view agda/delta/functor.agda @ 107:caaf364f45ac

Prove monad-laws for length fixed infinite Delta
author Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
date Wed, 28 Jan 2015 22:21:27 +0900
parents e6499a50ccbd
children 0a3b6cb91a05
line wrap: on
line source

open import Level
open import Relation.Binary.PropositionalEquality

open import basic
open import delta
open import laws
open import nat

module delta.functor where

-- Functor-laws

-- Functor-law-1 : T(id) = id'
functor-law-1 :  {l : Level} {A : Set l} {n : Nat} ->  (d : Delta A (S n)) -> (delta-fmap id) d ≡ id d
functor-law-1 (mono x)    = refl
functor-law-1 (delta x d) = cong (delta x) (functor-law-1 d)

-- Functor-law-2 : T(f . g) = T(f) . T(g)
functor-law-2 : {l : Level} {n : Nat} {A B C : Set l} ->
                (f : B -> C) -> (g : A -> B) -> (d : Delta A (S n)) ->
                (delta-fmap (f ∙ g)) d ≡ ((delta-fmap f) ∙ (delta-fmap g)) d
functor-law-2 f g (mono x)    = refl
functor-law-2 f g (delta x d) = cong (delta (f (g x))) (functor-law-2 f g d)



delta-is-functor : {l : Level} {n : Nat} -> Functor {l} (\A -> Delta A (S n))
delta-is-functor = record {  fmap = delta-fmap ;
                             preserve-id = functor-law-1;
                             covariant  = \f g -> functor-law-2 g f}


open ≡-Reasoning
delta-fmap-equiv : {l : Level} {A B : Set l} {n : Nat} 
                   (f g : A -> B) (eq : f ≡ g) (d : Delta A (S n)) ->
                 delta-fmap f d ≡ delta-fmap g d
delta-fmap-equiv f g eq (mono x) = begin
  mono (f x) ≡⟨ cong (\h -> (mono (h x))) eq ⟩
  mono (g x) ∎
delta-fmap-equiv f g eq (delta x d) = begin
  delta (f x) (delta-fmap f d) ≡⟨ cong (\h -> (delta (h x) (delta-fmap f d))) eq ⟩
  delta (g x) (delta-fmap f d) ≡⟨ cong (\fx -> (delta (g x) fx)) (delta-fmap-equiv f g eq d) ⟩
  delta (g x) (delta-fmap g d)   ∎