view agda/delta.agda @ 57:dfcd72dc697e

ReDefine Delta used non-empty-list for infinite changes
author Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
date Sat, 22 Nov 2014 12:29:32 +0900
parents bfb6be9a689d
children 46b15f368905
line wrap: on
line source

open import list
open import basic

open import Level
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning

module delta where


data Delta {l : Level} (A : Set l) : (Set (suc l)) where
  mono    : A -> Delta A
  delta   : A -> Delta A -> Delta A

deltaAppend : {l : Level} {A : Set l} -> Delta A -> Delta A -> Delta A
deltaAppend (mono x) d     = delta x d
deltaAppend (delta x d) ds = delta x (deltaAppend d ds)

headDelta : {l : Level} {A : Set l} -> Delta A -> Delta A
headDelta (mono x)    = mono x
headDelta (delta x _) = mono x

tailDelta : {l : Level} {A : Set l} -> Delta A -> Delta A
tailDelta (mono x)     = mono x
tailDelta (delta  _ d) = d


-- Functor
fmap : {l ll : Level} {A : Set l} {B : Set ll} -> (A -> B) -> (Delta A) -> (Delta B)
fmap f (mono x)    = mono (f x)
fmap f (delta x d) = delta (f x) (fmap f d)



-- Monad (Category)

-- TODO: mu
-- TODO: bind


eta : {l : Level} {A : Set l} -> A -> Delta A
eta x = mono x

returnS : {l : Level} {A : Set l} -> A -> Delta A
returnS x = mono x

returnSS : {l : Level} {A : Set l} -> A -> A -> Delta A
returnSS x y = deltaAppend (returnS x) (returnS y)


-- Monad (Haskell)
return : {l : Level} {A : Set l} -> A -> Delta A
return = eta

_>>=_ : {l ll : Level} {A : Set l} {B : Set ll} ->
        (x : Delta A) -> (f : A -> (Delta B)) -> (Delta B)
(mono x) >>= f    = f x
(delta x d) >>= f = deltaAppend (headDelta (f x)) (d >>= (tailDelta ∙ f))



-- proofs


-- Functor-laws

-- Functor-law-1 : T(id) = id'
functor-law-1 :  {l : Level} {A : Set l} ->  (d : Delta A) -> (fmap id) d ≡ id d
functor-law-1 (mono x)    = refl
functor-law-1 (delta x d) = cong (delta x) (functor-law-1 d)

-- Functor-law-2 : T(f . g) = T(f) . T(g)
functor-law-2 : {l ll lll : Level} {A : Set l} {B : Set ll} {C : Set lll} ->
                (f : B -> C) -> (g : A -> B) -> (d : Delta A) ->
                (fmap (f ∙ g)) d ≡ ((fmap f) ∙ (fmap g)) d
functor-law-2 f g (mono x)    = refl
functor-law-2 f g (delta x d) = cong (delta (f (g x))) (functor-law-2 f g d)



-- Monad-laws (Category)

-- monad-law-1 : join . fmap join = join . join
--monad-law-1 : {l : Level} {A : Set l} -> (d : Delta (Delta (Delta A))) -> ((mu ∙ (fmap mu)) d) ≡ ((mu ∙ mu) d)


{-
-- monad-law-2-2 :  join . return = id
monad-law-2-2 : {l : Level} {A : Set l } -> (s : Delta A) -> (mu ∙ eta) s ≡ id s
monad-law-2-2 (similar lx x ly y) = refl

-- monad-law-3 : return . f = fmap f . return
monad-law-3 : {l : Level} {A B : Set l} (f : A -> B) (x : A) -> (eta ∙ f) x ≡ (fmap f ∙ eta) x
monad-law-3 f x = refl

-- monad-law-4 : join . fmap (fmap f) = fmap f . join
monad-law-4 : {l ll : Level} {A : Set l} {B : Set ll} (f : A -> B) (s : Delta (Delta A)) ->
              (mu ∙ fmap (fmap f)) s ≡ (fmap f ∙ mu) s
monad-law-4 f (similar lx (similar llx x _ _) ly (similar _ _ lly y)) = refl


-- Monad-laws (Haskell)
-- monad-law-h-1 : return a >>= k  =  k a
monad-law-h-1 : {l ll : Level} {A : Set l} {B : Set ll} ->
                (a : A) -> (k : A -> (Delta B)) ->
                (return a >>= k)  ≡ (k a)
monad-law-h-1 a k = begin
    return a >>= k
  ≡⟨ refl ⟩
    mu (fmap k (return a))
  ≡⟨ refl ⟩
    mu (return (k a))
  ≡⟨ refl ⟩
    (mu ∙ return) (k a)
  ≡⟨ refl ⟩
    (mu ∙ eta) (k a)
  ≡⟨ (monad-law-2-2 (k a)) ⟩
    id (k a)
  ≡⟨ refl ⟩
    k a


-- monad-law-h-2 : m >>= return  =  m
monad-law-h-2 : {l : Level}{A : Set l} -> (m : Delta A) -> (m >>= return)  ≡ m
monad-law-h-2 (similar lx x ly y) = monad-law-2-1 (similar lx x ly y)

-- monad-law-h-3 : m >>= (\x -> k x >>= h)  =  (m >>= k) >>= h
monad-law-h-3 : {l ll lll : Level} {A : Set l} {B : Set ll} {C : Set lll} ->
                (m : Delta A)  -> (k : A -> (Delta B)) -> (h : B -> (Delta C)) ->
                (m >>= (\x -> k x >>= h)) ≡ ((m >>= k) >>= h)
monad-law-h-3 (similar lx x ly y) k h = begin
    ((similar lx x ly y) >>= (\x -> (k x) >>= h))
  ≡⟨ refl ⟩
    mu (fmap (\x -> k x >>= h) (similar lx x ly y))
  ≡⟨ refl ⟩
    (mu ∙ fmap (\x -> k x >>= h)) (similar lx x ly y)
  ≡⟨ refl ⟩
    (mu ∙ fmap (\x -> mu (fmap h (k x)))) (similar lx x ly y)
  ≡⟨ refl ⟩
    (mu ∙ fmap (mu ∙ (\x -> fmap h (k x)))) (similar lx x ly y)
  ≡⟨ refl ⟩
    (mu ∙ (fmap mu ∙ (fmap (\x -> fmap h (k x))))) (similar lx x ly y)
  ≡⟨ refl ⟩
    (mu ∙ (fmap mu)) ((fmap (\x -> fmap h (k x))) (similar lx x ly y))
  ≡⟨ monad-law-1 (((fmap (\x -> fmap h (k x))) (similar lx x ly y))) ⟩
    (mu ∙ mu) ((fmap (\x -> fmap h (k x))) (similar lx x ly y))
  ≡⟨ refl ⟩
    (mu ∙ (mu ∙ (fmap (\x -> fmap h (k x))))) (similar lx x ly y)
  ≡⟨ refl ⟩
    (mu ∙ (mu ∙ (fmap ((fmap h) ∙ k)))) (similar lx x ly y)
  ≡⟨ refl ⟩
    (mu ∙ (mu ∙ ((fmap (fmap h)) ∙ (fmap k)))) (similar lx x ly y)
  ≡⟨ refl ⟩
    (mu ∙ (mu ∙ (fmap (fmap h)))) (fmap k (similar lx x ly y))
  ≡⟨ refl ⟩
    mu ((mu ∙ (fmap (fmap h))) (fmap k (similar lx x ly y)))
  ≡⟨ cong (\fx -> mu fx) (monad-law-4 h (fmap k (similar lx x ly y))) ⟩
    mu (fmap h (mu (similar lx (k x) ly (k y))))
  ≡⟨ refl ⟩
    (mu ∙ fmap h) (mu (fmap k (similar lx x ly y)))
  ≡⟨ refl ⟩
    mu (fmap h (mu (fmap k (similar lx x ly y))))
  ≡⟨ refl ⟩
    (mu (fmap k (similar lx x ly y))) >>= h
  ≡⟨ refl ⟩
    ((similar lx x ly y) >>= k) >>= h


-}