open import list open import basic open import Level open import Relation.Binary.PropositionalEquality open ≡-Reasoning module delta where data Delta {l : Level} (A : Set l) : (Set (suc l)) where mono : A -> Delta A delta : A -> Delta A -> Delta A deltaAppend : {l : Level} {A : Set l} -> Delta A -> Delta A -> Delta A deltaAppend (mono x) d = delta x d deltaAppend (delta x d) ds = delta x (deltaAppend d ds) headDelta : {l : Level} {A : Set l} -> Delta A -> A headDelta (mono x) = x headDelta (delta x _) = x tailDelta : {l : Level} {A : Set l} -> Delta A -> Delta A tailDelta (mono x) = mono x tailDelta (delta _ d) = d -- Functor fmap : {l ll : Level} {A : Set l} {B : Set ll} -> (A -> B) -> (Delta A) -> (Delta B) fmap f (mono x) = mono (f x) fmap f (delta x d) = delta (f x) (fmap f d) -- Monad (Category) eta : {l : Level} {A : Set l} -> A -> Delta A eta x = mono x bind : {l ll : Level} {A : Set l} {B : Set ll} -> (Delta A) -> (A -> Delta B) -> Delta B bind (mono x) f = f x bind (delta x d) f = delta (headDelta (f x)) (bind d (tailDelta ∙ f)) mu : {l : Level} {A : Set l} -> Delta (Delta A) -> Delta A mu d = bind d id returnS : {l : Level} {A : Set l} -> A -> Delta A returnS x = mono x returnSS : {l : Level} {A : Set l} -> A -> A -> Delta A returnSS x y = deltaAppend (returnS x) (returnS y) -- Monad (Haskell) return : {l : Level} {A : Set l} -> A -> Delta A return = eta _>>=_ : {l ll : Level} {A : Set l} {B : Set ll} -> (x : Delta A) -> (f : A -> (Delta B)) -> (Delta B) (mono x) >>= f = f x (delta x d) >>= f = delta (headDelta (f x)) (d >>= (tailDelta ∙ f)) -- proofs -- Functor-laws -- Functor-law-1 : T(id) = id' functor-law-1 : {l : Level} {A : Set l} -> (d : Delta A) -> (fmap id) d ≡ id d functor-law-1 (mono x) = refl functor-law-1 (delta x d) = cong (delta x) (functor-law-1 d) -- Functor-law-2 : T(f . g) = T(f) . T(g) functor-law-2 : {l ll lll : Level} {A : Set l} {B : Set ll} {C : Set lll} -> (f : B -> C) -> (g : A -> B) -> (d : Delta A) -> (fmap (f ∙ g)) d ≡ ((fmap f) ∙ (fmap g)) d functor-law-2 f g (mono x) = refl functor-law-2 f g (delta x d) = cong (delta (f (g x))) (functor-law-2 f g d) -- Monad-laws (Category) data Int : Set where one : Int succ : Int -> Int n-times-tail-delta : {l : Level} {A : Set l} -> Int -> ((Delta A) -> (Delta A)) n-times-tail-delta one = tailDelta n-times-tail-delta (succ n) = (n-times-tail-delta n) ∙ tailDelta tail-delta-to-mono : {l : Level} {A : Set l} -> (n : Int) -> (x : A) -> (n-times-tail-delta n) (mono x) ≡ (mono x) tail-delta-to-mono one x = refl tail-delta-to-mono (succ n) x = begin n-times-tail-delta (succ n) (mono x) ≡⟨ refl ⟩ n-times-tail-delta n (mono x) ≡⟨ tail-delta-to-mono n x ⟩ mono x ∎ monad-law-1-4 : {l : Level} {A : Set l} -> (n : Int) (d : Delta (Delta A)) -> (headDelta ((n-times-tail-delta n) (headDelta ((n-times-tail-delta n) d)))) ≡ (headDelta ((n-times-tail-delta n) (mu d))) monad-law-1-4 one (mono d) = refl monad-law-1-4 one (delta d (mono ds)) = refl monad-law-1-4 one (delta d (delta ds ds₁)) = refl monad-law-1-4 (succ n) (mono d) = begin headDelta (n-times-tail-delta (succ n) (headDelta (n-times-tail-delta (succ n) (mono d)))) ≡⟨ refl ⟩ headDelta (n-times-tail-delta (succ n) (headDelta ((n-times-tail-delta n) (mono d)))) ≡⟨ cong (\d -> headDelta (n-times-tail-delta (succ n) (headDelta d))) (tail-delta-to-mono n d) ⟩ headDelta (n-times-tail-delta (succ n) (headDelta (mono d))) ≡⟨ refl ⟩ headDelta (n-times-tail-delta (succ n) d) ≡⟨ refl ⟩ headDelta (n-times-tail-delta (succ n) (mu (mono d))) ∎ monad-law-1-4 (succ n) (delta d (mono ds)) = begin headDelta (n-times-tail-delta (succ n) (headDelta (n-times-tail-delta (succ n) (delta d (mono ds))))) ≡⟨ refl ⟩ headDelta (n-times-tail-delta (succ n) (headDelta (n-times-tail-delta n (mono ds)))) ≡⟨ cong (\d -> headDelta (n-times-tail-delta (succ n) (headDelta d))) (tail-delta-to-mono n ds) ⟩ headDelta (n-times-tail-delta (succ n) (headDelta (mono ds))) ≡⟨ refl ⟩ headDelta (n-times-tail-delta (succ n) ds) ≡⟨ refl ⟩ headDelta (n-times-tail-delta n (tailDelta ds)) ≡⟨ refl ⟩ headDelta (n-times-tail-delta n ((bind (mono ds) tailDelta))) ≡⟨ refl ⟩ headDelta (n-times-tail-delta (succ n) (delta (headDelta d) (bind (mono ds) tailDelta))) ≡⟨ refl ⟩ headDelta (n-times-tail-delta (succ n) (mu (delta d (mono ds)))) ∎ monad-law-1-4 (succ n) (delta d (delta dd ds)) = begin headDelta (n-times-tail-delta (succ n) (headDelta (n-times-tail-delta (succ n) (delta d (delta dd ds))))) ≡⟨ refl ⟩ headDelta (n-times-tail-delta (succ n) (headDelta (n-times-tail-delta n (delta dd ds)))) ≡⟨ {!!} ⟩ -- ? headDelta (n-times-tail-delta n (delta (headDelta (tailDelta dd)) (bind ds (tailDelta ∙ tailDelta)))) ≡⟨ {!!} ⟩ headDelta (n-times-tail-delta n (delta (headDelta (tailDelta dd)) (bind ds (tailDelta ∙ tailDelta )))) ≡⟨ refl ⟩ headDelta (n-times-tail-delta n (bind (delta dd ds) (tailDelta))) ≡⟨ refl ⟩ headDelta (n-times-tail-delta (succ n) (delta (headDelta d) (bind (delta dd ds) (tailDelta)))) ≡⟨ refl ⟩ headDelta (n-times-tail-delta (succ n) (mu (delta d (delta dd ds)))) ∎ monad-law-1-3 : {l : Level} {A : Set l} -> (i : Int) -> (d : Delta (Delta (Delta A))) -> (bind (fmap mu d) (n-times-tail-delta i) ≡ (bind (bind d (n-times-tail-delta i)) (n-times-tail-delta i))) monad-law-1-3 one (mono (mono d)) = refl monad-law-1-3 one (mono (delta d d₁)) = refl monad-law-1-3 one (delta d ds) = begin bind (fmap mu (delta d ds)) (n-times-tail-delta one) ≡⟨ refl ⟩ bind (delta (mu d) (fmap mu ds)) (n-times-tail-delta one) ≡⟨ refl ⟩ delta (headDelta ((n-times-tail-delta one) (mu d))) (bind (fmap mu ds) ((n-times-tail-delta one) ∙ tailDelta)) ≡⟨ refl ⟩ delta (headDelta ((n-times-tail-delta one) (mu d))) (bind (fmap mu ds) (n-times-tail-delta (succ one))) ≡⟨ cong (\dx -> delta (headDelta ((n-times-tail-delta one) (mu d))) dx) (monad-law-1-3 (succ one) ds) ⟩ delta (headDelta ((n-times-tail-delta one) (mu d))) (bind (bind ds (n-times-tail-delta (succ one))) (n-times-tail-delta (succ one))) ≡⟨ cong (\dx -> delta dx (bind (bind ds (n-times-tail-delta (succ one))) (n-times-tail-delta (succ one )))) (sym (monad-law-1-4 one d)) ⟩ delta (headDelta ((n-times-tail-delta one) (headDelta ((n-times-tail-delta one) d)))) (bind (bind ds (n-times-tail-delta (succ one))) (n-times-tail-delta (succ one))) ≡⟨ refl ⟩ delta (headDelta ((n-times-tail-delta one) (headDelta ((n-times-tail-delta one) d)))) ((bind (bind ds (n-times-tail-delta (succ one)))) ((n-times-tail-delta one) ∙ tailDelta)) ≡⟨ refl ⟩ bind (delta (headDelta ((n-times-tail-delta one) d)) (bind ds (n-times-tail-delta (succ one)))) (n-times-tail-delta one) ≡⟨ refl ⟩ bind (delta (headDelta ((n-times-tail-delta one) d)) (bind ds ((n-times-tail-delta one) ∙ tailDelta))) (n-times-tail-delta one) ≡⟨ refl ⟩ bind (bind (delta d ds) (n-times-tail-delta one)) (n-times-tail-delta one) ∎ monad-law-1-3 (succ i) d = {!!} monad-law-1-2 : {l : Level} {A : Set l} -> (d : Delta (Delta A)) -> headDelta (mu d) ≡ (headDelta (headDelta d)) monad-law-1-2 (mono _) = refl monad-law-1-2 (delta _ _) = refl -- monad-law-1 : join . fmap join = join . join monad-law-1 : {l : Level} {A : Set l} -> (d : Delta (Delta (Delta A))) -> ((mu ∙ (fmap mu)) d) ≡ ((mu ∙ mu) d) monad-law-1 (mono d) = refl monad-law-1 (delta x d) = begin (mu ∙ fmap mu) (delta x d) ≡⟨ refl ⟩ mu (fmap mu (delta x d)) ≡⟨ refl ⟩ mu (delta (mu x) (fmap mu d)) ≡⟨ refl ⟩ delta (headDelta (mu x)) (bind (fmap mu d) tailDelta) ≡⟨ cong (\x -> delta x (bind (fmap mu d) tailDelta)) (monad-law-1-2 x) ⟩ delta (headDelta (headDelta x)) (bind (fmap mu d) tailDelta) ≡⟨ cong (\d -> delta (headDelta (headDelta x)) d) (monad-law-1-3 one d) ⟩ delta (headDelta (headDelta x)) (bind (bind d tailDelta) tailDelta) ≡⟨ refl ⟩ mu (delta (headDelta x) (bind d tailDelta)) ≡⟨ refl ⟩ mu (mu (delta x d)) ≡⟨ refl ⟩ (mu ∙ mu) (delta x d) ∎ {- -- monad-law-2 : join . fmap return = join . return = id -- monad-law-2-1 join . fmap return = join . return monad-law-2-1 : {l : Level} {A : Set l} -> (d : Delta A) -> (mu ∙ fmap eta) d ≡ (mu ∙ eta) d monad-law-2-1 (mono x) = refl monad-law-2-1 (delta x d) = {!!} -- monad-law-2-2 : join . return = id monad-law-2-2 : {l : Level} {A : Set l } -> (d : Delta A) -> (mu ∙ eta) d ≡ id d monad-law-2-2 d = refl -- monad-law-3 : return . f = fmap f . return monad-law-3 : {l : Level} {A B : Set l} (f : A -> B) (x : A) -> (eta ∙ f) x ≡ (fmap f ∙ eta) x monad-law-3 f x = refl -- monad-law-4 : join . fmap (fmap f) = fmap f . join monad-law-4 : {l ll : Level} {A : Set l} {B : Set ll} (f : A -> B) (d : Delta (Delta A)) -> (mu ∙ fmap (fmap f)) d ≡ (fmap f ∙ mu) d monad-law-4 f d = {!!} -- Monad-laws (Haskell) -- monad-law-h-1 : return a >>= k = k a monad-law-h-1 : {l ll : Level} {A : Set l} {B : Set ll} -> (a : A) -> (k : A -> (Delta B)) -> (return a >>= k) ≡ (k a) monad-law-h-1 a k = refl -- monad-law-h-2 : m >>= return = m monad-law-h-2 : {l : Level}{A : Set l} -> (m : Delta A) -> (m >>= return) ≡ m monad-law-h-2 (mono x) = refl monad-law-h-2 (delta x d) = cong (delta x) (monad-law-h-2 d) -- monad-law-h-3 : m >>= (\x -> k x >>= h) = (m >>= k) >>= h monad-law-h-3 : {l ll lll : Level} {A : Set l} {B : Set ll} {C : Set lll} -> (m : Delta A) -> (k : A -> (Delta B)) -> (h : B -> (Delta C)) -> (m >>= (\x -> k x >>= h)) ≡ ((m >>= k) >>= h) monad-law-h-3 (mono x) k h = refl monad-law-h-3 (delta x d) k h = {!!} -}