open import Level open import Relation.Binary.PropositionalEquality open ≡-Reasoning module FunctorExample where id : {l : Level} {A : Set l} -> A -> A id x = x _∙_ : {l ll lll : Level} {A : Set l} {B : Set ll} {C : Set lll} -> (B -> C) -> (A -> B) -> (A -> C) f ∙ g = \x -> f (g x) record Functor {l : Level} (F : Set l -> Set (suc l)) : (Set (suc l)) where field fmap : ∀{A B} -> (A -> B) -> (F A) -> (F B) field preserve-id : ∀{A} (Fa : F A) → fmap id Fa ≡ id Fa covariant : ∀{A B C} (f : A → B) → (g : B → C) → (x : F A) → fmap (g ∙ f) x ≡ fmap g (fmap f x) data List {l : Level} (A : Set l) : (Set (suc l)) where nil : List A cons : A -> List A -> List A list-fmap : {l ll : Level} {A : Set l} {B : Set ll} -> (A -> B) -> List A -> List B list-fmap f nil = nil list-fmap f (cons x xs) = cons (f x) (list-fmap f xs) list-preserve-id : {l : Level} {A : Set l} -> (xs : List A) -> list-fmap id xs ≡ id xs list-preserve-id nil = refl list-preserve-id (cons x xs) = cong (\li -> cons x li) (list-preserve-id xs) list-covariant : {l ll lll : Level} {A : Set l} {B : Set ll} {C : Set lll} -> (f : A -> B) → (g : B -> C) → (x : List A) → list-fmap (g ∙ f) x ≡ list-fmap g (list-fmap f x) list-covariant f g nil = refl list-covariant f g (cons x xs) = cong (\li -> cons (g (f x)) li) (list-covariant f g xs) list-is-functor : {l : Level} -> Functor List list-is-functor {l} = record { fmap = list-fmap ; preserve-id = list-preserve-id ; covariant = list-covariant {l}} --open module FunctorWithImplicits {l ll : Level} {F : Set l -> Set ll} {{functorT : Functor F}} = Functor functorT --hoge : ∀{F A} {{Functor F}} -> (Fa : F A) -> Functor.fmap id Fa ≡ id Fa --hoge = {!!} {- record NaturalTransformation {l ll : Level} (F G : Set l -> Set ll) : Set (suc (l ⊔ ll)) where field natural : {A : Set l} -> F A -> G A field lemma : ∀{f } {x : Functor F} -> natural (fmap f x) ≡ f (natural x) -}