers, especially in large functions. In this case the register name is essentially a hint to the register allocator. While in some instances this can generate better code, improvements are subject to the whims of the allocator/optimizers. Since there are no guarantees that your improvements won't be lost, this usage of Local Register Variables is discouraged. On the MIPS platform, there is related use for local register variables with slightly different characteristics (@pxref{MIPS Coprocessors,, Defining coprocessor specifics for MIPS targets, gccint, GNU Compiler Collection (GCC) Internals}). @node Size of an asm @subsection Size of an @code{asm} Some targets require that GCC track the size of each instruction used in order to generate correct code. Because the final length of the code produced by an @code{asm} statement is only known by the assembler, GCC must make an estimate as to how big it will be. It does this by counting the number of instructions in the pattern of the @code{asm} and multiplying that by the length of the longest instruction supported by that processor. (When working out the number of instructions, it assumes that any occurrence of a newline or of whatever statement separator character is supported by the assembler -- typically @samp{;} --- indicates the end of an instruction.) Normally, GCC's estimate is adequate to ensure that correct code is generated, but it is possible to confuse the compiler if you use pseudo instructions or assembler macros that expand into multiple real instructions, or if you use assembler directives that expand to more space in the object file than is needed for a single instruction. If this happens then the assembler may produce a diagnostic saying that a label is unreachable. @node Alternate Keywords @section Alternate Keywords @cindex alternate keywords @cindex keywords, alternate @option{-ansi} and the various @option{-std} options disable certain keywords. This causes trouble when you want to use GNU C extensions, or a general-purpose header file that should be usable by all programs, including ISO C programs. The keywords @code{asm}, @code{typeof} and @code{inline} are not available in programs compiled with @option{-ansi} or @option{-std} (although @code{inline} can be used in a program compiled with @option{-std=c99} or @option{-std=c11}). The ISO C99 keyword @code{restrict} is only available when @option{-std=gnu99} (which will eventually be the default) or @option{-std=c99} (or the equivalent @option{-std=iso9899:1999}), or an option for a later standard version, is used. The way to solve these problems is to put @samp{__} at the beginning and end of each problematical keyword. For example, use @code{__asm__} instead of @code{asm}, and @code{__inline__} instead of @code{inline}. Other C compilers won't accept these alternative keywords; if you want to compile with another compiler, you can define the alternate keywords as macros to replace them with the customary keywords. It looks like this: @smallexample #ifndef __GNUC__ #define __asm__ asm #endif @end smallexample @findex __extension__ @opindex pedantic @option{-pedantic} and other options cause warnings for many GNU C extensions. You can prevent such warnings within one expression by writing @code{__extension__} before the expression. @code{__extension__} has no effect aside from this. @node Incomplete Enums @section Incomplete @code{enum} Types You can define an @code{enum} tag without specifying its possible values. This results in an incomplete type, much like what you get if you write @code{struct foo} without describing the elements. A later declaration that does specify the possible values completes the type. You cannot allocate variables or storage using the type while it is incomplete. However, you can work with pointers to that type. This extension may not be very useful, but it makes the handling of @code{enum} more consistent with the way @code{struct} and @code{union} are handled. This extension is not supported by GNU C++. @node Function Names @section Function Names as Strings @cindex @code{__func__} identifier @cindex @code{__FUNCTION__} identifier @cindex @code{__PRETTY_FUNCTION__} identifier GCC provides three magic constants that hold the name of the current function as a string. In C++11 and later modes, all three are treated as constant expressions and can be used in @code{constexpr} constexts. The first of these constants is @code{__func__}, which is part of the C99 standard: The identifier @code{__func__} is implicitly declared by the translator as if, immediately following the opening brace of each function definition, the declaration @smallexample static const char __func__[] = "function-name"; @end smallexample @noindent appeared, where function-name is the name of the lexically-enclosing function. This name is the unadorned name of the function. As an extension, at file (or, in C++, namespace scope), @code{__func__} evaluates to the empty string. @code{__FUNCTION__} is another name for @code{__func__}, provided for backward compatibility with old versions of GCC. In C, @code{__PRETTY_FUNCTION__} is yet another name for @code{__func__}, except that at file (or, in C++, namespace scope), it evaluates to the string @code{"top level"}. In addition, in C++, @code{__PRETTY_FUNCTION__} contains the signature of the function as well as its bare name. For example, this program: @smallexample extern "C" int printf (const char *, ...); class a @{ public: void sub (int i) @{ printf ("__FUNCTION__ = %s\n", __FUNCTION__); printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__); @} @}; int main (void) @{ a ax; ax.sub (0); return 0; @} @end smallexample @noindent gives this output: @smallexample __FUNCTION__ = sub __PRETTY_FUNCTION__ = void a::sub(int) @end smallexample These identifiers are variables, not preprocessor macros, and may not be used to initialize @code{char} arrays or be concatenated with string literals. @node Return Address @section Getting the Return or Frame Address of a Function These functions may be used to get information about the callers of a function. @deftypefn {Built-in Function} {void *} __builtin_return_address (unsigned int @var{level}) This function returns the return address of the current function, or of one of its callers. The @var{level} argument is number of frames to scan up the call stack. A value of @code{0} yields the return address of the current function, a value of @code{1} yields the return address of the caller of the current function, and so forth. When inlining the expected behavior is that the function returns the address of the function that is returned to. To work around this behavior use the @code{noinline} function attribute. The @var{level} argument must be a constant integer. On some machines it may be impossible to determine the return address of any function other than the current one; in such cases, or when the top of the stack has been reached, this function returns @code{0} or a random value. In addition, @code{__builtin_frame_address} may be used to determine if the top of the stack has been reached. Additional post-processing of the returned value may be needed, see @code{__builtin_extract_return_addr}. Calling this function with a nonzero argument can have unpredictable effects, including crashing the calling program. As a result, calls that are considered unsafe are diagnosed when the @option{-Wframe-address} option is in effect. Such calls should only be made in debugging situations. @end deftypefn @deftypefn {Built-in Function} {void *} __builtin_extract_return_addr (void *@var{addr}) The address as returned by @code{__builtin_return_address} may have to be fed through this function to get the actual encoded address. For example, on the 31-bit S/390 platform the highest bit has to be masked out, or on SPARC platforms an offset has to be added for the true next instruction to be executed. If no fixup is needed, this function simply passes through @var{addr}. @end deftypefn @deftypefn {Built-in Function} {void *} __builtin_frob_return_address (void *@var{addr}) This function does the reverse of @code{__builtin_extract_return_addr}. @end deftypefn @deftypefn {Built-in Function} {void *} __builtin_frame_address (unsigned int @var{level}) This function is similar to @code{__builtin_return_address}, but it returns the address of the function frame rather than the return address of the function. Calling @code{__builtin_frame_address} with a value of @code{0} yields the frame address of the current function, a value of @code{1} yields the frame address of the caller of the current function, and so forth. The frame is the area on the stack that holds local variables and saved registers. The frame address is normally the address of the first word pushed on to the stack by the function. However, the exact definition depends upon the processor and the calling convention. If the processor has a dedicated frame pointer register, and the function has a frame, then @code{__builtin_frame_address} returns the value of the frame pointer register. On some machines it may be impossible to determine the frame address of any function other than the current one; in such cases, or when the top of the stack has been reached, this function returns @code{0} if the first frame pointer is properly initialized by the startup code. Calling this function with a nonzero argument can have unpredictable effects, including crashing the calling program. As a result, calls that are considered unsafe are diagnosed when the @option{-Wframe-address} option is in effect. Such calls should only be made in debugging situations. @end deftypefn @node Vector Extensions @section Using Vector Instructions through Built-in Functions On some targets, the instruction set contains SIMD vector instructions which operate on multiple values contained in one large register at the same time. For example, on the x86 the MMX, 3DNow!@: and SSE extensions can be used this way. The first step in using these extensions is to provide the necessary data types. This should be done using an appropriate @code{typedef}: @smallexample typedef int v4si __attribute__ ((vector_size (16))); @end smallexample @noindent The @code{int} type specifies the base type, while the attribute specifies the vector size for the variable, measured in bytes. For example, the declaration above causes the compiler to set the mode for the @code{v4si} type to be 16 bytes wide and divided into @code{int} sized units. For a 32-bit @code{int} this means a vector of 4 units of 4 bytes, and the corresponding mode of @code{foo} is @acronym{V4SI}. The @code{vector_size} attribute is only applicable to integral and float scalars, although arrays, pointers, and function return values are allowed in conjunction with this construct. Only sizes that are a power of two are currently allowed. All the basic integer types can be used as base types, both as signed and as unsigned: @code{char}, @code{short}, @code{int}, @code{long}, @code{long long}. In addition, @code{float} and @code{double} can be used to build floating-point vector types. Specifying a combination that is not valid for the current architecture causes GCC to synthesize the instructions using a narrower mode. For example, if you specify a variable of type @code{V4SI} and your architecture does not allow for this specific SIMD type, GCC produces code that uses 4 @code{SIs}. The types defined in this manner can be used with a subset of normal C operations. Currently, GCC allows using the following operators on these types: @code{+, -, *, /, unary minus, ^, |, &, ~, %}@. The operations behave like C++ @code{valarrays}. Addition is defined as the addition of the corresponding elements of the operands. For example, in the code below, each of the 4 elements in @var{a} is added to the corresponding 4 elements in @var{b} and the resulting vector is stored in @var{c}. @smallexample typedef int v4si __attribute__ ((vector_size (16))); v4si a, b, c; c = a + b; @end smallexample Subtraction, multiplication, division, and the logical operations operate in a similar manner. Likewise, the result of using the unary minus or complement operators on a vector type is a vector whose elements are the negative or complemented values of the corresponding elements in the operand. It is possible to use shifting operators @code{<<}, @code{>>} on integer-type vectors. The operation is defined as following: @code{@{a0, a1, @dots{}, an@} >> @{b0, b1, @dots{}, bn@} == @{a0 >> b0, a1 >> b1, @dots{}, an >> bn@}}@. Vector operands must have the same number of elements. For convenience, it is allowed to use a binary vector operation where one operand is a scalar. In that case the compiler transforms the scalar operand into a vector where each element is the scalar from the operation. The transformation happens only if the scalar could be safely converted to the vector-element type. Consider the following code. @smallexample typedef int v4si __attribute__ ((vector_size (16))); v4si a, b, c; long l; a = b + 1; /* a = b + @{1,1,1,1@}; */ a = 2 * b; /* a = @{2,2,2,2@} * b; */ a = l + a; /* Error, cannot convert long to int. */ @end smallexample Vectors can be subscripted as if the vector were an array with the same number of elements and base type. Out of bound accesses invoke undefined behavior at run time. Warnings for out of bound accesses for vector subscription can be enabled with @option{-Warray-bounds}. Vector comparison is supported with standard comparison operators: @code{==, !=, <, <=, >, >=}. Comparison operands can be vector expressions of integer-type or real-type. Comparison between integer-type vectors and real-type vectors are not supported. The result of the comparison is a vector of the same width and number of elements as the comparison operands with a signed integral element type. Vectors are compared element-wise producing 0 when comparison is false and -1 (constant of the appropriate type where all bits are set) otherwise. Consider the following example. @smallexample typedef int v4si __attribute__ ((vector_size (16))); v4si a = @{1,2,3,4@}; v4si b = @{3,2,1,4@}; v4si c; c = a > b; /* The result would be @{0, 0,-1, 0@} */ c = a == b; /* The result would be @{0,-1, 0,-1@} */ @end smallexample In C++, the ternary operator @code{?:} is available. @code{a?b:c}, where @code{b} and @code{c} are vectors of the same type and @code{a} is an integer vector with the same number of elements of the same size as @code{b} and @code{c}, computes all three arguments and creates a vector @code{@{a[0]?b[0]:c[0], a[1]?b[1]:c[1], @dots{}@}}. Note that unlike in OpenCL, @code{a} is thus interpreted as @code{a != 0} and not @code{a < 0}. As in the case of binary operations, this syntax is also accepted when one of @code{b} or @code{c} is a scalar that is then transformed into a vector. If both @code{b} and @code{c} are scalars and the type of @code{true?b:c} has the same size as the element type of @code{a}, then @code{b} and @code{c} are converted to a vector type whose elements have this type and with the same number of elements as @code{a}. In C++, the logic operators @code{!, &&, ||} are available for vectors. @code{!v} is equivalent to @code{v == 0}, @code{a && b} is equivalent to @code{a!=0 & b!=0} and @code{a || b} is equivalent to @code{a!=0 | b!=0}. For mixed operations between a scalar @code{s} and a vector @code{v}, @code{s && v} is equivalent to @code{s?v!=0:0} (the evaluation is short-circuit) and @code{v && s} is equivalent to @code{v!=0 & (s?-1:0)}. @findex __builtin_shuffle Vector shuffling is available using functions @code{__builtin_shuffle (vec, mask)} and @code{__builtin_shuffle (vec0, vec1, mask)}. Both functions construct a permutation of elements from one or two vectors and return a vector of the same type as the input vector(s). The @var{mask} is an integral vector with the same width (@var{W}) and element count (@var{N}) as the output vector. The elements of the input vectors are numbered in memory ordering of @var{vec0} beginning at 0 and @var{vec1} beginning at @var{N}. The elements of @var{mask} are considered modulo @var{N} in the single-operand case and modulo @math{2*@var{N}} in the two-operand case. Consider the following example, @smallexample typedef int v4si __attribute__ ((vector_size (16))); v4si a = @{1,2,3,4@}; v4si b = @{5,6,7,8@}; v4si mask1 = @{0,1,1,3@}; v4si mask2 = @{0,4,2,5@}; v4si res; res = __builtin_shuffle (a, mask1); /* res is @{1,2,2,4@} */ res = __builtin_shuffle (a, b, mask2); /* res is @{1,5,3,6@} */ @end smallexample Note that @code{__builtin_shuffle} is intentionally semantically compatible with the OpenCL @code{shuffle} and @code{shuffle2} functions. You can declare variables and use them in function calls and returns, as well as in assignments and some casts. You can specify a vector type as a return type for a function. Vector types can also be used as function arguments. It is possible to cast from one vector type to another, provided they are of the same size (in fact, you can also cast vectors to and from other datatypes of the same size). You cannot operate between vectors of different lengths or different signedness without a cast. @node Offsetof @section Support for @code{offsetof} @findex __builtin_offsetof GCC implements for both C and C++ a syntactic extension to implement the @code{offsetof} macro. @smallexample primary: "__builtin_offsetof" "(" @code{typename} "," offsetof_member_designator ")" offsetof_member_designator: @code{identifier} | offsetof_member_designator "." @code{identifier} | offsetof_member_designator "[" @code{expr} "]" @end smallexample This extension is sufficient such that @smallexample #define offsetof(@var{type}, @var{member}) __builtin_offsetof (@var{type}, @var{member}) @end smallexample @noindent is a suitable definition of the @code{offsetof} macro. In C++, @var{type} may be dependent. In either case, @var{member} may consist of a single identifier, or a sequence of member accesses and array references. @node __sync Builtins @section Legacy @code{__sync} Built-in Functions for Atomic Memory Access The following built-in functions are intended to be compatible with those described in the @cite{Intel Itanium Processor-specific Application Binary Interface}, section 7.4. As such, they depart from normal GCC practice by not using the @samp{__builtin_} prefix and also by being overloaded so that they work on multiple types. The definition given in the Intel documentation allows only for the use of the types @code{int}, @code{long}, @code{long long} or their unsigned counterparts. GCC allows any scalar type that is 1, 2, 4 or 8 bytes in size other than the C type @code{_Bool} or the C++ type @code{bool}. Operations on pointer arguments are performed as if the operands were of the @code{uintptr_t} type. That is, they are not scaled by the size of the type to which the pointer points. These functions are implemented in terms of the @samp{__atomic} builtins (@pxref{__atomic Builtins}). They should not be used for new code which should use the @samp{__atomic} builtins instead. Not all operations are supported by all target processors. If a particular operation cannot be implemented on the target processor, a warning is generated and a call to an external function is generated. The external function carries the same name as the built-in version, with an additional suffix @samp{_@var{n}} where @var{n} is the size of the data type. @c ??? Should we have a mechanism to suppress this warning? This is almost @c useful for implementing the operation under the control of an external @c mutex. In most cases, these built-in functions are considered a @dfn{full barrier}. That is, no memory operand is moved across the operation, either forward or backward. Further, instructions are issued as necessary to prevent the processor from speculating loads across the operation and from queuing stores after the operation. All of the routines are described in the Intel documentation to take ``an optional list of variables protected by the memory barrier''. It's not clear what is meant by that; it could mean that @emph{only} the listed variables are protected, or it could mean a list of additional variables to be protected. The list is ignored by GCC which treats it as empty. GCC interprets an empty list as meaning that all globally accessible variables should be protected. @table @code @item @var{type} __sync_fetch_and_add (@var{type} *ptr, @var{type} value, ...) @itemx @var{type} __sync_fetch_and_sub (@var{type} *ptr, @var{type} value, ...) @itemx @var{type} __sync_fetch_and_or (@var{type} *ptr, @var{type} value, ...) @itemx @var{type} __sync_fetch_and_and (@var{type} *ptr, @var{type} value, ...) @itemx @var{type} __sync_fetch_and_xor (@var{type} *ptr, @var{type} value, ...) @itemx @var{type} __sync_fetch_and_nand (@var{type} *ptr, @var{type} value, ...) @findex __sync_fetch_and_add @findex __sync_fetch_and_sub @findex __sync_fetch_and_or @findex __sync_fetch_and_and @findex __sync_fetch_and_xor @findex __sync_fetch_and_nand These built-in functions perform the operation suggested by the name, and returns the value that had previously been in memory. That is, operations on integer operands have the following semantics. Operations on pointer arguments are performed as if the operands were of the @code{uintptr_t} type. That is, they are not scaled by the size of the type to which the pointer points. @smallexample @{ tmp = *ptr; *ptr @var{op}= value; return tmp; @} @{ tmp = *ptr; *ptr = ~(tmp & value); return tmp; @} // nand @end smallexample The object pointed to by the first argument must be of integer or pointer type. It must not be a boolean type. @emph{Note:} GCC 4.4 and later implement @code{__sync_fetch_and_nand} as @code{*ptr = ~(tmp & value)} instead of @code{*ptr = ~tmp & value}. @item @var{type} __sync_add_and_fetch (@var{type} *ptr, @var{type} value, ...) @itemx @var{type} __sync_sub_and_fetch (@var{type} *ptr, @var{type} value, ...) @itemx @var{type} __sync_or_and_fetch (@var{type} *ptr, @var{type} value, ...) @itemx @var{type} __sync_and_and_fetch (@var{type} *ptr, @var{type} value, ...) @itemx @var{type} __sync_xor_and_fetch (@var{type} *ptr, @var{type} value, ...) @itemx @var{type} __sync_nand_and_fetch (@var{type} *ptr, @var{type} value, ...) @findex __sync_add_and_fetch @findex __sync_sub_and_fetch @findex __sync_or_and_fetch @findex __sync_and_and_fetch @findex __sync_xor_and_fetch @findex __sync_nand_and_fetch These built-in functions perform the operation suggested by the name, and return the new value. That is, operations on integer operands have the following semantics. Operations on pointer operands are performed as if the operand's type were @code{uintptr_t}. @smallexample @{ *ptr @var{op}= value; return *ptr; @} @{ *ptr = ~(*ptr & value); return *ptr; @} // nand @end smallexample The same constraints on arguments apply as for the corresponding @code{__sync_op_and_fetch} built-in functions. @emph{Note:} GCC 4.4 and later implement @code{__sync_nand_and_fetch} as @code{*ptr = ~(*ptr & value)} instead of @code{*ptr = ~*ptr & value}. @item bool __sync_bool_compare_and_swap (@var{type} *ptr, @var{type} oldval, @var{type} newval, ...) @itemx @var{type} __sync_val_compare_and_swap (@var{type} *ptr, @var{type} oldval, @var{type} newval, ...) @findex __sync_bool_compare_and_swap @findex __sync_val_compare_and_swap These built-in functions perform an atomic compare and swap. That is, if the current value of @code{*@var{ptr}} is @var{oldval}, then write @var{newval} into @code{*@var{ptr}}. The ``bool'' version returns true if the comparison is successful and @var{newval} is written. The ``val'' version returns the contents of @code{*@var{ptr}} before the operation. @item __sync_synchronize (...) @findex __sync_synchronize This built-in function issues a full memory barrier. @item @var{type} __sync_lock_test_and_set (@var{type} *ptr, @var{type} value, ...) @findex __sync_lock_test_and_set This built-in function, as described by Intel, is not a traditional test-and-set operation, but rather an atomic exchange operation. It writes @var{value} into @code{*@var{ptr}}, and returns the previous contents of @code{*@var{ptr}}. Many targets have only minimal support for such locks, and do not support a full exchange operation. In this case, a target may support reduced functionality here by which the @emph{only} valid value to store is the immediate constant 1. The exact value actually stored in @code{*@var{ptr}} is implementation defined. This built-in function is not a full barrier, but rather an @dfn{acquire barrier}. This means that references after the operation cannot move to (or be speculated to) before the operation, but previous memory stores may not be globally visible yet, and previous memory loads may not yet be satisfied. @item void __sync_lock_release (@var{type} *ptr, ...) @findex __sync_lock_release This built-in function releases the lock acquired by @code{__sync_lock_test_and_set}. Normally this means writing the constant 0 to @code{*@var{ptr}}. This built-in function is not a full barrier, but rather a @dfn{release barrier}. This means that all previous memory stores are globally visible, and all previous memory loads have been satisfied, but following memory reads are not prevented from being speculated to before the barrier. @end table @node __atomic Builtins @section Built-in Functions for Memory Model Aware Atomic Operations The following built-in functions approximately match the requirements for the C++11 memory model. They are all identified by being prefixed with @samp{__atomic} and most are overloaded so that they work with multiple types. These functions are intended to replace the legacy @samp{__sync} builtins. The main difference is that the memory order that is requested is a parameter to the functions. New code should always use the @samp{__atomic} builtins rather than the @samp{__sync} builtins. Note that the @samp{__atomic} builtins assume that programs will conform to the C++11 memory model. In particular, they assume that programs are free of data races. See the C++11 standard for detailed requirements. The @samp{__atomic} builtins can be used with any integral scalar or pointer type that is 1, 2, 4, or 8 bytes in length. 16-byte integral types are also allowed if @samp{__int128} (@pxref{__int128}) is supported by the architecture. The four non-arithmetic functions (load, store, exchange, and compare_exchange) all have a generic version as well. This generic version works on any data type. It uses the lock-free built-in function if the specific data type size makes that possible; otherwise, an external call is left to be resolved at run time. This external call is the same format with the addition of a @samp{size_t} parameter inserted as the first parameter indicating the size of the object being pointed to. All objects must be the same size. There are 6 different memory orders that can be specified. These map to the C++11 memory orders with the same names, see the C++11 standard or the @uref{http://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync,GCC wiki on atomic synchronization} for detailed definitions. Individual targets may also support additional memory orders for use on specific architectures. Refer to the target documentation for details of these. An atomic operation can both constrain code motion and be mapped to hardware instructions for synchronization between threads (e.g., a fence). To which extent this happens is controlled by the memory orders, which are listed here in approximately ascending order of strength. The description of each memory order is only meant to roughly illustrate the effects and is not a specification; see the C++11 memory model for precise semantics. @table @code @item __ATOMIC_RELAXED Implies no inter-thread ordering constraints. @item __ATOMIC_CONSUME This is currently implemented using the stronger @code{__ATOMIC_ACQUIRE} memory order because of a deficiency in C++11's semantics for @code{memory_order_consume}. @item __ATOMIC_ACQUIRE Creates an inter-thread happens-before constraint from the release (or stronger) semantic store to this acquire load. Can prevent hoisting of code to before the operation. @item __ATOMIC_RELEASE Creates an inter-thread happens-before constraint to acquire (or stronger) semantic loads that read from this release store. Can prevent sinking of code to after the operation. @item __ATOMIC_ACQ_REL Combines the effects of both @code{__ATOMIC_ACQUIRE} and @code{__ATOMIC_RELEASE}. @item __ATOMIC_SEQ_CST Enforces total ordering with all other @code{__ATOMIC_SEQ_CST} operations. @end table Note that in the C++11 memory model, @emph{fences} (e.g., @samp{__atomic_thread_fence}) take effect in combination with other atomic operations on specific memory locations (e.g., atomic loads); operations on specific memory locations do not necessarily affect other operations in the same way. Target architectures are encouraged to provide their own patterns for each of the atomic built-in functions. If no target is provided, the original non-memory model set of @samp{__sync} atomic built-in functions are used, along with any required synchronization fences surrounding it in order to achieve the proper behavior. Execution in this case is subject to the same restrictions as those built-in functions. If there is no pattern or mechanism to provide a lock-free instruction sequence, a call is made to an external routine with the same parameters to be resolved at run time. When implementing patterns for these built-in functions, the memory order parameter can be ignored as long as the pattern implements the most restrictive @code{__ATOMIC_SEQ_CST} memory order. Any of the other memory orders execute correctly with this memory order but they may not execute as efficiently as they could with a more appropriate implementation of the relaxed requirements. Note that the C++11 standard allows for the memory order parameter to be determined at run time rather than at compile time. These built-in functions map any run-time value to @code{__ATOMIC_SEQ_CST} rather than invoke a runtime library call or inline a switch statement. This is standard compliant, safe, and the simplest approach for now. The memory order parameter is a signed int, but only the lower 16 bits are reserved for the memory order. The remainder of the signed int is reserved for target use and should be 0. Use of the predefined atomic values ensures proper usage. @deftypefn {Built-in Function} @var{type} __atomic_load_n (@var{type} *ptr, int memorder) This built-in function implements an atomic load operation. It returns the contents of @code{*@var{ptr}}. The valid memory order variants are @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, @code{__ATOMIC_ACQUIRE}, and @code{__ATOMIC_CONSUME}. @end deftypefn @deftypefn {Built-in Function} void __atomic_load (@var{type} *ptr, @var{type} *ret, int memorder) This is the generic version of an atomic load. It returns the contents of @code{*@var{ptr}} in @code{*@var{ret}}. @end deftypefn @deftypefn {Built-in Function} void __atomic_store_n (@var{type} *ptr, @var{type} val, int memorder) This built-in function implements an atomic store operation. It writes @code{@var{val}} into @code{*@var{ptr}}. The valid memory order variants are @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, and @code{__ATOMIC_RELEASE}. @end deftypefn @deftypefn {Built-in Function} void __atomic_store (@var{type} *ptr, @var{type} *val, int memorder) This is the generic version of an atomic store. It stores the value of @code{*@var{val}} into @code{*@var{ptr}}. @end deftypefn @deftypefn {Built-in Function} @var{type} __atomic_exchange_n (@var{type} *ptr, @var{type} val, int memorder) This built-in function implements an atomic exchange operation. It writes @var{val} into @code{*@var{ptr}}, and returns the previous contents of @code{*@var{ptr}}. The valid memory order variants are @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, @code{__ATOMIC_ACQUIRE}, @code{__ATOMIC_RELEASE}, and @code{__ATOMIC_ACQ_REL}. @end deftypefn @deftypefn {Built-in Function} void __atomic_exchange (@var{type} *ptr, @var{type} *val, @var{type} *ret, int memorder) This is the generic version of an atomic exchange. It stores the contents of @code{*@var{val}} into @code{*@var{ptr}}. The original value of @code{*@var{ptr}} is copied into @code{*@var{ret}}. @end deftypefn @deftypefn {Built-in Function} bool __atomic_compare_exchange_n (@var{type} *ptr, @var{type} *expected, @var{type} desired, bool weak, int success_memorder, int failure_memorder) This built-in function implements an atomic compare and exchange operation. This compares the contents of @code{*@var{ptr}} with the contents of @code{*@var{expected}}. If equal, the operation is a @emph{read-modify-write} operation that writes @var{desired} into @code{*@var{ptr}}. If they are not equal, the operation is a @emph{read} and the current contents of @code{*@var{ptr}} are written into @code{*@var{expected}}. @var{weak} is true for weak compare_exchange, which may fail spuriously, and false for the strong variation, which never fails spuriously. Many targets only offer the strong variation and ignore the parameter. When in doubt, use the strong variation. If @var{desired} is written into @code{*@var{ptr}} then true is returned and memory is affected according to the memory order specified by @var{success_memorder}. There are no restrictions on what memory order can be used here. Otherwise, false is returned and memory is affected according to @var{failure_memorder}. This memory order cannot be @code{__ATOMIC_RELEASE} nor @code{__ATOMIC_ACQ_REL}. It also cannot be a stronger order than that specified by @var{success_memorder}. @end deftypefn @deftypefn {Built-in Function} bool __atomic_compare_exchange (@var{type} *ptr, @var{type} *expected, @var{type} *desired, bool weak, int success_memorder, int failure_memorder) This built-in function implements the generic version of @code{__atomic_compare_exchange}. The function is virtually identical to @code{__atomic_compare_exchange_n}, except the desired value is also a pointer. @end deftypefn @deftypefn {Built-in Function} @var{type} __atomic_add_fetch (@var{type} *ptr, @var{type} val, int memorder) @deftypefnx {Built-in Function} @var{type} __atomic_sub_fetch (@var{type} *ptr, @var{type} val, int memorder) @deftypefnx {Built-in Function} @var{type} __atomic_and_fetch (@var{type} *ptr, @var{type} val, int memorder) @deftypefnx {Built-in Function} @var{type} __atomic_xor_fetch (@var{type} *ptr, @var{type} val, int memorder) @deftypefnx {Built-in Function} @var{type} __atomic_or_fetch (@var{type} *ptr, @var{type} val, int memorder) @deftypefnx {Built-in Function} @var{type} __atomic_nand_fetch (@var{type} *ptr, @var{type} val, int memorder) These built-in functions perform the operation suggested by the name, and return the result of the operation. Operations on pointer arguments are performed as if the operands were of the @code{uintptr_t} type. That is, they are not scaled by the size of the type to which the pointer points. @smallexample @{ *ptr @var{op}= val; return *ptr; @} @end smallexample The object pointed to by the first argument must be of integer or pointer type. It must not be a boolean type. All memory orders are valid. @end deftypefn @deftypefn {Built-in Function} @var{type} __atomic_fetch_add (@var{type} *ptr, @var{type} val, int memorder) @deftypefnx {Built-in Function} @var{type} __atomic_fetch_sub (@var{type} *ptr, @var{type} val, int memorder) @deftypefnx {Built-in Function} @var{type} __atomic_fetch_and (@var{type} *ptr, @var{type} val, int memorder) @deftypefnx {Built-in Function} @var{type} __atomic_fetch_xor (@var{type} *ptr, @var{type} val, int memorder) @deftypefnx {Built-in Function} @var{type} __atomic_fetch_or (@var{type} *ptr, @var{type} val, int memorder) @deftypefnx {Built-in Function} @var{type} __atomic_fetch_nand (@var{type} *ptr, @var{type} val, int memorder) These built-in functions perform the operation suggested by the name, and return the value that had previously been in @code{*@var{ptr}}. Operations on pointer arguments are performed as if the operands were of the @code{uintptr_t} type. That is, they are not scaled by the size of the type to which the pointer points. @smallexample @{ tmp = *ptr; *ptr @var{op}= val; return tmp; @} @end smallexample The same constraints on arguments apply as for the corresponding @code{__atomic_op_fetch} built-in functions. All memory orders are valid. @end deftypefn @deftypefn {Built-in Function} bool __atomic_test_and_set (void *ptr, int memorder) This built-in function performs an atomic test-and-set operation on the byte at @code{*@var{ptr}}. The byte is set to some implementation defined nonzero ``set'' value and the return value is @code{true} if and only if the previous contents were ``set''. It should be only used for operands of type @code{bool} or @code{char}. For other types only part of the value may be set. All memory orders are valid. @end deftypefn @deftypefn {Built-in Function} void __atomic_clear (bool *ptr, int memorder) This built-in function performs an atomic clear operation on @code{*@var{ptr}}. After the operation, @code{*@var{ptr}} contains 0. It should be only used for operands of type @code{bool} or @code{char} and in conjunction with @code{__atomic_test_and_set}. For other types it may only clear partially. If the type is not @code{bool} prefer using @code{__atomic_store}. The valid memory order variants are @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, and @code{__ATOMIC_RELEASE}. @end deftypefn @deftypefn {Built-in Function} void __atomic_thread_fence (int memorder) This built-in function acts as a synchronization fence between threads based on the specified memory order. All memory orders are valid. @end deftypefn @deftypefn {Built-in Function} void __atomic_signal_fence (int memorder) This built-in function acts as a synchronization fence between a thread and signal handlers based in the same thread. All memory orders are valid. @end deftypefn @deftypefn {Built-in Function} bool __atomic_always_lock_free (size_t size, void *ptr) This built-in function returns true if objects of @var{size} bytes always generate lock-free atomic instructions for the target architecture. @var{size} must resolve to a compile-time constant and the result also resolves to a compile-time constant. @var{ptr} is an optional pointer to the object that may be used to determine alignment. A value of 0 indicates typical alignment should be used. The compiler may also ignore this parameter. @smallexample if (__atomic_always_lock_free (sizeof (long long), 0)) @end smallexample @end deftypefn @deftypefn {Built-in Function} bool __atomic_is_lock_free (size_t size, void *ptr) This built-in function returns true if objects of @var{size} bytes always generate lock-free atomic instructions for the target architecture. If the built-in function is not known to be lock-free, a call is made to a runtime routine named @code{__atomic_is_lock_free}. @var{ptr} is an optional pointer to the object that may be used to determine alignment. A value of 0 indicates typical alignment should be used. The compiler may also ignore this parameter. @end deftypefn @node Integer Overflow Builtins @section Built-in Functions to Perform Arithmetic with Overflow Checking The following built-in functions allow performing simple arithmetic operations together with checking whether the operations overflowed. @deftypefn {Built-in Function} bool __builtin_add_overflow (@var{type1} a, @var{type2} b, @var{type3} *res) @deftypefnx {Built-in Function} bool __builtin_sadd_overflow (int a, int b, int *res) @deftypefnx {Built-in Function} bool __builtin_saddl_overflow (long int a, long int b, long int *res) @deftypefnx {Built-in Function} bool __builtin_saddll_overflow (long long int a, long long int b, long long int *res) @deftypefnx {Built-in Function} bool __builtin_uadd_overflow (unsigned int a, unsigned int b, unsigned int *res) @deftypefnx {Built-in Function} bool __builtin_uaddl_overflow (unsigned long int a, unsigned long int b, unsigned long int *res) @deftypefnx {Built-in Function} bool __builtin_uaddll_overflow (unsigned long long int a, unsigned long long int b, unsigned long long int *res) These built-in functions promote the first two operands into infinite precision signed type and perform addition on those promoted operands. The result is then cast to the type the third pointer argument points to and stored there. If the stored result is equal to the infinite precision result, the built-in functions return false, otherwise they return true. As the addition is performed in infinite signed precision, these built-in functions have fully defined behavior for all argument values. The first built-in function allows arbitrary integral types for operands and the result type must be pointer to some integral type other than enumerated or boolean type, the rest of the built-in functions have explicit integer types. The compiler will attempt to use hardware instructions to implement these built-in functions where possible, like conditional jump on overflow after addition, conditional jump on carry etc. @end deftypefn @deftypefn {Built-in Function} bool __builtin_sub_overflow (@var{type1} a, @var{type2} b, @var{type3} *res) @deftypefnx {Built-in Function} bool __builtin_ssub_overflow (int a, int b, int *res) @deftypefnx {Built-in Function} bool __builtin_ssubl_overflow (long int a, long int b, long int *res) @deftypefnx {Built-in Function} bool __builtin_ssubll_overflow (long long int a, long long int b, long long int *res) @deftypefnx {Built-in Function} bool __builtin_usub_overflow (unsigned int a, unsigned int b, unsigned int *res) @deftypefnx {Built-in Function} bool __builtin_usubl_overflow (unsigned long int a, unsigned long int b, unsigned long int *res) @deftypefnx {Built-in Function} bool __builtin_usubll_overflow (unsigned long long int a, unsigned long long int b, unsigned long long int *res) These built-in functions are similar to the add overflow checking built-in functions above, except they perform subtraction, subtract the second argument from the first one, instead of addition. @end deftypefn @deftypefn {Built-in Function} bool __builtin_mul_overflow (@var{type1} a, @var{type2} b, @var{type3} *res) @deftypefnx {Built-in Function} bool __builtin_smul_overflow (int a, int b, int *res) @deftypefnx {Built-in Function} bool __builtin_smull_overflow (long int a, long int b, long int *res) @deftypefnx {Built-in Function} bool __builtin_smulll_overflow (long long int a, long long int b, long long int *res) @deftypefnx {Built-in Function} bool __builtin_umul_overflow (unsigned int a, unsigned int b, unsigned int *res) @deftypefnx {Built-in Function} bool __builtin_umull_overflow (unsigned long int a, unsigned long int b, unsigned long int *res) @deftypefnx {Built-in Function} bool __builtin_umulll_overflow (unsigned long long int a, unsigned long long int b, unsigned long long int *res) These built-in functions are similar to the add overflow checking built-in functions above, except they perform multiplication, instead of addition. @end deftypefn The following built-in functions allow checking if simple arithmetic operation would overflow. @deftypefn {Built-in Function} bool __builtin_add_overflow_p (@var{type1} a, @var{type2} b, @var{type3} c) @deftypefnx {Built-in Function} bool __builtin_sub_overflow_p (@var{type1} a, @var{type2} b, @var{type3} c) @deftypefnx {Built-in Function} bool __builtin_mul_overflow_p (@var{type1} a, @var{type2} b, @var{type3} c) These built-in functions are similar to @code{__builtin_add_overflow}, @code{__builtin_sub_overflow}, or @code{__builtin_mul_overflow}, except that they don't store the result of the arithmetic operation anywhere and the last argument is not a pointer, but some expression with integral type other than enumerated or boolean type. The built-in functions promote the first two operands into infinite precision signed type and perform addition on those promoted operands. The result is then cast to the type of the third argument. If the cast result is equal to the infinite precision result, the built-in functions return false, otherwise they return true. The value of the third argument is ignored, just the side-effects in the third argument are evaluated, and no integral argument promotions are performed on the last argument. If the third argument is a bit-field, the type used for the result cast has the precision and signedness of the given bit-field, rather than precision and signedness of the underlying type. For example, the following macro can be used to portably check, at compile-time, whether or not adding two constant integers will overflow, and perform the addition only when it is known to be safe and not to trigger a @option{-Woverflow} warning. @smallexample #define INT_ADD_OVERFLOW_P(a, b) \ __builtin_add_overflow_p (a, b, (__typeof__ ((a) + (b))) 0) enum @{ A = INT_MAX, B = 3, C = INT_ADD_OVERFLOW_P (A, B) ? 0 : A + B, D = __builtin_add_overflow_p (1, SCHAR_MAX, (signed char) 0) @}; @end smallexample The compiler will attempt to use hardware instructions to implement these built-in functions where possible, like conditional jump on overflow after addition, conditional jump on carry etc. @end deftypefn @node x86 specific memory model extensions for transactional memory @section x86-Specific Memory Model Extensions for Transactional Memory The x86 architecture supports additional memory ordering flags to mark critical sections for hardware lock elision. These must be specified in addition to an existing memory order to atomic intrinsics. @table @code @item __ATOMIC_HLE_ACQUIRE Start lock elision on a lock variable. Memory order must be @code{__ATOMIC_ACQUIRE} or stronger. @item __ATOMIC_HLE_RELEASE End lock elision on a lock variable. Memory order must be @code{__ATOMIC_RELEASE} or stronger. @end table When a lock acquire fails, it is required for good performance to abort the transaction quickly. This can be done with a @code{_mm_pause}. @smallexample #include <immintrin.h> // For _mm_pause int lockvar; /* Acquire lock with lock elision */ while (__atomic_exchange_n(&lockvar, 1, __ATOMIC_ACQUIRE|__ATOMIC_HLE_ACQUIRE)) _mm_pause(); /* Abort failed transaction */ ... /* Free lock with lock elision */ __atomic_store_n(&lockvar, 0, __ATOMIC_RELEASE|__ATOMIC_HLE_RELEASE); @end smallexample @node Object Size Checking @section Object Size Checking Built-in Functions @findex __builtin_object_size @findex __builtin___memcpy_chk @findex __builtin___mempcpy_chk @findex __builtin___memmove_chk @findex __builtin___memset_chk @findex __builtin___strcpy_chk @findex __builtin___stpcpy_chk @findex __builtin___strncpy_chk @findex __builtin___strcat_chk @findex __builtin___strncat_chk @findex __builtin___sprintf_chk @findex __builtin___snprintf_chk @findex __builtin___vsprintf_chk @findex __builtin___vsnprintf_chk @findex __builtin___printf_chk @findex __builtin___vprintf_chk @findex __builtin___fprintf_chk @findex __builtin___vfprintf_chk GCC implements a limited buffer overflow protection mechanism that can prevent some buffer overflow attacks by determining the sizes of objects into which data is about to be written and preventing the writes when the size isn't sufficient. The built-in functions described below yield the best results when used together and when optimization is enabled. For example, to detect object sizes across function boundaries or to follow pointer assignments through non-trivial control flow they rely on various optimization passes enabled with @option{-O2}. However, to a limited extent, they can be used without optimization as well. @deftypefn {Built-in Function} {size_t} __builtin_object_size (const void * @var{ptr}, int @var{type}) is a built-in construct that returns a constant number of bytes from @var{ptr} to the end of the object @var{ptr} pointer points to (if known at compile time). @code{__builtin_object_size} never evaluates its arguments for side-effects. If there are any side-effects in them, it returns @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0} for @var{type} 2 or 3. If there are multiple objects @var{ptr} can point to and all of them are known at compile time, the returned number is the maximum of remaining byte counts in those objects if @var{type} & 2 is 0 and minimum if nonzero. If it is not possible to determine which objects @var{ptr} points to at compile time, @code{__builtin_object_size} should return @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0} for @var{type} 2 or 3. @var{type} is an integer constant from 0 to 3. If the least significant bit is clear, objects are whole variables, if it is set, a closest surrounding subobject is considered the object a pointer points to. The second bit determines if maximum or minimum of remaining bytes is computed. @smallexample struct V @{ char buf1[10]; int b; char buf2[10]; @} var; char *p = &var.buf1[1], *q = &var.b; /* Here the object p points to is var. */ assert (__builtin_object_size (p, 0) == sizeof (var) - 1); /* The subobject p points to is var.buf1. */ assert (__builtin_object_size (p, 1) == sizeof (var.buf1) - 1); /* The object q points to is var. */ assert (__builtin_object_size (q, 0) == (char *) (&var + 1) - (char *) &var.b); /* The subobject q points to is var.b. */ assert (__builtin_object_size (q, 1) == sizeof (var.b)); @end smallexample @end deftypefn There are built-in functions added for many common string operation functions, e.g., for @code{memcpy} @code{__builtin___memcpy_chk} built-in is provided. This built-in has an additional last argument, which is the number of bytes remaining in the object the @var{dest} argument points to or @code{(size_t) -1} if the size is not known. The built-in functions are optimized into the normal string functions like @code{memcpy} if the last argument is @code{(size_t) -1} or if it is known at compile time that the destination object will not be overflowed. If the compiler can determine at compile time that the object will always be overflowed, it issues a warning. The intended use can be e.g.@: @smallexample #undef memcpy #define bos0(dest) __builtin_object_size (dest, 0) #define memcpy(dest, src, n) \ __builtin___memcpy_chk (dest, src, n, bos0 (dest)) char *volatile p; char buf[10]; /* It is unknown what object p points to, so this is optimized into plain memcpy - no checking is possible. */ memcpy (p, "abcde", n); /* Destination is known and length too. It is known at compile time there will be no overflow. */ memcpy (&buf[5], "abcde", 5); /* Destination is known, but the length is not known at compile time. This will result in __memcpy_chk call that can check for overflow at run time. */ memcpy (&buf[5], "abcde", n); /* Destination is known and it is known at compile time there will be overflow. There will be a warning and __memcpy_chk call that will abort the program at run time. */ memcpy (&buf[6], "abcde", 5); @end smallexample Such built-in functions are provided for @code{memcpy}, @code{mempcpy}, @code{memmove}, @code{memset}, @code{strcpy}, @code{stpcpy}, @code{strncpy}, @code{strcat} and @code{strncat}. There are also checking built-in functions for formatted output functions. @smallexample int __builtin___sprintf_chk (char *s, int flag, size_t os, const char *fmt, ...); int __builtin___snprintf_chk (char *s, size_t maxlen, int flag, size_t os, const char *fmt, ...); int __builtin___vsprintf_chk (char *s, int flag, size_t os, const char *fmt, va_list ap); int __builtin___vsnprintf_chk (char *s, size_t maxlen, int flag, size_t os, const char *fmt, va_list ap); @end smallexample The added @var{flag} argument is passed unchanged to @code{__sprintf_chk} etc.@: functions and can contain implementation specific flags on what additional security measures the checking function might take, such as handling @code{%n} differently. The @var{os} argument is the object size @var{s} points to, like in the other built-in functions. There is a small difference in the behavior though, if @var{os} is @code{(size_t) -1}, the built-in functions are optimized into the non-checking functions only if @var{flag} is 0, otherwise the checking function is called with @var{os} argument set to @code{(size_t) -1}. In addition to this, there are checking built-in functions @code{__builtin___printf_chk}, @code{__builtin___vprintf_chk}, @code{__builtin___fprintf_chk} and @code{__builtin___vfprintf_chk}. These have just one additional argument, @var{flag}, right before format string @var{fmt}. If the compiler is able to optimize them to @code{fputc} etc.@: functions, it does, otherwise the checking function is called and the @var{flag} argument passed to it. @node Pointer Bounds Checker builtins @section Pointer Bounds Checker Built-in Functions @cindex Pointer Bounds Checker builtins @findex __builtin___bnd_set_ptr_bounds @findex __builtin___bnd_narrow_ptr_bounds @findex __builtin___bnd_copy_ptr_bounds @findex __builtin___bnd_init_ptr_bounds @findex __builtin___bnd_null_ptr_bounds @findex __builtin___bnd_store_ptr_bounds @findex __builtin___bnd_chk_ptr_lbounds @findex __builtin___bnd_chk_ptr_ubounds @findex __builtin___bnd_chk_ptr_bounds @findex __builtin___bnd_get_ptr_lbound @findex __builtin___bnd_get_ptr_ubound GCC provides a set of built-in functions to control Pointer Bounds Checker instrumentation. Note that all Pointer Bounds Checker builtins can be used even if you compile with Pointer Bounds Checker off (@option{-fno-check-pointer-bounds}). The behavior may differ in such case as documented below. @deftypefn {Built-in Function} {void *} __builtin___bnd_set_ptr_bounds (const void *@var{q}, size_t @var{size}) This built-in function returns a new pointer with the value of @var{q}, and associate it with the bounds [@var{q}, @var{q}+@var{size}-1]. With Pointer Bounds Checker off, the built-in function just returns the first argument. @smallexample extern void *__wrap_malloc (size_t n) @{ void *p = (void *)__real_malloc (n); if (!p) return __builtin___bnd_null_ptr_bounds (p); return __builtin___bnd_set_ptr_bounds (p, n); @} @end smallexample @end deftypefn @deftypefn {Built-in Function} {void *} __builtin___bnd_narrow_ptr_bounds (const void *@var{p}, const void *@var{q}, size_t @var{size}) This built-in function returns a new pointer with the value of @var{p} and associates it with the narrowed bounds formed by the intersection of bounds associated with @var{q} and the bounds [@var{p}, @var{p} + @var{size} - 1]. With Pointer Bounds Checker off, the built-in function just returns the first argument. @smallexample void init_objects (object *objs, size_t size) @{ size_t i; /* Initialize objects one-by-one passing pointers with bounds of an object, not the full array of objects. */ for (i = 0; i < size; i++) init_object (__builtin___bnd_narrow_ptr_bounds (objs + i, objs, sizeof(object))); @} @end smallexample @end deftypefn @deftypefn {Built-in Function} {void *} __builtin___bnd_copy_ptr_bounds (const void *@var{q}, const void *@var{r}) This built-in function returns a new pointer with the value of @var{q}, and associates it with the bounds already associated with pointer @var{r}. With Pointer Bounds Checker off, the built-in function just returns the first argument. @smallexample /* Here is a way to get pointer to object's field but still with the full object's bounds. */ int *field_ptr = __builtin___bnd_copy_ptr_bounds (&objptr->int_field, objptr); @end smallexample @end deftypefn @deftypefn {Built-in Function} {void *} __builtin___bnd_init_ptr_bounds (const void *@var{q}) This built-in function returns a new pointer with the value of @var{q}, and associates it with INIT (allowing full memory access) bounds. With Pointer Bounds Checker off, the built-in function just returns the first argument. @end deftypefn @deftypefn {Built-in Function} {void *} __builtin___bnd_null_ptr_bounds (const void *@var{q}) This built-in function returns a new pointer with the value of @var{q}, and associates it with NULL (allowing no memory access) bounds. With Pointer Bounds Checker off, the built-in function just returns the first argument. @end deftypefn @deftypefn {Built-in Function} void __builtin___bnd_store_ptr_bounds (const void **@var{ptr_addr}, const void *@var{ptr_val}) This built-in function stores the bounds associated with pointer @var{ptr_val} and location @var{ptr_addr} into Bounds Table. This can be useful to propagate bounds from legacy code without touching the associated pointer's memory when pointers are copied as integers. With Pointer Bounds Checker off, the built-in function call is ignored. @end deftypefn @deftypefn {Built-in Function} void __builtin___bnd_chk_ptr_lbounds (const void *@var{q}) This built-in function checks if the pointer @var{q} is within the lower bound of its associated bounds. With Pointer Bounds Checker off, the built-in function call is ignored. @smallexample extern void *__wrap_memset (void *dst, int c, size_t len) @{ if (len > 0) @{ __builtin___bnd_chk_ptr_lbounds (dst); __builtin___bnd_chk_ptr_ubounds ((char *)dst + len - 1); __real_memset (dst, c, len); @} return dst; @} @end smallexample @end deftypefn @deftypefn {Built-in Function} void __builtin___bnd_chk_ptr_ubounds (const void *@var{q}) This built-in function checks if the pointer @var{q} is within the upper bound of its associated bounds. With Pointer Bounds Checker off, the built-in function call is ignored. @end deftypefn @deftypefn {Built-in Function} void __builtin___bnd_chk_ptr_bounds (const void *@var{q}, size_t @var{size}) This built-in function checks if [@var{q}, @var{q} + @var{size} - 1] is within the lower and upper bounds associated with @var{q}. With Pointer Bounds Checker off, the built-in function call is ignored. @smallexample extern void *__wrap_memcpy (void *dst, const void *src, size_t n) @{ if (n > 0) @{ __bnd_chk_ptr_bounds (dst, n); __bnd_chk_ptr_bounds (src, n); __real_memcpy (dst, src, n); @} return dst; @} @end smallexample @end deftypefn @deftypefn {Built-in Function} {const void *} __builtin___bnd_get_ptr_lbound (const void *@var{q}) This built-in function returns the lower bound associated with the pointer @var{q}, as a pointer value. This is useful for debugging using @code{printf}. With Pointer Bounds Checker off, the built-in function returns 0. @smallexample void *lb = __builtin___bnd_get_ptr_lbound (q); void *ub = __builtin___bnd_get_ptr_ubound (q); printf ("q = %p lb(q) = %p ub(q) = %p", q, lb, ub); @end smallexample @end deftypefn @deftypefn {Built-in Function} {const void *} __builtin___bnd_get_ptr_ubound (const void *@var{q}) This built-in function returns the upper bound (which is a pointer) associated with the pointer @var{q}. With Pointer Bounds Checker off, the built-in function returns -1. @end deftypefn @node Cilk Plus Builtins @section Cilk Plus C/C++ Language Extension Built-in Functions GCC provides support for the following built-in reduction functions if Cilk Plus is enabled. Cilk Plus can be enabled using the @option{-fcilkplus} flag. @itemize @bullet @item @code{__sec_implicit_index} @item @code{__sec_reduce} @item @code{__sec_reduce_add} @item @code{__sec_reduce_all_nonzero} @item @code{__sec_reduce_all_zero} @item @code{__sec_reduce_any_nonzero} @item @code{__sec_reduce_any_zero} @item @code{__sec_reduce_max} @item @code{__sec_reduce_min} @item @code{__sec_reduce_max_ind} @item @code{__sec_reduce_min_ind} @item @code{__sec_reduce_mul} @item @code{__sec_reduce_mutating} @end itemize Further details and examples about these built-in functions are described in the Cilk Plus language manual which can be found at @uref{https://www.cilkplus.org}. @node Other Builtins @section Other Built-in Functions Provided by GCC @cindex built-in functions @findex __builtin_alloca @findex __builtin_alloca_with_align @findex __builtin_alloca_with_align_and_max @findex __builtin_call_with_static_chain @findex __builtin_fpclassify @findex __builtin_isfinite @findex __builtin_isnormal @findex __builtin_isgreater @findex __builtin_isgreaterequal @findex __builtin_isinf_sign @findex __builtin_isless @findex __builtin_islessequal @findex __builtin_islessgreater @findex __builtin_isunordered @findex __builtin_powi @findex __builtin_powif @findex __builtin_powil @findex _Exit @findex _exit @findex abort @findex abs @findex acos @findex acosf @findex acosh @findex acoshf @findex acoshl @findex acosl @findex alloca @findex asin @findex asinf @findex asinh @findex asinhf @findex asinhl @findex asinl @findex atan @findex atan2 @findex atan2f @findex atan2l @findex atanf @findex atanh @findex atanhf @findex atanhl @findex atanl @findex bcmp @findex bzero @findex cabs @findex cabsf @findex cabsl @findex cacos @findex cacosf @findex cacosh @findex cacoshf @findex cacoshl @findex cacosl @findex calloc @findex carg @findex cargf @findex cargl @findex casin @findex casinf @findex casinh @findex casinhf @findex casinhl @findex casinl @findex catan @findex catanf @findex catanh @findex catanhf @findex catanhl @findex catanl @findex cbrt @findex cbrtf @findex cbrtl @findex ccos @findex ccosf @findex ccosh @findex ccoshf @findex ccoshl @findex ccosl @findex ceil @findex ceilf @findex ceill @findex cexp @findex cexpf @findex cexpl @findex cimag @findex cimagf @findex cimagl @findex clog @findex clogf @findex clogl @findex clog10 @findex clog10f @findex clog10l @findex conj @findex conjf @findex conjl @findex copysign @findex copysignf @findex copysignl @findex cos @findex cosf @findex cosh @findex coshf @findex coshl @findex cosl @findex cpow @findex cpowf @findex cpowl @findex cproj @findex cprojf @findex cprojl @findex creal @findex crealf @findex creall @findex csin @findex csinf @findex csinh @findex csinhf @findex csinhl @findex csinl @findex csqrt @findex csqrtf @findex csqrtl @findex ctan @findex ctanf @findex ctanh @findex ctanhf @findex ctanhl @findex ctanl @findex dcgettext @findex dgettext @findex drem @findex dremf @findex dreml @findex erf @findex erfc @findex erfcf @findex erfcl @findex erff @findex erfl @findex exit @findex exp @findex exp10 @findex exp10f @findex exp10l @findex exp2 @findex exp2f @findex exp2l @findex expf @findex expl @findex expm1 @findex expm1f @findex expm1l @findex fabs @findex fabsf @findex fabsl @findex fdim @findex fdimf @findex fdiml @findex ffs @findex floor @findex floorf @findex floorl @findex fma @findex fmaf @findex fmal @findex fmax @findex fmaxf @findex fmaxl @findex fmin @findex fminf @findex fminl @findex fmod @findex fmodf @findex fmodl @findex fprintf @findex fprintf_unlocked @findex fputs @findex fputs_unlocked @findex frexp @findex frexpf @findex frexpl @findex fscanf @findex gamma @findex gammaf @findex gammal @findex gamma_r @findex gammaf_r @findex gammal_r @findex gettext @findex hypot @findex hypotf @findex hypotl @findex ilogb @findex ilogbf @findex ilogbl @findex imaxabs @findex index @findex isalnum @findex isalpha @findex isascii @findex isblank @findex iscntrl @findex isdigit @findex isgraph @findex islower @findex isprint @findex ispunct @findex isspace @findex isupper @findex iswalnum @findex iswalpha @findex iswblank @findex iswcntrl @findex iswdigit @findex iswgraph @findex iswlower @findex iswprint @findex iswpunct @findex iswspace @findex iswupper @findex iswxdigit @findex isxdigit @findex j0 @findex j0f @findex j0l @findex j1 @findex j1f @findex j1l @findex jn @findex jnf @findex jnl @findex labs @findex ldexp @findex ldexpf @findex ldexpl @findex lgamma @findex lgammaf @findex lgammal @findex lgamma_r @findex lgammaf_r @findex lgammal_r @findex llabs @findex llrint @findex llrintf @findex llrintl @findex llround @findex llroundf @findex llroundl @findex log @findex log10 @findex log10f @findex log10l @findex log1p @findex log1pf @findex log1pl @findex log2 @findex log2f @findex log2l @findex logb @findex logbf @findex logbl @findex logf @findex logl @findex lrint @findex lrintf @findex lrintl @findex lround @findex lroundf @findex lroundl @findex malloc @findex memchr @findex memcmp @findex memcpy @findex mempcpy @findex memset @findex modf @findex modff @findex modfl @findex nearbyint @findex nearbyintf @findex nearbyintl @findex nextafter @findex nextafterf @findex nextafterl @findex nexttoward @findex nexttowardf @findex nexttowardl @findex pow @findex pow10 @findex pow10f @findex pow10l @findex powf @findex powl @findex printf @findex printf_unlocked @findex putchar @findex puts @findex remainder @findex remainderf @findex remainderl @findex remquo @findex remquof @findex remquol @findex rindex @findex rint @findex rintf @findex rintl @findex round @findex roundf @findex roundl @findex scalb @findex scalbf @findex scalbl @findex scalbln @findex scalblnf @findex scalblnf @findex scalbn @findex scalbnf @findex scanfnl @findex signbit @findex signbitf @findex signbitl @findex signbitd32 @findex signbitd64 @findex signbitd128 @findex significand @findex significandf @findex significandl @findex sin @findex sincos @findex sincosf @findex sincosl @findex sinf @findex sinh @findex sinhf @findex sinhl @findex sinl @findex snprintf @findex sprintf @findex sqrt @findex sqrtf @findex sqrtl @findex sscanf @findex stpcpy @findex stpncpy @findex strcasecmp @findex strcat @findex strchr @findex strcmp @findex strcpy @findex strcspn @findex strdup @findex strfmon @findex strftime @findex strlen @findex strncasecmp @findex strncat @findex strncmp @findex strncpy @findex strndup @findex strpbrk @findex strrchr @findex strspn @findex strstr @findex tan @findex tanf @findex tanh @findex tanhf @findex tanhl @findex tanl @findex tgamma @findex tgammaf @findex tgammal @findex toascii @findex tolower @findex toupper @findex towlower @findex towupper @findex trunc @findex truncf @findex truncl @findex vfprintf @findex vfscanf @findex vprintf @findex vscanf @findex vsnprintf @findex vsprintf @findex vsscanf @findex y0 @findex y0f @findex y0l @findex y1 @findex y1f @findex y1l @findex yn @findex ynf @findex ynl GCC provides a large number of built-in functions other than the ones mentioned above. Some of these are for internal use in the processing of exceptions or variable-length argument lists and are not documented here because they may change from time to time; we do not recommend general use of these functions. The remaining functions are provided for optimization purposes. With the exception of built-ins that have library equivalents such as the standard C library functions discussed below, or that expand to library calls, GCC built-in functions are always expanded inline and thus do not have corresponding entry points and their address cannot be obtained. Attempting to use them in an expression other than a function call results in a compile-time error. @opindex fno-builtin GCC includes built-in versions of many of the functions in the standard C library. These functions come in two forms: one whose names start with the @code{__builtin_} prefix, and the other without. Both forms have the same type (including prototype), the same address (when their address is taken), and the same meaning as the C library functions even if you specify the @option{-fno-builtin} option @pxref{C Dialect Options}). Many of these functions are only optimized in certain cases; if they are not optimized in a particular case, a call to the library function is emitted. @opindex ansi @opindex std Outside strict ISO C mode (@option{-ansi}, @option{-std=c90}, @option{-std=c99} or @option{-std=c11}), the functions @code{_exit}, @code{alloca}, @code{bcmp}, @code{bzero}, @code{dcgettext}, @code{dgettext}, @code{dremf}, @code{dreml}, @code{drem}, @code{exp10f}, @code{exp10l}, @code{exp10}, @code{ffsll}, @code{ffsl}, @code{ffs}, @code{fprintf_unlocked}, @code{fputs_unlocked}, @code{gammaf}, @code{gammal}, @code{gamma}, @code{gammaf_r}, @code{gammal_r}, @code{gamma_r}, @code{gettext}, @code{index}, @code{isascii}, @code{j0f}, @code{j0l}, @code{j0}, @code{j1f}, @code{j1l}, @code{j1}, @code{jnf}, @code{jnl}, @code{jn}, @code{lgammaf_r}, @code{lgammal_r}, @code{lgamma_r}, @code{mempcpy}, @code{pow10f}, @code{pow10l}, @code{pow10}, @code{printf_unlocked}, @code{rindex}, @code{scalbf}, @code{scalbl}, @code{scalb}, @code{signbit}, @code{signbitf}, @code{signbitl}, @code{signbitd32}, @code{signbitd64}, @code{signbitd128}, @code{significandf}, @code{significandl}, @code{significand}, @code{sincosf}, @code{sincosl}, @code{sincos}, @code{stpcpy}, @code{stpncpy}, @code{strcasecmp}, @code{strdup}, @code{strfmon}, @code{strncasecmp}, @code{strndup}, @code{toascii}, @code{y0f}, @code{y0l}, @code{y0}, @code{y1f}, @code{y1l}, @code{y1}, @code{ynf}, @code{ynl} and @code{yn} may be handled as built-in functions. All these functions have corresponding versions prefixed with @code{__builtin_}, which may be used even in strict C90 mode. The ISO C99 functions @code{_Exit}, @code{acoshf}, @code{acoshl}, @code{acosh}, @code{asinhf}, @code{asinhl}, @code{asinh}, @code{atanhf}, @code{atanhl}, @code{atanh}, @code{cabsf}, @code{cabsl}, @code{cabs}, @code{cacosf}, @code{cacoshf}, @code{cacoshl}, @code{cacosh}, @code{cacosl}, @code{cacos}, @code{cargf}, @code{cargl}, @code{carg}, @code{casinf}, @code{casinhf}, @code{casinhl}, @code{casinh}, @code{casinl}, @code{casin}, @code{catanf}, @code{catanhf}, @code{catanhl}, @code{catanh}, @code{catanl}, @code{catan}, @code{cbrtf}, @code{cbrtl}, @code{cbrt}, @code{ccosf}, @code{ccoshf}, @code{ccoshl}, @code{ccosh}, @code{ccosl}, @code{ccos}, @code{cexpf}, @code{cexpl}, @code{cexp}, @code{cimagf}, @code{cimagl}, @code{cimag}, @code{clogf}, @code{clogl}, @code{clog}, @code{conjf}, @code{conjl}, @code{conj}, @code{copysignf}, @code{copysignl}, @code{copysign}, @code{cpowf}, @code{cpowl}, @code{cpow}, @code{cprojf}, @code{cprojl}, @code{cproj}, @code{crealf}, @code{creall}, @code{creal}, @code{csinf}, @code{csinhf}, @code{csinhl}, @code{csinh}, @code{csinl}, @code{csin}, @code{csqrtf}, @code{csqrtl}, @code{csqrt}, @code{ctanf}, @code{ctanhf}, @code{ctanhl}, @code{ctanh}, @code{ctanl}, @code{ctan}, @code{erfcf}, @code{erfcl}, @code{erfc}, @code{erff}, @code{erfl}, @code{erf}, @code{exp2f}, @code{exp2l}, @code{exp2}, @code{expm1f}, @code{expm1l}, @code{expm1}, @code{fdimf}, @code{fdiml}, @code{fdim}, @code{fmaf}, @code{fmal}, @code{fmaxf}, @code{fmaxl}, @code{fmax}, @code{fma}, @code{fminf}, @code{fminl}, @code{fmin}, @code{hypotf}, @code{hypotl}, @code{hypot}, @code{ilogbf}, @code{ilogbl}, @code{ilogb}, @code{imaxabs}, @code{isblank}, @code{iswblank}, @code{lgammaf}, @code{lgammal}, @code{lgamma}, @code{llabs}, @code{llrintf}, @code{llrintl}, @code{llrint}, @code{llroundf}, @code{llroundl}, @code{llround}, @code{log1pf}, @code{log1pl}, @code{log1p}, @code{log2f}, @code{log2l}, @code{log2}, @code{logbf}, @code{logbl}, @code{logb}, @code{lrintf}, @code{lrintl}, @code{lrint}, @code{lroundf}, @code{lroundl}, @code{lround}, @code{nearbyintf}, @code{nearbyintl}, @code{nearbyint}, @code{nextafterf}, @code{nextafterl}, @code{nextafter}, @code{nexttowardf}, @code{nexttowardl}, @code{nexttoward}, @code{remainderf}, @code{remainderl}, @code{remainder}, @code{remquof}, @code{remquol}, @code{remquo}, @code{rintf}, @code{rintl}, @code{rint}, @code{roundf}, @code{roundl}, @code{round}, @code{scalblnf}, @code{scalblnl}, @code{scalbln}, @code{scalbnf}, @code{scalbnl}, @code{scalbn}, @code{snprintf}, @code{tgammaf}, @code{tgammal}, @code{tgamma}, @code{truncf}, @code{truncl}, @code{trunc}, @code{vfscanf}, @code{vscanf}, @code{vsnprintf} and @code{vsscanf} are handled as built-in functions except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}). There are also built-in versions of the ISO C99 functions @code{acosf}, @code{acosl}, @code{asinf}, @code{asinl}, @code{atan2f}, @code{atan2l}, @code{atanf}, @code{atanl}, @code{ceilf}, @code{ceill}, @code{cosf}, @code{coshf}, @code{coshl}, @code{cosl}, @code{expf}, @code{expl}, @code{fabsf}, @code{fabsl}, @code{floorf}, @code{floorl}, @code{fmodf}, @code{fmodl}, @code{frexpf}, @code{frexpl}, @code{ldexpf}, @code{ldexpl}, @code{log10f}, @code{log10l}, @code{logf}, @code{logl}, @code{modfl}, @code{modf}, @code{powf}, @code{powl}, @code{sinf}, @code{sinhf}, @code{sinhl}, @code{sinl}, @code{sqrtf}, @code{sqrtl}, @code{tanf}, @code{tanhf}, @code{tanhl} and @code{tanl} that are recognized in any mode since ISO C90 reserves these names for the purpose to which ISO C99 puts them. All these functions have corresponding versions prefixed with @code{__builtin_}. There are also built-in functions @code{__builtin_fabsf@var{n}}, @code{__builtin_fabsf@var{n}x}, @code{__builtin_copysignf@var{n}} and @code{__builtin_copysignf@var{n}x}, corresponding to the TS 18661-3 functions @code{fabsf@var{n}}, @code{fabsf@var{n}x}, @code{copysignf@var{n}} and @code{copysignf@var{n}x}, for supported types @code{_Float@var{n}} and @code{_Float@var{n}x}. There are also GNU extension functions @code{clog10}, @code{clog10f} and @code{clog10l} which names are reserved by ISO C99 for future use. All these functions have versions prefixed with @code{__builtin_}. The ISO C94 functions @code{iswalnum}, @code{iswalpha}, @code{iswcntrl}, @code{iswdigit}, @code{iswgraph}, @code{iswlower}, @code{iswprint}, @code{iswpunct}, @code{iswspace}, @code{iswupper}, @code{iswxdigit}, @code{towlower} and @code{towupper} are handled as built-in functions except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}). The ISO C90 functions @code{abort}, @code{abs}, @code{acos}, @code{asin}, @code{atan2}, @code{atan}, @code{calloc}, @code{ceil}, @code{cosh}, @code{cos}, @code{exit}, @code{exp}, @code{fabs}, @code{floor}, @code{fmod}, @code{fprintf}, @code{fputs}, @code{frexp}, @code{fscanf}, @code{isalnum}, @code{isalpha}, @code{iscntrl}, @code{isdigit}, @code{isgraph}, @code{islower}, @code{isprint}, @code{ispunct}, @code{isspace}, @code{isupper}, @code{isxdigit}, @code{tolower}, @code{toupper}, @code{labs}, @code{ldexp}, @code{log10}, @code{log}, @code{malloc}, @code{memchr}, @code{memcmp}, @code{memcpy}, @code{memset}, @code{modf}, @code{pow}, @code{printf}, @code{putchar}, @code{puts}, @code{scanf}, @code{sinh}, @code{sin}, @code{snprintf}, @code{sprintf}, @code{sqrt}, @code{sscanf}, @code{strcat}, @code{strchr}, @code{strcmp}, @code{strcpy}, @code{strcspn}, @code{strlen}, @code{strncat}, @code{strncmp}, @code{strncpy}, @code{strpbrk}, @code{strrchr}, @code{strspn}, @code{strstr}, @code{tanh}, @code{tan}, @code{vfprintf}, @code{vprintf} and @code{vsprintf} are all recognized as built-in functions unless @option{-fno-builtin} is specified (or @option{-fno-builtin-@var{function}} is specified for an individual function). All of these functions have corresponding versions prefixed with @code{__builtin_}. GCC provides built-in versions of the ISO C99 floating-point comparison macros that avoid raising exceptions for unordered operands. They have the same names as the standard macros ( @code{isgreater}, @code{isgreaterequal}, @code{isless}, @code{islessequal}, @code{islessgreater}, and @code{isunordered}) , with @code{__builtin_} prefixed. We intend for a library implementor to be able to simply @code{#define} each standard macro to its built-in equivalent. In the same fashion, GCC provides @code{fpclassify}, @code{isfinite}, @code{isinf_sign}, @code{isnormal} and @code{signbit} built-ins used with @code{__builtin_} prefixed. The @code{isinf} and @code{isnan} built-in functions appear both with and without the @code{__builtin_} prefix. @deftypefn {Built-in Function} void *__builtin_alloca (size_t size) The @code{__builtin_alloca} function must be called at block scope. The function allocates an object @var{size} bytes large on the stack of the calling function. The object is aligned on the default stack alignment boundary for the target determined by the @code{__BIGGEST_ALIGNMENT__} macro. The @code{__builtin_alloca} function returns a pointer to the first byte of the allocated object. The lifetime of the allocated object ends just before the calling function returns to its caller. This is so even when @code{__builtin_alloca} is called within a nested block. For example, the following function allocates eight objects of @code{n} bytes each on the stack, storing a pointer to each in consecutive elements of the array @code{a}. It then passes the array to function @code{g} which can safely use the storage pointed to by each of the array elements. @smallexample void f (unsigned n) @{ void *a [8]; for (int i = 0; i != 8; ++i) a [i] = __builtin_alloca (n); g (a, n); // @r{safe} @} @end smallexample Since the @code{__builtin_alloca} function doesn't validate its argument it is the responsibility of its caller to make sure the argument doesn't cause it to exceed the stack size limit. The @code{__builtin_alloca} function is provided to make it possible to allocate on the stack arrays of bytes with an upper bound that may be computed at run time. Since C99 Variable Length Arrays offer similar functionality under a portable, more convenient, and safer interface they are recommended instead, in both C99 and C++ programs where GCC provides them as an extension. @xref{Variable Length}, for details. @end deftypefn @deftypefn {Built-in Function} void *__builtin_alloca_with_align (size_t size, size_t alignment) The @code{__builtin_alloca_with_align} function must be called at block scope. The function allocates an object @var{size} bytes large on the stack of the calling function. The allocated object is aligned on the boundary specified by the argument @var{alignment} whose unit is given in bits (not bytes). The @var{size} argument must be positive and not exceed the stack size limit. The @var{alignment} argument must be a constant integer expression that evaluates to a power of 2 greater than or equal to @code{CHAR_BIT} and less than some unspecified maximum. Invocations with other values are rejected with an error indicating the valid bounds. The function returns a pointer to the first byte of the allocated object. The lifetime of the allocated object ends at the end of the block in which the function was called. The allocated storage is released no later than just before the calling function returns to its caller, but may be released at the end of the block in which the function was called. For example, in the following function the call to @code{g} is unsafe because when @code{overalign} is non-zero, the space allocated by @code{__builtin_alloca_with_align} may have been released at the end of the @code{if} statement in which it was called. @smallexample void f (unsigned n, bool overalign) @{ void *p; if (overalign) p = __builtin_alloca_with_align (n, 64 /* bits */); else p = __builtin_alloc (n); g (p, n); // @r{unsafe} @} @end smallexample Since the @code{__builtin_alloca_with_align} function doesn't validate its @var{size} argument it is the responsibility of its caller to make sure the argument doesn't cause it to exceed the stack size limit. The @code{__builtin_alloca_with_align} function is provided to make it possible to allocate on the stack overaligned arrays of bytes with an upper bound that may be computed at run time. Since C99 Variable Length Arrays offer the same functionality under a portable, more convenient, and safer interface they are recommended instead, in both C99 and C++ programs where GCC provides them as an extension. @xref{Variable Length}, for details. @end deftypefn @deftypefn {Built-in Function} void *__builtin_alloca_with_align_and_max (size_t size, size_t alignment, size_t max_size) Similar to @code{__builtin_alloca_with_align} but takes an extra argument specifying an upper bound for @var{size} in case its value cannot be computed at compile time, for use by @option{-fstack-usage}, @option{-Wstack-usage} and @option{-Walloca-larger-than}. @var{max_size} must be a constant integer expression, it has no effect on code generation and no attempt is made to check its compatibility with @var{size}. @end deftypefn @deftypefn {Built-in Function} int __builtin_types_compatible_p (@var{type1}, @var{type2}) You can use the built-in function @code{__builtin_types_compatible_p} to determine whether two types are the same. This built-in function returns 1 if the unqualified versions of the types @var{type1} and @var{type2} (which are types, not expressions) are compatible, 0 otherwise. The result of this built-in function can be used in integer constant expressions. This built-in function ignores top level qualifiers (e.g., @code{const}, @code{volatile}). For example, @code{int} is equivalent to @code{const int}. The type @code{int[]} and @code{int[5]} are compatible. On the other hand, @code{int} and @code{char *} are not compatible, even if the size of their types, on the particular architecture are the same. Also, the amount of pointer indirection is taken into account when determining similarity. Consequently, @code{short *} is not similar to @code{short **}. Furthermore, two types that are typedefed are considered compatible if their underlying types are compatible. An @code{enum} type is not considered to be compatible with another @code{enum} type even if both are compatible with the same integer type; this is what the C standard specifies. For example, @code{enum @{foo, bar@}} is not similar to @code{enum @{hot, dog@}}. You typically use this function in code whose execution varies depending on the arguments' types. For example: @smallexample #define foo(x) \ (@{ \ typeof (x) tmp = (x); \ if (__builtin_types_compatible_p (typeof (x), long double)) \ tmp = foo_long_double (tmp); \ else if (__builtin_types_compatible_p (typeof (x), double)) \ tmp = foo_double (tmp); \ else if (__builtin_types_compatible_p (typeof (x), float)) \ tmp = foo_float (tmp); \ else \ abort (); \ tmp; \ @}) @end smallexample @emph{Note:} This construct is only available for C@. @end deftypefn @deftypefn {Built-in Function} @var{type} __builtin_call_with_static_chain (@var{call_exp}, @var{pointer_exp}) The @var{call_exp} expression must be a function call, and the @var{pointer_exp} expression must be a pointer. The @var{pointer_exp} is passed to the function call in the target's static chain location. The result of builtin is the result of the function call. @emph{Note:} This builtin is only available for C@. This builtin can be used to call Go closures from C. @end deftypefn @deftypefn {Built-in Function} @var{type} __builtin_choose_expr (@var{const_exp}, @var{exp1}, @var{exp2}) You can use the built-in function @code{__builtin_choose_expr} to evaluate code depending on the value of a constant expression. This built-in function returns @var{exp1} if @var{const_exp}, which is an integer constant expression, is nonzero. Otherwise it returns @var{exp2}. This built-in function is analogous to the @samp{? :} operator in C, except that the expression returned has its type unaltered by promotion rules. Also, the built-in function does not evaluate the expression that is not chosen. For example, if @var{const_exp} evaluates to true, @var{exp2} is not evaluated even if it has side-effects. This built-in function can return an lvalue if the chosen argument is an lvalue. If @var{exp1} is returned, the return type is the same as @var{exp1}'s type. Similarly, if @var{exp2} is returned, its return type is the same as @var{exp2}. Example: @smallexample #define foo(x) \ __builtin_choose_expr ( \ __builtin_types_compatible_p (typeof (x), double), \ foo_double (x), \ __builtin_choose_expr ( \ __builtin_types_compatible_p (typeof (x), float), \ foo_float (x), \ /* @r{The void expression results in a compile-time error} \ @r{when assigning the result to something.} */ \ (void)0)) @end smallexample @emph{Note:} This construct is only available for C@. Furthermore, the unused expression (@var{exp1} or @var{exp2} depending on the value of @var{const_exp}) may still generate syntax errors. This may change in future revisions. @end deftypefn @deftypefn {Built-in Function} @var{type} __builtin_complex (@var{real}, @var{imag}) The built-in function @code{__builtin_complex} is provided for use in implementing the ISO C11 macros @code{CMPLXF}, @code{CMPLX} and @code{CMPLXL}. @var{real} and @var{imag} must have the same type, a real binary floating-point type, and the result has the corresponding complex type with real and imaginary parts @var{real} and @var{imag}. Unlike @samp{@var{real} + I * @var{imag}}, this works even when infinities, NaNs and negative zeros are involved. @end deftypefn @deftypefn {Built-in Function} int __builtin_constant_p (@var{exp}) You can use the built-in function @code{__builtin_constant_p} to determine if a value is known to be constant at compile time and hence that GCC can perform constant-folding on expressions involving that value. The argument of the function is the value to test. The function returns the integer 1 if the argument is known to be a compile-time constant and 0 if it is not known to be a compile-time constant. A return of 0 does not indicate that the value is @emph{not} a constant, but merely that GCC cannot prove it is a constant with the specified value of the @option{-O} option. You typically use this function in an embedded application where memory is a critical resource. If you have some complex calculation, you may want it to be folded if it involves constants, but need to call a function if it does not. For example: @smallexample #define Scale_Value(X) \ (__builtin_constant_p (X) \ ? ((X) * SCALE + OFFSET) : Scale (X)) @end smallexample You may use this built-in function in either a macro or an inline function. However, if you use it in an inlined function and pass an argument of the function as the argument to the built-in, GCC never returns 1 when you call the inline function with a string constant or compound literal (@pxref{Compound Literals}) and does not return 1 when you pass a constant numeric value to the inline function unless you specify the @option{-O} option. You may also use @code{__builtin_constant_p} in initializers for static data. For instance, you can write @smallexample static const int table[] = @{ __builtin_constant_p (EXPRESSION) ? (EXPRESSION) : -1, /* @r{@dots{}} */ @}; @end smallexample @noindent This is an acceptable initializer even if @var{EXPRESSION} is not a constant expression, including the case where @code{__builtin_constant_p} returns 1 because @var{EXPRESSION} can be folded to a constant but @var{EXPRESSION} contains operands that are not otherwise permitted in a static initializer (for example, @code{0 && foo ()}). GCC must be more conservative about evaluating the built-in in this case, because it has no opportunity to perform optimization. @end deftypefn @deftypefn {Built-in Function} long __builtin_expect (long @var{exp}, long @var{c}) @opindex fprofile-arcs You may use @code{__builtin_expect} to provide the compiler with branch prediction information. In general, you should prefer to use actual profile feedback for this (@option{-fprofile-arcs}), as programmers are notoriously bad at predicting how their programs actually perform. However, there are applications in which this data is hard to collect. The return value is the value of @var{exp}, which should be an integral expression. The semantics of the built-in are that it is expected that @var{exp} == @var{c}. For example: @smallexample if (__builtin_expect (x, 0)) foo (); @end smallexample @noindent indicates that we do not expect to call @code{foo}, since we expect @code{x} to be zero. Since you are limited to integral expressions for @var{exp}, you should use constructions such as @smallexample if (__builtin_expect (ptr != NULL, 1)) foo (*ptr); @end smallexample @noindent when testing pointer or floating-point values. @end deftypefn @deftypefn {Built-in Function} void __builtin_trap (void) This function causes the program to exit abnormally. GCC implements this function by using a target-dependent mechanism (such as intentionally executing an illegal instruction) or by calling @code{abort}. The mechanism used may vary from release to release so you should not rely on any particular implementation. @end deftypefn @deftypefn {Built-in Function} void __builtin_unreachable (void) If control flow reaches the point of the @code{__builtin_unreachable}, the program is undefined. It is useful in situations where the compiler cannot deduce the unreachability of the code. One such case is immediately following an @code{asm} statement that either never terminates, or one that transfers control elsewhere and never returns. In this example, without the @code{__builtin_unreachable}, GCC issues a warning that control reaches the end of a non-void function. It also generates code to return after the @code{asm}. @smallexample int f (int c, int v) @{ if (c) @{ return v; @} else @{ asm("jmp error_handler"); __builtin_unreachable (); @} @} @end smallexample @noindent Because the @code{asm} statement unconditionally transfers control out of the function, control never reaches the end of the function body. The @code{__builtin_unreachable} is in fact unreachable and communicates this fact to the compiler. Another use for @code{__builtin_unreachable} is following a call a function that never returns but that is not declared @code{__attribute__((noreturn))}, as in this example: @smallexample void function_that_never_returns (void); int g (int c) @{ if (c) @{ return 1; @} else @{ function_that_never_returns (); __builtin_unreachable (); @} @} @end smallexample @end deftypefn @deftypefn {Built-in Function} {void *} __builtin_assume_aligned (const void *@var{exp}, size_t @var{align}, ...) This function returns its first argument, and allows the compiler to assume that the returned pointer is at least @var{align} bytes aligned. This built-in can have either two or three arguments, if it has three, the third argument should have integer type, and if it is nonzero means misalignment offset. For example: @smallexample void *x = __builtin_assume_aligned (arg, 16); @end smallexample @noindent means that the compiler can assume @code{x}, set to @code{arg}, is at least 16-byte aligned, while: @smallexample void *x = __builtin_assume_aligned (arg, 32, 8); @end smallexample @noindent means that the compiler can assume for @code{x}, set to @code{arg}, that @code{(char *) x - 8} is 32-byte aligned. @end deftypefn @deftypefn {Built-in Function} int __builtin_LINE () This function is the equivalent of the preprocessor @code{__LINE__} macro and returns a constant integer expression that evaluates to the line number of the invocation of the built-in. When used as a C++ default argument for a function @var{F}, it returns the line number of the call to @var{F}. @end deftypefn @deftypefn {Built-in Function} {const char *} __builtin_FUNCTION () This function is the equivalent of the @code{__FUNCTION__} symbol and returns an address constant pointing to the name of the function from which the built-in was invoked, or the empty string if the invocation is not at function scope. When used as a C++ default argument for a function @var{F}, it returns the name of @var{F}'s caller or the empty string if the call was not made at function scope. @end deftypefn @deftypefn {Built-in Function} {const char *} __builtin_FILE () This function is the equivalent of the preprocessor @code{__FILE__} macro and returns an address constant pointing to the file name containing the invocation of the built-in, or the empty string if the invocation is not at function scope. When used as a C++ default argument for a function @var{F}, it returns the file name of the call to @var{F} or the empty string if the call was not made at function scope. For example, in the following, each call to function @code{foo} will print a line similar to @code{"file.c:123: foo: message"} with the name of the file and the line number of the @code{printf} call, the name of the function @code{foo}, followed by the word @code{message}. @smallexample const char* function (const char *func = __builtin_FUNCTION ()) @{ return func; @} void foo (void) @{ printf ("%s:%i: %s: message\n", file (), line (), function ()); @} @end smallexample @end deftypefn @deftypefn {Built-in Function} void __builtin___clear_cache (char *@var{begin}, char *@var{end}) This function is used to flush the processor's instruction cache for the region of memory between @var{begin} inclusive and @var{end} exclusive. Some targets require that the instruction cache be flushed, after modifying memory containing code, in order to obtain deterministic behavior. If the target does not require instruction cache flushes, @code{__builtin___clear_cache} has no effect. Otherwise either instructions are emitted in-line to clear the instruction cache or a call to the @code{__clear_cache} function in libgcc is made. @end deftypefn @deftypefn {Built-in Function} void __builtin_prefetch (const void *@var{addr}, ...) This function is used to minimize cache-miss latency by moving data into a cache before it is accessed. You can insert calls to @code{__builtin_prefetch} into code for which you know addresses of data in memory that is likely to be accessed soon. If the target supports them, data prefetch instructions are generated. If the prefetch is done early enough before the access then the data will be in the cache by the time it is accessed. The value of @var{addr} is the address of the memory to prefetch. There are two optional arguments, @var{rw} and @var{locality}. The value of @var{rw} is a compile-time constant one or zero; one means that the prefetch is preparing for a write to the memory address and zero, the default, means that the prefetch is preparing for a read. The value @var{locality} must be a compile-time constant integer between zero and three. A value of zero means that the data has no temporal locality, so it need not be left in the cache after the access. A value of three means that the data has a high degree of temporal locality and should be left in all levels of cache possible. Values of one and two mean, respectively, a low or moderate degree of temporal locality. The default is three. @smallexample for (i = 0; i < n; i++) @{ a[i] = a[i] + b[i]; __builtin_prefetch (&a[i+j], 1, 1); __builtin_prefetch (&b[i+j], 0, 1); /* @r{@dots{}} */ @} @end smallexample Data prefetch does not generate faults if @var{addr} is invalid, but the address expression itself must be valid. For example, a prefetch of @code{p->next} does not fault if @code{p->next} is not a valid address, but evaluation faults if @code{p} is not a valid address. If the target does not support data prefetch, the address expression is evaluated if it includes side effects but no other code is generated and GCC does not issue a warning. @end deftypefn @deftypefn {Built-in Function} double __builtin_huge_val (void) Returns a positive infinity, if supported by the floating-point format, else @code{DBL_MAX}. This function is suitable for implementing the ISO C macro @code{HUGE_VAL}. @end deftypefn @deftypefn {Built-in Function} float __builtin_huge_valf (void) Similar to @code{__builtin_huge_val}, except the return type is @code{float}. @end deftypefn @deftypefn {Built-in Function} {long double} __builtin_huge_vall (void) Similar to @code{__builtin_huge_val}, except the return type is @code{long double}. @end deftypefn @deftypefn {Built-in Function} _Float@var{n} __builtin_huge_valf@var{n} (void) Similar to @code{__builtin_huge_val}, except the return type is @code{_Float@var{n}}. @end deftypefn @deftypefn {Built-in Function} _Float@var{n}x __builtin_huge_valf@var{n}x (void) Similar to @code{__builtin_huge_val}, except the return type is @code{_Float@var{n}x}. @end deftypefn @deftypefn {Built-in Function} int __builtin_fpclassify (int, int, int, int, int, ...) This built-in implements the C99 fpclassify functionality. The first five int arguments should be the target library's notion of the possible FP classes and are used for return values. They must be constant values and they must appear in this order: @code{FP_NAN}, @code{FP_INFINITE}, @code{FP_NORMAL}, @code{FP_SUBNORMAL} and @code{FP_ZERO}. The ellipsis is for exactly one floating-point value to classify. GCC treats the last argument as type-generic, which means it does not do default promotion from float to double. @end deftypefn @deftypefn {Built-in Function} double __builtin_inf (void) Similar to @code{__builtin_huge_val}, except a warning is generated if the target floating-point format does not support infinities. @end deftypefn @deftypefn {Built-in Function} _Decimal32 __builtin_infd32 (void) Similar to @code{__builtin_inf}, except the return type is @code{_Decimal32}. @end deftypefn @deftypefn {Built-in Function} _Decimal64 __builtin_infd64 (void) Similar to @code{__builtin_inf}, except the return type is @code{_Decimal64}. @end deftypefn @deftypefn {Built-in Function} _Decimal128 __builtin_infd128 (void) Similar to @code{__builtin_inf}, except the return type is @code{_Decimal128}. @end deftypefn @deftypefn {Built-in Function} float __builtin_inff (void) Similar to @code{__builtin_inf}, except the return type is @code{float}. This function is suitable for implementing the ISO C99 macro @code{INFINITY}. @end deftypefn @deftypefn {Built-in Function} {long double} __builtin_infl (void) Similar to @code{__builtin_inf}, except the return type is @code{long double}. @end deftypefn @deftypefn {Built-in Function} _Float@var{n} __builtin_inff@var{n} (void) Similar to @code{__builtin_inf}, except the return type is @code{_Float@var{n}}. @end deftypefn @deftypefn {Built-in Function} _Float@var{n} __builtin_inff@var{n}x (void) Similar to @code{__builtin_inf}, except the return type is @code{_Float@var{n}x}. @end deftypefn @deftypefn {Built-in Function} int __builtin_isinf_sign (...) Similar to @code{isinf}, except the return value is -1 for an argument of @code{-Inf} and 1 for an argument of @code{+Inf}. Note while the parameter list is an ellipsis, this function only accepts exactly one floating-point argument. GCC treats this parameter as type-generic, which means it does not do default promotion from float to double. @end deftypefn @deftypefn {Built-in Function} double __builtin_nan (const char *str) This is an implementation of the ISO C99 function @code{nan}. Since ISO C99 defines this function in terms of @code{strtod}, which we do not implement, a description of the parsing is in order. The string is parsed as by @code{strtol}; that is, the base is recognized by leading @samp{0} or @samp{0x} prefixes. The number parsed is placed in the significand such that the least significant bit of the number is at the least significant bit of the significand. The number is truncated to fit the significand field provided. The significand is forced to be a quiet NaN@. This function, if given a string literal all of which would have been consumed by @code{strtol}, is evaluated early enough that it is considered a compile-time constant. @end deftypefn @deftypefn {Built-in Function} _Decimal32 __builtin_nand32 (const char *str) Similar to @code{__builtin_nan}, except the return type is @code{_Decimal32}. @end deftypefn @deftypefn {Built-in Function} _Decimal64 __builtin_nand64 (const char *str) Similar to @code{__builtin_nan}, except the return type is @code{_Decimal64}. @end deftypefn @deftypefn {Built-in Function} _Decimal128 __builtin_nand128 (const char *str) Similar to @code{__builtin_nan}, except the return type is @code{_Decimal128}. @end deftypefn @deftypefn {Built-in Function} float __builtin_nanf (const char *str) Similar to @code{__builtin_nan}, except the return type is @code{float}. @end deftypefn @deftypefn {Built-in Function} {long double} __builtin_nanl (const char *str) Similar to @code{__builtin_nan}, except the return type is @code{long double}. @end deftypefn @deftypefn {Built-in Function} _Float@var{n} __builtin_nanf@var{n} (const char *str) Similar to @code{__builtin_nan}, except the return type is @code{_Float@var{n}}. @end deftypefn @deftypefn {Built-in Function} _Float@var{n}x __builtin_nanf@var{n}x (const char *str) Similar to @code{__builtin_nan}, except the return type is @code{_Float@var{n}x}. @end deftypefn @deftypefn {Built-in Function} double __builtin_nans (const char *str) Similar to @code{__builtin_nan}, except the significand is forced to be a signaling NaN@. The @code{nans} function is proposed by @uref{http://www.open-std.org/jtc1/sc22/wg14/www/docs/n965.htm,,WG14 N965}. @end deftypefn @deftypefn {Built-in Function} float __builtin_nansf (const char *str) Similar to @code{__builtin_nans}, except the return type is @code{float}. @end deftypefn @deftypefn {Built-in Function} {long double} __builtin_nansl (const char *str) Similar to @code{__builtin_nans}, except the return type is @code{long double}. @end deftypefn @deftypefn {Built-in Function} _Float@var{n} __builtin_nansf@var{n} (const char *str) Similar to @code{__builtin_nans}, except the return type is @code{_Float@var{n}}. @end deftypefn @deftypefn {Built-in Function} _Float@var{n}x __builtin_nansf@var{n}x (const char *str) Similar to @code{__builtin_nans}, except the return type is @code{_Float@var{n}x}. @end deftypefn @deftypefn {Built-in Function} int __builtin_ffs (int x) Returns one plus the index of the least significant 1-bit of @var{x}, or if @var{x} is zero, returns zero. @end deftypefn @deftypefn {Built-in Function} int __builtin_clz (unsigned int x) Returns the number of leading 0-bits in @var{x}, starting at the most significant bit position. If @var{x} is 0, the result is undefined. @end deftypefn @deftypefn {Built-in Function} int __builtin_ctz (unsigned int x) Returns the number of trailing 0-bits in @var{x}, starting at the least significant bit position. If @var{x} is 0, the result is undefined. @end deftypefn @deftypefn {Built-in Function} int __builtin_clrsb (int x) Returns the number of leading redundant sign bits in @var{x}, i.e.@: the number of bits following the most significant bit that are identical to it. There are no special cases for 0 or other values. @end deftypefn @deftypefn {Built-in Function} int __builtin_popcount (unsigned int x) Returns the number of 1-bits in @var{x}. @end deftypefn @deftypefn {Built-in Function} int __builtin_parity (unsigned int x) Returns the parity of @var{x}, i.e.@: the number of 1-bits in @var{x} modulo 2. @end deftypefn @deftypefn {Built-in Function} int __builtin_ffsl (long) Similar to @code{__builtin_ffs}, except the argument type is @code{long}. @end deftypefn @deftypefn {Built-in Function} int __builtin_clzl (unsigned long) Similar to @code{__builtin_clz}, except the argument type is @code{unsigned long}. @end deftypefn @deftypefn {Built-in Function} int __builtin_ctzl (unsigned long) Similar to @code{__builtin_ctz}, except the argument type is @code{unsigned long}. @end deftypefn @deftypefn {Built-in Function} int __builtin_clrsbl (long) Similar to @code{__builtin_clrsb}, except the argument type is @code{long}. @end deftypefn @deftypefn {Built-in Function} int __builtin_popcountl (unsigned long) Similar to @code{__builtin_popcount}, except the argument type is @code{unsigned long}. @end deftypefn @deftypefn {Built-in Function} int __builtin_parityl (unsigned long) Similar to @code{__builtin_parity}, except the argument type is @code{unsigned long}. @end deftypefn @deftypefn {Built-in Function} int __builtin_ffsll (long long) Similar to @code{__builtin_ffs}, except the argument type is @code{long long}. @end deftypefn @deftypefn {Built-in Function} int __builtin_clzll (unsigned long long) Similar to @code{__builtin_clz}, except the argument type is @code{unsigned long long}. @end deftypefn @deftypefn {Built-in Function} int __builtin_ctzll (unsigned long long) Similar to @code{__builtin_ctz}, except the argument type is @code{unsigned long long}. @end deftypefn @deftypefn {Built-in Function} int __builtin_clrsbll (long long) Similar to @code{__builtin_clrsb}, except the argument type is @code{long long}. @end deftypefn @deftypefn {Built-in Function} int __builtin_popcountll (unsigned long long) Similar to @code{__builtin_popcount}, except the argument type is @code{unsigned long long}. @end deftypefn @deftypefn {Built-in Function} int __builtin_parityll (unsigned long long) Similar to @code{__builtin_parity}, except the argument type is @code{unsigned long long}. @end deftypefn @deftypefn {Built-in Function} double __builtin_powi (double, int) Returns the first argument raised to the power of the second. Unlike the @code{pow} function no guarantees about precision and rounding are made. @end deftypefn @deftypefn {Built-in Function} float __builtin_powif (float, int) Similar to @code{__builtin_powi}, except the argument and return types are @code{float}. @end deftypefn @deftypefn {Built-in Function} {long double} __builtin_powil (long double, int) Similar to @code{__builtin_powi}, except the argument and return types are @code{long double}. @end deftypefn @deftypefn {Built-in Function} uint16_t __builtin_bswap16 (uint16_t x) Returns @var{x} with the order of the bytes reversed; for example, @code{0xaabb} becomes @code{0xbbaa}. Byte here always means exactly 8 bits. @end deftypefn @deftypefn {Built-in Function} uint32_t __builtin_bswap32 (uint32_t x) Similar to @code{__builtin_bswap16}, except the argument and return types are 32 bit. @end deftypefn @deftypefn {Built-in Function} uint64_t __builtin_bswap64 (uint64_t x) Similar to @code{__builtin_bswap32}, except the argument and return types are 64 bit. @end deftypefn @node Target Builtins @section Built-in Functions Specific to Particular Target Machines On some target machines, GCC supports many built-in functions specific to those machines. Generally these generate calls to specific machine instructions, but allow the compiler to schedule those calls. @menu * AArch64 Built-in Functions:: * Alpha Built-in Functions:: * Altera Nios II Built-in Functions:: * ARC Built-in Functions:: * ARC SIMD Built-in Functions:: * ARM iWMMXt Built-in Functions:: * ARM C Language Extensions (ACLE):: * ARM Floating Point Status and Control Intrinsics:: * ARM ARMv8-M Security Extensions:: * AVR Built-in Functions:: * Blackfin Built-in Functions:: * FR-V Built-in Functions:: * MIPS DSP Built-in Functions:: * MIPS Paired-Single Support:: * MIPS Loongson Built-in Functions:: * MIPS SIMD Architecture (MSA) Support:: * Other MIPS Built-in Functions:: * MSP430 Built-in Functions:: * NDS32 Built-in Functions:: * picoChip Built-in Functions:: * PowerPC Built-in Functions:: * PowerPC AltiVec/VSX Built-in Functions:: * PowerPC Hardware Transactional Memory Built-in Functions:: * PowerPC Atomic Memory Operation Functions:: * RX Built-in Functions:: * S/390 System z Built-in Functions:: * SH Built-in Functions:: * SPARC VIS Built-in Functions:: * SPU Built-in Functions:: * TI C6X Built-in Functions:: * TILE-Gx Built-in Functions:: * TILEPro Built-in Functions:: * x86 Built-in Functions:: * x86 transactional memory intrinsics:: @end menu @node AArch64 Built-in Functions @subsection AArch64 Built-in Functions These built-in functions are available for the AArch64 family of processors. @smallexample unsigned int __builtin_aarch64_get_fpcr () void __builtin_aarch64_set_fpcr (unsigned int) unsigned int __builtin_aarch64_get_fpsr () void __builtin_aarch64_set_fpsr (unsigned int) @end smallexample @node Alpha Built-in Functions @subsection Alpha Built-in Functions These built-in functions are available for the Alpha family of processors, depending on the command-line switches used. The following built-in functions are always available. They all generate the machine instruction that is part of the name. @smallexample long __builtin_alpha_implver (void) long __builtin_alpha_rpcc (void) long __builtin_alpha_amask (long) long __builtin_alpha_cmpbge (long, long) long __builtin_alpha_extbl (long, long) long __builtin_alpha_extwl (long, long) long __builtin_alpha_extll (long, long) long __builtin_alpha_extql (long, long) long __builtin_alpha_extwh (long, long) long __builtin_alpha_extlh (long, long) long __builtin_alpha_extqh (long, long) long __builtin_alpha_insbl (long, long) long __builtin_alpha_inswl (long, long) long __builtin_alpha_insll (long, long) long __builtin_alpha_insql (long, long) long __builtin_alpha_inswh (long, long) long __builtin_alpha_inslh (long, long) long __builtin_alpha_insqh (long, long) long __builtin_alpha_mskbl (long, long) long __builtin_alpha_mskwl (long, long) long __builtin_alpha_mskll (long, long) long __builtin_alpha_mskql (long, long) long __builtin_alpha_mskwh (long, long) long __builtin_alpha_msklh (long, long) long __builtin_alpha_mskqh (long, long) long __builtin_alpha_umulh (long, long) long __builtin_alpha_zap (long, long) long __builtin_alpha_zapnot (long, long) @end smallexample The following built-in functions are always with @option{-mmax} or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{pca56} or later. They all generate the machine instruction that is part of the name. @smallexample long __builtin_alpha_pklb (long) long __builtin_alpha_pkwb (long) long __builtin_alpha_unpkbl (long) long __builtin_alpha_unpkbw (long) long __builtin_alpha_minub8 (long, long) long __builtin_alpha_minsb8 (long, long) long __builtin_alpha_minuw4 (long, long) long __builtin_alpha_minsw4 (long, long) long __builtin_alpha_maxub8 (long, long) long __builtin_alpha_maxsb8 (long, long) long __builtin_alpha_maxuw4 (long, long) long __builtin_alpha_maxsw4 (long, long) long __builtin_alpha_perr (long, long) @end smallexample The following built-in functions are always with @option{-mcix} or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{ev67} or later. They all generate the machine instruction that is part of the name. @smallexample long __builtin_alpha_cttz (long) long __builtin_alpha_ctlz (long) long __builtin_alpha_ctpop (long) @end smallexample The following built-in functions are available on systems that use the OSF/1 PALcode. Normally they invoke the @code{rduniq} and @code{wruniq} PAL calls, but when invoked with @option{-mtls-kernel}, t