diff agda/delta.agda @ 43:90b171e3a73e

Rename to Delta from Similar
author Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
date Sat, 01 Nov 2014 15:19:04 +0900
parents agda/similar.agda@1df4f9d88025
children 9bb7c9bee94f
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/agda/delta.agda	Sat Nov 01 15:19:04 2014 +0900
@@ -0,0 +1,166 @@
+open import list
+open import basic
+
+open import Level
+open import Relation.Binary.PropositionalEquality
+open ≡-Reasoning
+
+module delta where
+
+data Delta {l : Level} (A : Set l) : (Set (suc l)) where
+  similar : List String -> A -> List String -> A -> Delta A
+
+
+-- Functor
+fmap : {l ll : Level} {A : Set l} {B : Set ll} -> (A -> B) -> (Delta A) -> (Delta B)
+fmap f (similar xs x ys y) = similar xs (f x) ys (f y)
+
+
+-- Monad (Category)
+mu : {l : Level} {A : Set l} -> Delta (Delta A) -> Delta A
+mu (similar lx (similar llx x _ _) ly (similar _ _ lly y)) = similar (lx ++ llx) x (ly ++ lly) y
+
+eta : {l : Level} {A : Set l} -> A -> Delta A
+eta x = similar [] x [] x
+
+returnS : {l : Level} {A : Set l} -> A -> Delta A
+returnS x = similar [[ (show x) ]] x [[ (show x) ]] x
+
+returnSS : {l : Level} {A : Set l} -> A -> A -> Delta A
+returnSS x y = similar [[ (show x) ]] x [[ (show y) ]] y
+
+
+-- Monad (Haskell)
+return : {l : Level} {A : Set l} -> A -> Delta A
+return = eta
+
+
+_>>=_ : {l ll : Level} {A : Set l} {B : Set ll} ->
+        (x : Delta A) -> (f : A -> (Delta B)) -> (Delta B)
+x >>= f = mu (fmap f x)
+
+
+
+-- proofs
+
+
+-- Functor-laws
+
+-- Functor-law-1 : T(id) = id'
+functor-law-1 :  {l : Level} {A : Set l} ->  (s : Delta A) -> (fmap id) s ≡ id s
+functor-law-1 (similar lx x ly y) = refl
+
+-- Functor-law-2 : T(f . g) = T(f) . T(g)
+functor-law-2 : {l ll lll : Level} {A : Set l} {B : Set ll} {C : Set lll} ->
+                (f : B -> C) -> (g : A -> B) -> (s : Delta A) ->
+                (fmap (f ∙ g)) s ≡ ((fmap f) ∙ (fmap g)) s
+functor-law-2 f g (similar lx x ly y) = refl
+
+
+
+-- Monad-laws (Category)
+
+-- monad-law-1 : join . fmap join = join . join
+monad-law-1 : {l : Level} {A : Set l} -> (s : Delta (Delta (Delta A))) -> ((mu ∙ (fmap mu)) s) ≡ ((mu ∙ mu) s)
+monad-law-1 (similar lx (similar llx (similar lllx x _ _) _ (similar _ _ _ _))
+                     ly (similar   _ (similar _ _ _ _)  lly (similar _ _  llly y))) = begin
+    similar (lx ++ (llx ++ lllx)) x (ly ++ (lly ++ llly)) y
+  ≡⟨ cong (\left-list -> similar left-list x (ly ++ (lly ++ llly)) y) (list-associative lx llx lllx) ⟩
+    similar (lx ++ llx ++ lllx) x (ly ++ (lly ++ llly)) y
+  ≡⟨ cong (\right-list -> similar (lx ++ llx ++ lllx) x right-list y ) (list-associative ly lly llly) ⟩
+    similar (lx ++ llx ++ lllx) x (ly ++ lly ++ llly) y
+  ∎
+
+
+-- monad-law-2 : join . fmap return = join . return = id
+-- monad-law-2-1 join . fmap return = join . return
+monad-law-2-1 : {l : Level} {A : Set l} -> (s : Delta  A) ->
+  (mu ∙ fmap eta) s ≡ (mu ∙ eta) s
+monad-law-2-1 (similar lx x ly y) = begin
+    similar (lx ++ []) x (ly ++ []) y
+  ≡⟨ cong (\left-list -> similar left-list x (ly ++ []) y) (empty-append lx)⟩
+    similar lx x (ly ++ []) y
+  ≡⟨ cong (\right-list -> similar lx x right-list y) (empty-append ly) ⟩
+    similar lx x ly y
+  ∎
+
+-- monad-law-2-2 :  join . return = id
+monad-law-2-2 : {l : Level} {A : Set l } -> (s : Delta A) -> (mu ∙ eta) s ≡ id s
+monad-law-2-2 (similar lx x ly y) = refl
+
+-- monad-law-3 : return . f = fmap f . return
+monad-law-3 : {l : Level} {A B : Set l} (f : A -> B) (x : A) -> (eta ∙ f) x ≡ (fmap f ∙ eta) x
+monad-law-3 f x = refl
+
+-- monad-law-4 : join . fmap (fmap f) = fmap f . join
+monad-law-4 : {l ll : Level} {A : Set l} {B : Set ll} (f : A -> B) (s : Delta (Delta A)) ->
+              (mu ∙ fmap (fmap f)) s ≡ (fmap f ∙ mu) s
+monad-law-4 f (similar lx (similar llx x _ _) ly (similar _ _ lly y)) = refl
+
+
+-- Monad-laws (Haskell)
+-- monad-law-h-1 : return a >>= k  =  k a
+monad-law-h-1 : {l ll : Level} {A : Set l} {B : Set ll} ->
+                (a : A) -> (k : A -> (Delta B)) ->
+                (return a >>= k)  ≡ (k a)
+monad-law-h-1 a k = begin
+    return a >>= k
+  ≡⟨ refl ⟩
+    mu (fmap k (return a))
+  ≡⟨ refl ⟩
+    mu (return (k a))
+  ≡⟨ refl ⟩
+    (mu ∙ return) (k a)
+  ≡⟨ refl ⟩
+    (mu ∙ eta) (k a)
+  ≡⟨ (monad-law-2-2 (k a)) ⟩
+    id (k a)
+  ≡⟨ refl ⟩
+    k a
+  ∎
+
+-- monad-law-h-2 : m >>= return  =  m
+monad-law-h-2 : {l : Level}{A : Set l} -> (m : Delta A) -> (m >>= return)  ≡ m
+monad-law-h-2 (similar lx x ly y) = monad-law-2-1 (similar lx x ly y)
+
+-- monad-law-h-3 : m >>= (\x -> k x >>= h)  =  (m >>= k) >>= h
+monad-law-h-3 : {l ll lll : Level} {A : Set l} {B : Set ll} {C : Set lll} ->
+                (m : Delta A)  -> (k : A -> (Delta B)) -> (h : B -> (Delta C)) ->
+                (m >>= (\x -> k x >>= h)) ≡ ((m >>= k) >>= h)
+monad-law-h-3 (similar lx x ly y) k h = begin
+    ((similar lx x ly y) >>= (\x -> (k x) >>= h))
+  ≡⟨ refl ⟩
+    mu (fmap (\x -> k x >>= h) (similar lx x ly y))
+  ≡⟨ refl ⟩
+    (mu ∙ fmap (\x -> k x >>= h)) (similar lx x ly y)
+  ≡⟨ refl ⟩
+    (mu ∙ fmap (\x -> mu (fmap h (k x)))) (similar lx x ly y)
+  ≡⟨ refl ⟩
+    (mu ∙ fmap (mu ∙ (\x -> fmap h (k x)))) (similar lx x ly y)
+  ≡⟨ refl ⟩
+    (mu ∙ (fmap mu ∙ (fmap (\x -> fmap h (k x))))) (similar lx x ly y)
+  ≡⟨ refl ⟩
+    (mu ∙ (fmap mu)) ((fmap (\x -> fmap h (k x))) (similar lx x ly y))
+  ≡⟨ monad-law-1 (((fmap (\x -> fmap h (k x))) (similar lx x ly y))) ⟩
+    (mu ∙ mu) ((fmap (\x -> fmap h (k x))) (similar lx x ly y))
+  ≡⟨ refl ⟩
+    (mu ∙ (mu ∙ (fmap (\x -> fmap h (k x))))) (similar lx x ly y)
+  ≡⟨ refl ⟩
+    (mu ∙ (mu ∙ (fmap ((fmap h) ∙ k)))) (similar lx x ly y)
+  ≡⟨ refl ⟩
+    (mu ∙ (mu ∙ ((fmap (fmap h)) ∙ (fmap k)))) (similar lx x ly y)
+  ≡⟨ refl ⟩
+    (mu ∙ (mu ∙ (fmap (fmap h)))) (fmap k (similar lx x ly y))
+  ≡⟨ refl ⟩
+    mu ((mu ∙ (fmap (fmap h))) (fmap k (similar lx x ly y)))
+  ≡⟨ cong (\fx -> mu fx) (monad-law-4 h (fmap k (similar lx x ly y))) ⟩
+    mu (fmap h (mu (similar lx (k x) ly (k y))))
+  ≡⟨ refl ⟩
+    (mu ∙ fmap h) (mu (fmap k (similar lx x ly y)))
+  ≡⟨ refl ⟩
+    mu (fmap h (mu (fmap k (similar lx x ly y))))
+  ≡⟨ refl ⟩
+    (mu (fmap k (similar lx x ly y))) >>= h
+  ≡⟨ refl ⟩
+    ((similar lx x ly y) >>= k) >>= h
+  ∎