Mercurial > hg > Members > atton > delta_monad
annotate agda/deltaM/monad.agda @ 117:6f86b55bf8b4
Temporary commit : Proving association-law ....
author | Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 02 Feb 2015 09:57:37 +0900 |
parents | f02c5ad4a327 |
children | 53cb21845dea |
rev | line source |
---|---|
98
b7f0879e854e
Trying Monad-laws for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
1 open import Level |
b7f0879e854e
Trying Monad-laws for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
2 open import Relation.Binary.PropositionalEquality |
b7f0879e854e
Trying Monad-laws for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
3 open ≡-Reasoning |
b7f0879e854e
Trying Monad-laws for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
4 |
b7f0879e854e
Trying Monad-laws for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
5 open import basic |
b7f0879e854e
Trying Monad-laws for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
6 open import delta |
b7f0879e854e
Trying Monad-laws for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
7 open import delta.functor |
111
9fe3d0bd1149
Prove right-unity-law on DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
104
diff
changeset
|
8 open import delta.monad |
98
b7f0879e854e
Trying Monad-laws for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
9 open import deltaM |
b7f0879e854e
Trying Monad-laws for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
10 open import deltaM.functor |
104
ebd0d6e2772c
Trying redenition Delta with length constraints
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
103
diff
changeset
|
11 open import nat |
98
b7f0879e854e
Trying Monad-laws for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
12 open import laws |
b7f0879e854e
Trying Monad-laws for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
13 |
b7f0879e854e
Trying Monad-laws for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
14 module deltaM.monad where |
b7f0879e854e
Trying Monad-laws for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
15 open Functor |
b7f0879e854e
Trying Monad-laws for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
16 open NaturalTransformation |
b7f0879e854e
Trying Monad-laws for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
17 open Monad |
b7f0879e854e
Trying Monad-laws for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
18 |
b7f0879e854e
Trying Monad-laws for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
19 |
117
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
20 -- proof utils |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
21 deconstruct : {l : Level} {A : Set l} {n : Nat} |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
22 {M : Set l -> Set l} {fm : Functor M} {mm : Monad M fm} |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
23 (d : DeltaM M {fm} {mm} A (S n)) -> Delta (M A) (S n) |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
24 deconstruct (deltaM d) = d |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
25 |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
26 |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
27 |
114
08403eb8db8b
Prove natural transformation for deltaM-eta
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
112
diff
changeset
|
28 -- sub proofs |
08403eb8db8b
Prove natural transformation for deltaM-eta
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
112
diff
changeset
|
29 |
117
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
30 deconstruct-id : {l : Level} {A : Set l} {n : Nat} |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
31 {M : Set l -> Set l} {fm : Functor M} {mm : Monad M fm} |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
32 (d : DeltaM M {fm} {mm} A (S n)) -> deltaM (deconstruct d) ≡ d |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
33 deconstruct-id {n = O} (deltaM x) = refl |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
34 deconstruct-id {n = S n} (deltaM x) = refl |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
35 |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
36 |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
37 headDeltaM-with-appendDeltaM : {l : Level} {A : Set l} {n m : Nat} |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
38 {M : Set l -> Set l} {fm : Functor M} {mm : Monad M fm} |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
39 (d : DeltaM M {fm} {mm} A (S n)) -> (ds : DeltaM M {fm} {mm} A (S m)) -> |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
40 headDeltaM (appendDeltaM d ds) ≡ headDeltaM d |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
41 headDeltaM-with-appendDeltaM {l} {A} {n = O} {O} (deltaM (mono _)) (deltaM _) = refl |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
42 headDeltaM-with-appendDeltaM {l} {A} {n = O} {S m} (deltaM (mono _)) (deltaM _) = refl |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
43 headDeltaM-with-appendDeltaM {l} {A} {n = S n} {O} (deltaM (delta _ _)) (deltaM _) = refl |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
44 headDeltaM-with-appendDeltaM {l} {A} {n = S n} {S m} (deltaM (delta _ _)) (deltaM _) = refl |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
45 |
114
08403eb8db8b
Prove natural transformation for deltaM-eta
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
112
diff
changeset
|
46 fmap-headDeltaM-with-deltaM-eta : {l : Level} {A : Set l} {n : Nat} |
08403eb8db8b
Prove natural transformation for deltaM-eta
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
112
diff
changeset
|
47 {M : Set l -> Set l} {functorM : Functor M} {monadM : Monad M functorM} |
08403eb8db8b
Prove natural transformation for deltaM-eta
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
112
diff
changeset
|
48 (x : M A) -> (fmap functorM ((headDeltaM {l} {A} {n} {M} {functorM} {monadM}) ∙ deltaM-eta) x) ≡ fmap functorM (eta monadM) x |
08403eb8db8b
Prove natural transformation for deltaM-eta
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
112
diff
changeset
|
49 fmap-headDeltaM-with-deltaM-eta {l} {A} {O} {M} {fm} {mm} x = refl |
08403eb8db8b
Prove natural transformation for deltaM-eta
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
112
diff
changeset
|
50 fmap-headDeltaM-with-deltaM-eta {l} {A} {S n} {M} {fm} {mm} x = refl |
08403eb8db8b
Prove natural transformation for deltaM-eta
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
112
diff
changeset
|
51 |
08403eb8db8b
Prove natural transformation for deltaM-eta
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
112
diff
changeset
|
52 |
08403eb8db8b
Prove natural transformation for deltaM-eta
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
112
diff
changeset
|
53 fmap-tailDeltaM-with-deltaM-eta : {l : Level} {A : Set l} {n : Nat} |
08403eb8db8b
Prove natural transformation for deltaM-eta
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
112
diff
changeset
|
54 {M : Set l -> Set l} {functorM : Functor M} {monadM : Monad M functorM} |
08403eb8db8b
Prove natural transformation for deltaM-eta
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
112
diff
changeset
|
55 (d : DeltaM M {functorM} {monadM} A (S n)) -> |
08403eb8db8b
Prove natural transformation for deltaM-eta
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
112
diff
changeset
|
56 deltaM-fmap ((tailDeltaM {n = n} {monadM = monadM} ) ∙ deltaM-eta) d ≡ deltaM-fmap (deltaM-eta) d |
08403eb8db8b
Prove natural transformation for deltaM-eta
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
112
diff
changeset
|
57 fmap-tailDeltaM-with-deltaM-eta {n = O} d = refl |
08403eb8db8b
Prove natural transformation for deltaM-eta
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
112
diff
changeset
|
58 fmap-tailDeltaM-with-deltaM-eta {n = S n} d = refl |
08403eb8db8b
Prove natural transformation for deltaM-eta
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
112
diff
changeset
|
59 |
08403eb8db8b
Prove natural transformation for deltaM-eta
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
112
diff
changeset
|
60 |
117
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
61 fmap-headDeltaM-with-deltaM-mu : {l : Level} {A : Set l} {n : Nat} |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
62 {M : Set l -> Set l} {fm : Functor M} {mm : Monad M fm} |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
63 (x : M (DeltaM M {fm} {mm} (DeltaM M A (S n)) (S n))) -> |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
64 fmap fm (headDeltaM ∙ deltaM-mu) x ≡ fmap fm (((mu mm) ∙ (fmap fm headDeltaM)) ∙ headDeltaM) x |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
65 fmap-headDeltaM-with-deltaM-mu {l} {A} {O} {M} {fm} {mm} x = refl |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
66 fmap-headDeltaM-with-deltaM-mu {l} {A} {S n} {M} {fm} {mm} x = begin |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
67 fmap fm (headDeltaM ∙ deltaM-mu) x ≡⟨ refl ⟩ |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
68 fmap fm (headDeltaM ∙ (\d -> appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM (headDeltaM d))))) |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
69 (deltaM-mu (deltaM-fmap tailDeltaM (tailDeltaM d))))) x ≡⟨ refl ⟩ |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
70 fmap fm (\d -> headDeltaM (appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM (headDeltaM d))))) |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
71 (deltaM-mu (deltaM-fmap tailDeltaM (tailDeltaM d))))) x |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
72 ≡⟨ refl ⟩ |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
73 fmap fm (\d -> headDeltaM (appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM (headDeltaM d))))) |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
74 (deltaM (deconstruct {A = A} {mm = mm} (deltaM-mu (deltaM-fmap tailDeltaM (tailDeltaM d))))))) x |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
75 ≡⟨ {!!} ⟩ |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
76 fmap fm (\d -> headDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM (headDeltaM d)))))) x ≡⟨ refl ⟩ |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
77 fmap fm (\d -> (mu mm (fmap fm headDeltaM (headDeltaM d)))) x ≡⟨ {!!} ⟩ |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
78 fmap fm (((mu mm) ∙ (fmap fm headDeltaM)) ∙ headDeltaM) x |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
79 ∎ |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
80 |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
81 |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
82 |
114
08403eb8db8b
Prove natural transformation for deltaM-eta
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
112
diff
changeset
|
83 -- main proofs |
08403eb8db8b
Prove natural transformation for deltaM-eta
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
112
diff
changeset
|
84 |
115
e6bcc7467335
Temporary commit : Proving association-law ...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
114
diff
changeset
|
85 postulate deltaM-eta-is-nt : {l : Level} {A B : Set l} {n : Nat} |
114
08403eb8db8b
Prove natural transformation for deltaM-eta
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
112
diff
changeset
|
86 {M : Set l -> Set l} {functorM : Functor M} {monadM : Monad M functorM} |
08403eb8db8b
Prove natural transformation for deltaM-eta
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
112
diff
changeset
|
87 (f : A -> B) -> (x : A) -> |
08403eb8db8b
Prove natural transformation for deltaM-eta
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
112
diff
changeset
|
88 ((deltaM-eta {l} {B} {n} {M} {functorM} {monadM} )∙ f) x ≡ deltaM-fmap f (deltaM-eta x) |
115
e6bcc7467335
Temporary commit : Proving association-law ...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
114
diff
changeset
|
89 {- |
114
08403eb8db8b
Prove natural transformation for deltaM-eta
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
112
diff
changeset
|
90 deltaM-eta-is-nt {l} {A} {B} {O} {M} {fm} {mm} f x = begin |
08403eb8db8b
Prove natural transformation for deltaM-eta
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
112
diff
changeset
|
91 deltaM-eta {n = O} (f x) ≡⟨ refl ⟩ |
08403eb8db8b
Prove natural transformation for deltaM-eta
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
112
diff
changeset
|
92 deltaM (mono (eta mm (f x))) ≡⟨ cong (\de -> deltaM (mono de)) (eta-is-nt mm f x) ⟩ |
08403eb8db8b
Prove natural transformation for deltaM-eta
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
112
diff
changeset
|
93 deltaM (mono (fmap fm f (eta mm x))) ≡⟨ refl ⟩ |
08403eb8db8b
Prove natural transformation for deltaM-eta
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
112
diff
changeset
|
94 deltaM-fmap f (deltaM-eta {n = O} x) ∎ |
08403eb8db8b
Prove natural transformation for deltaM-eta
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
112
diff
changeset
|
95 deltaM-eta-is-nt {l} {A} {B} {S n} {M} {fm} {mm} f x = begin |
08403eb8db8b
Prove natural transformation for deltaM-eta
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
112
diff
changeset
|
96 deltaM-eta {n = S n} (f x) ≡⟨ refl ⟩ |
08403eb8db8b
Prove natural transformation for deltaM-eta
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
112
diff
changeset
|
97 deltaM (delta-eta {n = S n} (eta mm (f x))) ≡⟨ refl ⟩ |
08403eb8db8b
Prove natural transformation for deltaM-eta
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
112
diff
changeset
|
98 deltaM (delta (eta mm (f x)) (delta-eta (eta mm (f x)))) |
08403eb8db8b
Prove natural transformation for deltaM-eta
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
112
diff
changeset
|
99 ≡⟨ cong (\de -> deltaM (delta de (delta-eta de))) (eta-is-nt mm f x) ⟩ |
08403eb8db8b
Prove natural transformation for deltaM-eta
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
112
diff
changeset
|
100 deltaM (delta (fmap fm f (eta mm x)) (delta-eta (fmap fm f (eta mm x)))) |
08403eb8db8b
Prove natural transformation for deltaM-eta
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
112
diff
changeset
|
101 ≡⟨ cong (\de -> deltaM (delta (fmap fm f (eta mm x)) de)) (eta-is-nt delta-is-monad (fmap fm f) (eta mm x)) ⟩ |
08403eb8db8b
Prove natural transformation for deltaM-eta
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
112
diff
changeset
|
102 deltaM (delta (fmap fm f (eta mm x)) (delta-fmap (fmap fm f) (delta-eta (eta mm x)))) |
08403eb8db8b
Prove natural transformation for deltaM-eta
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
112
diff
changeset
|
103 ≡⟨ refl ⟩ |
08403eb8db8b
Prove natural transformation for deltaM-eta
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
112
diff
changeset
|
104 deltaM-fmap f (deltaM-eta {n = S n} x) |
08403eb8db8b
Prove natural transformation for deltaM-eta
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
112
diff
changeset
|
105 ∎ |
115
e6bcc7467335
Temporary commit : Proving association-law ...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
114
diff
changeset
|
106 -} |
102
9c62373bd474
Trying right-unity-law on DeltaM. but do not fit implicit type in eta...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
98
diff
changeset
|
107 |
112
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
108 postulate deltaM-right-unity-law : {l : Level} {A : Set l} |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
109 {M : Set l -> Set l} {functorM : Functor M} {monadM : Monad M functorM} {n : Nat} |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
110 (d : DeltaM M {functorM} {monadM} A (S n)) -> (deltaM-mu ∙ deltaM-eta) d ≡ id d |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
111 {- |
111
9fe3d0bd1149
Prove right-unity-law on DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
104
diff
changeset
|
112 deltaM-right-unity-law {l} {A} {M} {fm} {mm} {O} (deltaM (mono x)) = begin |
9fe3d0bd1149
Prove right-unity-law on DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
104
diff
changeset
|
113 deltaM-mu (deltaM-eta (deltaM (mono x))) ≡⟨ refl ⟩ |
9fe3d0bd1149
Prove right-unity-law on DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
104
diff
changeset
|
114 deltaM-mu (deltaM (mono (eta mm (deltaM (mono x))))) ≡⟨ refl ⟩ |
9fe3d0bd1149
Prove right-unity-law on DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
104
diff
changeset
|
115 deltaM (mono (mu mm (fmap fm (headDeltaM {M = M})(eta mm (deltaM (mono x)))))) |
9fe3d0bd1149
Prove right-unity-law on DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
104
diff
changeset
|
116 ≡⟨ cong (\de -> deltaM (mono (mu mm de))) (sym (eta-is-nt mm headDeltaM (deltaM (mono x)) )) ⟩ |
9fe3d0bd1149
Prove right-unity-law on DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
104
diff
changeset
|
117 deltaM (mono (mu mm (eta mm ((headDeltaM {l} {A} {O} {M} {fm} {mm}) (deltaM (mono x)))))) ≡⟨ refl ⟩ |
9fe3d0bd1149
Prove right-unity-law on DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
104
diff
changeset
|
118 deltaM (mono (mu mm (eta mm x))) ≡⟨ cong (\de -> deltaM (mono de)) (sym (right-unity-law mm x)) ⟩ |
9fe3d0bd1149
Prove right-unity-law on DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
104
diff
changeset
|
119 deltaM (mono x) |
9fe3d0bd1149
Prove right-unity-law on DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
104
diff
changeset
|
120 ∎ |
9fe3d0bd1149
Prove right-unity-law on DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
104
diff
changeset
|
121 deltaM-right-unity-law {l} {A} {M} {fm} {mm} {S n} (deltaM (delta x d)) = begin |
9fe3d0bd1149
Prove right-unity-law on DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
104
diff
changeset
|
122 deltaM-mu (deltaM-eta (deltaM (delta x d))) |
9fe3d0bd1149
Prove right-unity-law on DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
104
diff
changeset
|
123 ≡⟨ refl ⟩ |
9fe3d0bd1149
Prove right-unity-law on DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
104
diff
changeset
|
124 deltaM-mu (deltaM (delta (eta mm (deltaM (delta x d))) (delta-eta (eta mm (deltaM (delta x d)))))) |
104
ebd0d6e2772c
Trying redenition Delta with length constraints
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
103
diff
changeset
|
125 ≡⟨ refl ⟩ |
112
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
126 appendDeltaM (deltaM (mono (mu mm (fmap fm (headDeltaM {monadM = mm}) (eta mm (deltaM (delta x d))))))) |
111
9fe3d0bd1149
Prove right-unity-law on DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
104
diff
changeset
|
127 (deltaM-mu (deltaM-fmap tailDeltaM (deltaM (delta-eta (eta mm (deltaM (delta x d))))))) |
9fe3d0bd1149
Prove right-unity-law on DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
104
diff
changeset
|
128 ≡⟨ cong (\de -> appendDeltaM (deltaM (mono (mu mm de))) |
9fe3d0bd1149
Prove right-unity-law on DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
104
diff
changeset
|
129 (deltaM-mu (deltaM-fmap tailDeltaM (deltaM (delta-eta (eta mm (deltaM (delta x d)))))))) |
9fe3d0bd1149
Prove right-unity-law on DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
104
diff
changeset
|
130 (sym (eta-is-nt mm headDeltaM (deltaM (delta x d)))) ⟩ |
9fe3d0bd1149
Prove right-unity-law on DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
104
diff
changeset
|
131 appendDeltaM (deltaM (mono (mu mm (eta mm ((headDeltaM {monadM = mm}) (deltaM (delta x d))))))) |
9fe3d0bd1149
Prove right-unity-law on DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
104
diff
changeset
|
132 (deltaM-mu (deltaM-fmap tailDeltaM (deltaM (delta-eta (eta mm (deltaM (delta x d))))))) |
9fe3d0bd1149
Prove right-unity-law on DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
104
diff
changeset
|
133 ≡⟨ refl ⟩ |
9fe3d0bd1149
Prove right-unity-law on DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
104
diff
changeset
|
134 appendDeltaM (deltaM (mono (mu mm (eta mm x)))) |
9fe3d0bd1149
Prove right-unity-law on DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
104
diff
changeset
|
135 (deltaM-mu (deltaM-fmap tailDeltaM (deltaM (delta-eta (eta mm (deltaM (delta x d))))))) |
112
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
136 ≡⟨ cong (\de -> appendDeltaM (deltaM (mono de)) (deltaM-mu (deltaM-fmap tailDeltaM (deltaM (delta-eta (eta mm (deltaM (delta x d)))))))) |
111
9fe3d0bd1149
Prove right-unity-law on DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
104
diff
changeset
|
137 (sym (right-unity-law mm x)) ⟩ |
9fe3d0bd1149
Prove right-unity-law on DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
104
diff
changeset
|
138 appendDeltaM (deltaM (mono x)) (deltaM-mu (deltaM-fmap tailDeltaM (deltaM (delta-eta (eta mm (deltaM (delta x d))))))) |
103
a271f3ff1922
Delte type dependencie in Monad record for escape implicit type conflict
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
102
diff
changeset
|
139 ≡⟨ refl ⟩ |
111
9fe3d0bd1149
Prove right-unity-law on DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
104
diff
changeset
|
140 appendDeltaM (deltaM (mono x)) (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) (delta-eta (eta mm (deltaM (delta x d))))))) |
9fe3d0bd1149
Prove right-unity-law on DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
104
diff
changeset
|
141 ≡⟨ cong (\de -> appendDeltaM (deltaM (mono x)) (deltaM-mu (deltaM de))) (sym (eta-is-nt delta-is-monad (fmap fm tailDeltaM) (eta mm (deltaM (delta x d))))) ⟩ |
9fe3d0bd1149
Prove right-unity-law on DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
104
diff
changeset
|
142 appendDeltaM (deltaM (mono x)) (deltaM-mu (deltaM (delta-eta (fmap fm tailDeltaM (eta mm (deltaM (delta x d))))))) |
9fe3d0bd1149
Prove right-unity-law on DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
104
diff
changeset
|
143 ≡⟨ cong (\de -> appendDeltaM (deltaM (mono x)) (deltaM-mu (deltaM (delta-eta de)))) (sym (eta-is-nt mm tailDeltaM (deltaM (delta x d)))) ⟩ |
9fe3d0bd1149
Prove right-unity-law on DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
104
diff
changeset
|
144 appendDeltaM (deltaM (mono x)) (deltaM-mu (deltaM (delta-eta (eta mm (tailDeltaM (deltaM (delta x d))))))) |
9fe3d0bd1149
Prove right-unity-law on DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
104
diff
changeset
|
145 ≡⟨ refl ⟩ |
9fe3d0bd1149
Prove right-unity-law on DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
104
diff
changeset
|
146 appendDeltaM (deltaM (mono x)) (deltaM-mu (deltaM (delta-eta (eta mm (deltaM d))))) |
9fe3d0bd1149
Prove right-unity-law on DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
104
diff
changeset
|
147 ≡⟨ refl ⟩ |
9fe3d0bd1149
Prove right-unity-law on DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
104
diff
changeset
|
148 appendDeltaM (deltaM (mono x)) (deltaM-mu (deltaM-eta (deltaM d))) |
9fe3d0bd1149
Prove right-unity-law on DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
104
diff
changeset
|
149 ≡⟨ cong (\de -> appendDeltaM (deltaM (mono x)) de) (deltaM-right-unity-law (deltaM d)) ⟩ |
9fe3d0bd1149
Prove right-unity-law on DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
104
diff
changeset
|
150 appendDeltaM (deltaM (mono x)) (deltaM d) |
9fe3d0bd1149
Prove right-unity-law on DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
104
diff
changeset
|
151 ≡⟨ refl ⟩ |
9fe3d0bd1149
Prove right-unity-law on DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
104
diff
changeset
|
152 deltaM (delta x d) |
102
9c62373bd474
Trying right-unity-law on DeltaM. but do not fit implicit type in eta...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
98
diff
changeset
|
153 ∎ |
112
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
154 -} |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
155 |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
156 |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
157 |
104
ebd0d6e2772c
Trying redenition Delta with length constraints
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
103
diff
changeset
|
158 |
ebd0d6e2772c
Trying redenition Delta with length constraints
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
103
diff
changeset
|
159 |
114
08403eb8db8b
Prove natural transformation for deltaM-eta
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
112
diff
changeset
|
160 postulate deltaM-left-unity-law : {l : Level} {A : Set l} |
112
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
161 {M : Set l -> Set l} {functorM : Functor M} {monadM : Monad M functorM} |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
162 {n : Nat} |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
163 (d : DeltaM M {functorM} {monadM} A (S n)) -> |
104
ebd0d6e2772c
Trying redenition Delta with length constraints
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
103
diff
changeset
|
164 (deltaM-mu ∙ (deltaM-fmap deltaM-eta)) d ≡ id d |
114
08403eb8db8b
Prove natural transformation for deltaM-eta
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
112
diff
changeset
|
165 {- |
112
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
166 deltaM-left-unity-law {l} {A} {M} {fm} {mm} {O} (deltaM (mono x)) = begin |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
167 deltaM-mu (deltaM-fmap deltaM-eta (deltaM (mono x))) |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
168 ≡⟨ refl ⟩ |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
169 deltaM-mu (deltaM (delta-fmap (fmap fm deltaM-eta) (mono x))) |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
170 ≡⟨ refl ⟩ |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
171 deltaM-mu (deltaM (mono (fmap fm deltaM-eta x))) |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
172 ≡⟨ refl ⟩ |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
173 deltaM (mono (mu mm (fmap fm (headDeltaM {l} {A} {O} {M}) (fmap fm deltaM-eta x)))) |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
174 ≡⟨ cong (\de -> deltaM (mono (mu mm de))) (sym (covariant fm deltaM-eta headDeltaM x)) ⟩ |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
175 deltaM (mono (mu mm (fmap fm ((headDeltaM {l} {A} {O} {M} {fm} {mm}) ∙ deltaM-eta) x))) |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
176 ≡⟨ cong (\de -> deltaM (mono (mu mm de))) (fmap-headDeltaM-with-deltaM-eta {l} {A} {O} {M} {fm} {mm} x) ⟩ |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
177 deltaM (mono (mu mm (fmap fm (eta mm) x))) |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
178 ≡⟨ cong (\de -> deltaM (mono de)) (left-unity-law mm x) ⟩ |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
179 deltaM (mono x) |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
180 ∎ |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
181 deltaM-left-unity-law {l} {A} {M} {fm} {mm} {S n} (deltaM (delta x d)) = begin |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
182 deltaM-mu (deltaM-fmap deltaM-eta (deltaM (delta x d))) |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
183 ≡⟨ refl ⟩ |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
184 deltaM-mu (deltaM (delta-fmap (fmap fm deltaM-eta) (delta x d))) |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
185 ≡⟨ refl ⟩ |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
186 deltaM-mu (deltaM (delta (fmap fm deltaM-eta x) (delta-fmap (fmap fm deltaM-eta) d))) |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
187 ≡⟨ refl ⟩ |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
188 appendDeltaM (deltaM (mono (mu mm (fmap fm (headDeltaM {l} {A} {S n} {M} {fm} {mm}) (fmap fm deltaM-eta x))))) |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
189 (deltaM-mu (deltaM-fmap tailDeltaM (deltaM (delta-fmap (fmap fm deltaM-eta) d)))) |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
190 ≡⟨ cong (\de -> appendDeltaM (deltaM (mono (mu mm de))) |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
191 (deltaM-mu (deltaM-fmap tailDeltaM (deltaM (delta-fmap (fmap fm deltaM-eta) d))))) |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
192 (sym (covariant fm deltaM-eta headDeltaM x)) ⟩ |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
193 appendDeltaM (deltaM (mono (mu mm (fmap fm ((headDeltaM {l} {A} {S n} {M} {fm} {mm}) ∙ deltaM-eta) x)))) |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
194 (deltaM-mu (deltaM-fmap tailDeltaM (deltaM (delta-fmap (fmap fm deltaM-eta) d)))) |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
195 ≡⟨ cong (\de -> appendDeltaM (deltaM (mono (mu mm de))) |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
196 (deltaM-mu (deltaM-fmap tailDeltaM (deltaM (delta-fmap (fmap fm deltaM-eta) d))))) |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
197 (fmap-headDeltaM-with-deltaM-eta {l} {A} {S n} {M} {fm} {mm} x) ⟩ |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
198 appendDeltaM (deltaM (mono (mu mm (fmap fm (eta mm) x)))) |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
199 (deltaM-mu (deltaM-fmap tailDeltaM (deltaM (delta-fmap (fmap fm deltaM-eta) d)))) |
104
ebd0d6e2772c
Trying redenition Delta with length constraints
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
103
diff
changeset
|
200 |
112
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
201 ≡⟨ cong (\de -> (appendDeltaM (deltaM (mono de)) (deltaM-mu (deltaM-fmap tailDeltaM (deltaM (delta-fmap (fmap fm deltaM-eta) d)))))) |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
202 (left-unity-law mm x) ⟩ |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
203 appendDeltaM (deltaM (mono x)) (deltaM-mu (deltaM-fmap tailDeltaM (deltaM (delta-fmap (fmap fm deltaM-eta) d)))) |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
204 ≡⟨ refl ⟩ |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
205 appendDeltaM (deltaM (mono x)) (deltaM-mu (deltaM-fmap (tailDeltaM {n = n})(deltaM-fmap deltaM-eta (deltaM d)))) |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
206 ≡⟨ cong (\de -> appendDeltaM (deltaM (mono x)) (deltaM-mu de)) (sym (covariant deltaM-is-functor deltaM-eta tailDeltaM (deltaM d))) ⟩ |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
207 appendDeltaM (deltaM (mono x)) (deltaM-mu (deltaM-fmap ((tailDeltaM {n = n}) ∙ deltaM-eta) (deltaM d))) |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
208 ≡⟨ cong (\de -> appendDeltaM (deltaM (mono x)) (deltaM-mu de)) (fmap-tailDeltaM-with-deltaM-eta (deltaM d)) ⟩ |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
209 appendDeltaM (deltaM (mono x)) (deltaM-mu (deltaM-fmap deltaM-eta (deltaM d))) |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
210 ≡⟨ cong (\de -> appendDeltaM (deltaM (mono x)) de) (deltaM-left-unity-law (deltaM d)) ⟩ |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
211 appendDeltaM (deltaM (mono x)) (deltaM d) |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
212 ≡⟨ refl ⟩ |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
213 deltaM (delta x d) |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
214 ∎ |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
215 |
114
08403eb8db8b
Prove natural transformation for deltaM-eta
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
112
diff
changeset
|
216 -} |
117
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
217 postulate nya : {l : Level} {A : Set l} |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
218 (M : Set l -> Set l) (fm : Functor M) (mm : Monad M fm) |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
219 (d : DeltaM M {fm} {mm} (DeltaM M {fm} {mm} (DeltaM M {fm} {mm} A (S O)) (S O)) (S O)) -> |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
220 deltaM-mu (deltaM-fmap deltaM-mu d) ≡ deltaM-mu (deltaM-mu d) |
114
08403eb8db8b
Prove natural transformation for deltaM-eta
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
112
diff
changeset
|
221 |
112
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
222 |
117
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
223 |
115
e6bcc7467335
Temporary commit : Proving association-law ...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
114
diff
changeset
|
224 |
117
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
225 |
115
e6bcc7467335
Temporary commit : Proving association-law ...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
114
diff
changeset
|
226 |
e6bcc7467335
Temporary commit : Proving association-law ...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
114
diff
changeset
|
227 |
e6bcc7467335
Temporary commit : Proving association-law ...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
114
diff
changeset
|
228 deltaM-association-law : {l : Level} {A : Set l} {n : Nat} |
e6bcc7467335
Temporary commit : Proving association-law ...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
114
diff
changeset
|
229 (M : Set l -> Set l) (fm : Functor M) (mm : Monad M fm) |
e6bcc7467335
Temporary commit : Proving association-law ...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
114
diff
changeset
|
230 (d : DeltaM M {fm} {mm} (DeltaM M {fm} {mm} (DeltaM M {fm} {mm} A (S n)) (S n)) (S n)) -> |
e6bcc7467335
Temporary commit : Proving association-law ...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
114
diff
changeset
|
231 deltaM-mu (deltaM-fmap deltaM-mu d) ≡ deltaM-mu (deltaM-mu d) |
117
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
232 deltaM-association-law {l} {A} {O} M fm mm (deltaM (mono x)) = nya {l} {A} M fm mm (deltaM (mono x)) |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
233 {- |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
234 begin |
115
e6bcc7467335
Temporary commit : Proving association-law ...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
114
diff
changeset
|
235 deltaM-mu (deltaM-fmap deltaM-mu (deltaM (mono x))) ≡⟨ refl ⟩ |
116
f02c5ad4a327
Prove association-law for DeltaM by (S O) pattern with definition changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
115
diff
changeset
|
236 deltaM-mu (deltaM (mono (fmap fm deltaM-mu x))) ≡⟨ refl ⟩ |
f02c5ad4a327
Prove association-law for DeltaM by (S O) pattern with definition changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
115
diff
changeset
|
237 deltaM (mono (mu mm (fmap fm headDeltaM (headDeltaM {A = DeltaM M A (S O)} {monadM = mm} (deltaM (mono (fmap fm deltaM-mu x))))))) ≡⟨ refl ⟩ |
f02c5ad4a327
Prove association-law for DeltaM by (S O) pattern with definition changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
115
diff
changeset
|
238 deltaM (mono (mu mm (fmap fm headDeltaM (fmap fm deltaM-mu x)))) ≡⟨ refl ⟩ |
f02c5ad4a327
Prove association-law for DeltaM by (S O) pattern with definition changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
115
diff
changeset
|
239 deltaM (mono (mu mm (fmap fm (headDeltaM {A = A} {monadM = mm}) (fmap fm |
f02c5ad4a327
Prove association-law for DeltaM by (S O) pattern with definition changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
115
diff
changeset
|
240 (\d -> (deltaM (mono (mu mm (fmap fm headDeltaM ((headDeltaM {l} {DeltaM M A (S O)} {monadM = mm}) d)))))) x)))) |
f02c5ad4a327
Prove association-law for DeltaM by (S O) pattern with definition changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
115
diff
changeset
|
241 ≡⟨ cong (\de -> deltaM (mono (mu mm de))) |
f02c5ad4a327
Prove association-law for DeltaM by (S O) pattern with definition changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
115
diff
changeset
|
242 (sym (covariant fm (\d -> (deltaM (mono (mu mm (fmap fm headDeltaM ((headDeltaM {l} {DeltaM M A (S O)} {monadM = mm}) d)))))) headDeltaM x)) ⟩ |
f02c5ad4a327
Prove association-law for DeltaM by (S O) pattern with definition changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
115
diff
changeset
|
243 deltaM (mono (mu mm (fmap fm ((headDeltaM {A = A} {monadM = mm}) ∙ |
f02c5ad4a327
Prove association-law for DeltaM by (S O) pattern with definition changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
115
diff
changeset
|
244 (\d -> (deltaM (mono (mu mm (fmap fm headDeltaM ((headDeltaM {l} {DeltaM M A (S O)} {monadM = mm}) d))))))) x))) |
f02c5ad4a327
Prove association-law for DeltaM by (S O) pattern with definition changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
115
diff
changeset
|
245 ≡⟨ refl ⟩ |
f02c5ad4a327
Prove association-law for DeltaM by (S O) pattern with definition changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
115
diff
changeset
|
246 deltaM (mono (mu mm (fmap fm (\d -> (headDeltaM {A = A} {monadM = mm} (deltaM (mono (mu mm (fmap fm headDeltaM ((headDeltaM {l} {DeltaM M A (S O)} {monadM = mm}) d))))))) x))) |
115
e6bcc7467335
Temporary commit : Proving association-law ...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
114
diff
changeset
|
247 ≡⟨ refl ⟩ |
116
f02c5ad4a327
Prove association-law for DeltaM by (S O) pattern with definition changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
115
diff
changeset
|
248 deltaM (mono (mu mm (fmap fm (\d -> (mu mm (fmap fm headDeltaM ((headDeltaM {l} {DeltaM M A (S O)} {monadM = mm}) d)))) x))) |
f02c5ad4a327
Prove association-law for DeltaM by (S O) pattern with definition changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
115
diff
changeset
|
249 ≡⟨ refl ⟩ |
f02c5ad4a327
Prove association-law for DeltaM by (S O) pattern with definition changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
115
diff
changeset
|
250 deltaM (mono (mu mm (fmap fm ((mu mm) ∙ (((fmap fm headDeltaM)) ∙ ((headDeltaM {l} {DeltaM M A (S O)} {monadM = mm})))) x))) |
f02c5ad4a327
Prove association-law for DeltaM by (S O) pattern with definition changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
115
diff
changeset
|
251 ≡⟨ cong (\de -> deltaM (mono (mu mm de))) (covariant fm ((fmap fm headDeltaM) ∙ (headDeltaM)) (mu mm) x )⟩ |
f02c5ad4a327
Prove association-law for DeltaM by (S O) pattern with definition changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
115
diff
changeset
|
252 deltaM (mono (mu mm (((fmap fm (mu mm)) ∙ (fmap fm ((fmap fm headDeltaM) ∙ (headDeltaM {l} {DeltaM M A (S O)} {monadM = mm})))) x))) |
f02c5ad4a327
Prove association-law for DeltaM by (S O) pattern with definition changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
115
diff
changeset
|
253 ≡⟨ refl ⟩ |
f02c5ad4a327
Prove association-law for DeltaM by (S O) pattern with definition changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
115
diff
changeset
|
254 deltaM (mono (mu mm (fmap fm (mu mm) ((fmap fm ((fmap fm headDeltaM) ∙ (headDeltaM {l} {DeltaM M A (S O)} {monadM = mm}))) x)))) |
f02c5ad4a327
Prove association-law for DeltaM by (S O) pattern with definition changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
115
diff
changeset
|
255 ≡⟨ cong (\de -> deltaM (mono (mu mm (fmap fm (mu mm) de)))) (covariant fm headDeltaM (fmap fm headDeltaM) x) ⟩ |
f02c5ad4a327
Prove association-law for DeltaM by (S O) pattern with definition changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
115
diff
changeset
|
256 deltaM (mono (mu mm (fmap fm (mu mm) (((fmap fm (fmap fm headDeltaM)) ∙ (fmap fm (headDeltaM {l} {DeltaM M A (S O)} {monadM = mm}))) x)))) |
f02c5ad4a327
Prove association-law for DeltaM by (S O) pattern with definition changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
115
diff
changeset
|
257 ≡⟨ refl ⟩ |
f02c5ad4a327
Prove association-law for DeltaM by (S O) pattern with definition changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
115
diff
changeset
|
258 deltaM (mono (mu mm (fmap fm (mu mm) (fmap fm (fmap fm headDeltaM) (fmap fm headDeltaM x))))) |
f02c5ad4a327
Prove association-law for DeltaM by (S O) pattern with definition changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
115
diff
changeset
|
259 ≡⟨ cong (\de -> deltaM (mono de)) (association-law mm (fmap fm (fmap fm headDeltaM) (fmap fm headDeltaM x))) ⟩ |
115
e6bcc7467335
Temporary commit : Proving association-law ...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
114
diff
changeset
|
260 deltaM (mono (mu mm (mu mm (fmap fm (fmap fm headDeltaM) (fmap fm headDeltaM x))))) |
e6bcc7467335
Temporary commit : Proving association-law ...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
114
diff
changeset
|
261 ≡⟨ cong (\de -> deltaM (mono (mu mm de))) (mu-is-nt mm headDeltaM (fmap fm headDeltaM x)) ⟩ |
e6bcc7467335
Temporary commit : Proving association-law ...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
114
diff
changeset
|
262 deltaM (mono (mu mm (fmap fm headDeltaM (mu mm (fmap fm headDeltaM x))))) ≡⟨ refl ⟩ |
116
f02c5ad4a327
Prove association-law for DeltaM by (S O) pattern with definition changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
115
diff
changeset
|
263 deltaM (mono (mu mm (fmap fm headDeltaM (headDeltaM {A = DeltaM M A (S O)} {monadM = mm} (deltaM (mono (mu mm (fmap fm headDeltaM x)))))))) ≡⟨ refl ⟩ |
115
e6bcc7467335
Temporary commit : Proving association-law ...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
114
diff
changeset
|
264 deltaM-mu (deltaM (mono (mu mm (fmap fm headDeltaM x)))) ≡⟨ refl ⟩ |
116
f02c5ad4a327
Prove association-law for DeltaM by (S O) pattern with definition changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
115
diff
changeset
|
265 deltaM-mu (deltaM (mono (mu mm (fmap fm headDeltaM (headDeltaM {A = DeltaM M (DeltaM M A (S O)) (S O)} {monadM = mm} (deltaM (mono x))))))) ≡⟨ refl ⟩ |
f02c5ad4a327
Prove association-law for DeltaM by (S O) pattern with definition changes
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
115
diff
changeset
|
266 deltaM-mu (deltaM-mu (deltaM (mono x))) ∎ |
117
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
267 -} |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
268 deltaM-association-law {l} {A} {S n} M fm mm (deltaM (delta x d)) = {!!} |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
269 {- |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
270 deltaM-association-law {l} {A} {S n} M fm mm (deltaM (delta x d)) = begin |
115
e6bcc7467335
Temporary commit : Proving association-law ...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
114
diff
changeset
|
271 deltaM-mu (deltaM-fmap deltaM-mu (deltaM (delta x d))) ≡⟨ refl ⟩ |
e6bcc7467335
Temporary commit : Proving association-law ...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
114
diff
changeset
|
272 deltaM-mu (deltaM (delta-fmap (fmap fm deltaM-mu) (delta x d))) ≡⟨ refl ⟩ |
e6bcc7467335
Temporary commit : Proving association-law ...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
114
diff
changeset
|
273 deltaM-mu (deltaM (delta (fmap fm deltaM-mu x) (delta-fmap (fmap fm deltaM-mu) d))) ≡⟨ refl ⟩ |
e6bcc7467335
Temporary commit : Proving association-law ...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
114
diff
changeset
|
274 appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM (fmap fm deltaM-mu x))))) |
117
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
275 (deltaM-mu (deltaM-fmap tailDeltaM (deltaM (delta-fmap (fmap fm deltaM-mu) d)))) ≡⟨ refl ⟩ |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
276 appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM (fmap fm deltaM-mu x))))) |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
277 (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) (delta-fmap (fmap fm deltaM-mu) d)))) |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
278 ≡⟨ cong (\de -> appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM (fmap fm deltaM-mu x))))) de) |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
279 (sym (deconstruct-id (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) (delta-fmap (fmap fm deltaM-mu) d)))))) ⟩ |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
280 |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
281 appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM (fmap fm deltaM-mu x))))) |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
282 (deltaM (deconstruct {A = A} {mm = mm} (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) (delta-fmap (fmap fm deltaM-mu) d)))))) |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
283 ≡⟨ refl ⟩ |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
284 deltaM (deltaAppend (mono (mu mm (fmap fm headDeltaM (fmap fm deltaM-mu x)))) |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
285 (deconstruct {A = A} {mm = mm} (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) (delta-fmap (fmap fm deltaM-mu) d)))))) |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
286 ≡⟨ refl ⟩ |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
287 deltaM (delta (mu mm (fmap fm headDeltaM (fmap fm deltaM-mu x))) |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
288 (deconstruct {A = A} {mm = mm} (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) (delta-fmap (fmap fm deltaM-mu) d)))))) |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
289 ≡⟨ {!!} ⟩ |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
290 appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM (mu mm (fmap fm headDeltaM x)))))) |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
291 (deltaM-mu (deltaM-fmap tailDeltaM (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) d))))) |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
292 ≡⟨ cong (\de -> appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM (mu mm (fmap fm headDeltaM x)))))) |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
293 (deltaM-mu (deltaM-fmap tailDeltaM de))) |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
294 (sym (deconstruct-id (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) d))))) ⟩ |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
295 appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM (mu mm (fmap fm headDeltaM x)))))) |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
296 (deltaM-mu (deltaM-fmap tailDeltaM (deltaM (deconstruct {A = DeltaM M A (S (S n))} {mm = mm} (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) d))))))) |
115
e6bcc7467335
Temporary commit : Proving association-law ...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
114
diff
changeset
|
297 |
117
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
298 ≡⟨ refl ⟩ |
115
e6bcc7467335
Temporary commit : Proving association-law ...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
114
diff
changeset
|
299 appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM (mu mm (fmap fm headDeltaM x)))))) |
117
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
300 (deltaM-mu (deltaM-fmap tailDeltaM (tailDeltaM ( (deltaM (delta (mu mm (fmap fm headDeltaM x)) |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
301 (deconstruct {A = DeltaM M A (S (S n))} {mm = mm} (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) d)))))))))) |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
302 ≡⟨ refl ⟩ |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
303 appendDeltaM (deltaM (mono (mu mm (fmap fm (headDeltaM {monadM = mm}) (headDeltaM {monadM = mm} ((deltaM (delta (mu mm (fmap fm headDeltaM x)) |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
304 (deconstruct {A = DeltaM M A (S (S n))} {mm = mm} (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) d)))))))))))) |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
305 (deltaM-mu (deltaM-fmap tailDeltaM (tailDeltaM ( (deltaM (delta (mu mm (fmap fm headDeltaM x)) |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
306 (deconstruct {A = DeltaM M A (S (S n))} {mm = mm} (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) d)))))))))) |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
307 ≡⟨ refl ⟩ |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
308 deltaM-mu (deltaM (delta (mu mm (fmap fm headDeltaM x)) |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
309 (deconstruct {A = DeltaM M A (S (S n))} {mm = mm} (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) d)))))) |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
310 ≡⟨ refl ⟩ |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
311 deltaM-mu (deltaM (deltaAppend (mono (mu mm (fmap fm headDeltaM x))) |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
312 (deconstruct {A = DeltaM M A (S (S n))} {mm = mm} (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) d)))))) |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
313 ≡⟨ refl ⟩ |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
314 deltaM-mu (appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM x)))) |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
315 (deltaM (deconstruct {A = DeltaM M A (S (S n))} {mm = mm} (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) d)))))) |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
316 ≡⟨ cong (\de -> deltaM-mu (appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM x)))) de)) |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
317 (deconstruct-id (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) d)))) ⟩ |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
318 deltaM-mu (appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM x)))) |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
319 (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) d)))) |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
320 ≡⟨ refl ⟩ |
115
e6bcc7467335
Temporary commit : Proving association-law ...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
114
diff
changeset
|
321 deltaM-mu (appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM x)))) |
e6bcc7467335
Temporary commit : Proving association-law ...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
114
diff
changeset
|
322 (deltaM-mu (deltaM-fmap tailDeltaM (deltaM d))))≡⟨ refl ⟩ |
e6bcc7467335
Temporary commit : Proving association-law ...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
114
diff
changeset
|
323 deltaM-mu (deltaM-mu (deltaM (delta x d))) |
e6bcc7467335
Temporary commit : Proving association-law ...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
114
diff
changeset
|
324 ∎ |
117
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
325 -} |
115
e6bcc7467335
Temporary commit : Proving association-law ...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
114
diff
changeset
|
326 |
e6bcc7467335
Temporary commit : Proving association-law ...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
114
diff
changeset
|
327 |
104
ebd0d6e2772c
Trying redenition Delta with length constraints
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
103
diff
changeset
|
328 |
ebd0d6e2772c
Trying redenition Delta with length constraints
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
103
diff
changeset
|
329 deltaM-is-monad : {l : Level} {A : Set l} {n : Nat} |
112
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
330 {M : Set l -> Set l} |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
331 (functorM : Functor M) |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
332 (monadM : Monad M functorM) -> |
0a3b6cb91a05
Prove left-unity-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
111
diff
changeset
|
333 Monad {l} (\A -> DeltaM M {functorM} {monadM} A (S n)) (deltaM-is-functor {l} {n}) |
115
e6bcc7467335
Temporary commit : Proving association-law ...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
114
diff
changeset
|
334 deltaM-is-monad {l} {A} {n} {M} functorM monadM = |
e6bcc7467335
Temporary commit : Proving association-law ...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
114
diff
changeset
|
335 record { mu = deltaM-mu; |
e6bcc7467335
Temporary commit : Proving association-law ...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
114
diff
changeset
|
336 eta = deltaM-eta; |
e6bcc7467335
Temporary commit : Proving association-law ...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
114
diff
changeset
|
337 return = deltaM-eta; |
e6bcc7467335
Temporary commit : Proving association-law ...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
114
diff
changeset
|
338 bind = deltaM-bind; |
e6bcc7467335
Temporary commit : Proving association-law ...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
114
diff
changeset
|
339 association-law = (deltaM-association-law M functorM monadM) ; |
e6bcc7467335
Temporary commit : Proving association-law ...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
114
diff
changeset
|
340 left-unity-law = deltaM-left-unity-law; |
e6bcc7467335
Temporary commit : Proving association-law ...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
114
diff
changeset
|
341 right-unity-law = (\x -> (sym (deltaM-right-unity-law x))) ; |
117
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
342 eta-is-nt = deltaM-eta-is-nt; |
6f86b55bf8b4
Temporary commit : Proving association-law ....
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
116
diff
changeset
|
343 mu-is-nt = {!!}} |
102
9c62373bd474
Trying right-unity-law on DeltaM. but do not fit implicit type in eta...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
98
diff
changeset
|
344 |
9c62373bd474
Trying right-unity-law on DeltaM. but do not fit implicit type in eta...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
98
diff
changeset
|
345 |