open import Level open import Relation.Binary.PropositionalEquality open import basic open import delta open import laws open import nat module delta.functor where -- Functor-laws -- Functor-law-1 : T(id) = id' functor-law-1 : {l : Level} {A : Set l} {n : Nat} -> (d : Delta A (S n)) -> (delta-fmap id) d ≡ id d functor-law-1 (mono x) = refl functor-law-1 (delta x d) = cong (delta x) (functor-law-1 d) -- Functor-law-2 : T(f . g) = T(f) . T(g) functor-law-2 : {l : Level} {n : Nat} {A B C : Set l} -> (f : B -> C) -> (g : A -> B) -> (d : Delta A (S n)) -> (delta-fmap (f ∙ g)) d ≡ ((delta-fmap f) ∙ (delta-fmap g)) d functor-law-2 f g (mono x) = refl functor-law-2 f g (delta x d) = cong (delta (f (g x))) (functor-law-2 f g d) delta-is-functor : {l : Level} {n : Nat} -> Functor {l} (\A -> Delta A (S n)) delta-is-functor = record { fmap = delta-fmap ; preserve-id = functor-law-1; covariant = \f g -> functor-law-2 g f} open ≡-Reasoning delta-fmap-equiv : {l : Level} {A B : Set l} {n : Nat} (f g : A -> B) (eq : f ≡ g) (d : Delta A (S n)) -> delta-fmap f d ≡ delta-fmap g d delta-fmap-equiv f g eq (mono x) = begin mono (f x) ≡⟨ cong (\h -> (mono (h x))) eq ⟩ mono (g x) ∎ delta-fmap-equiv f g eq (delta x d) = begin delta (f x) (delta-fmap f d) ≡⟨ cong (\h -> (delta (h x) (delta-fmap f d))) eq ⟩ delta (g x) (delta-fmap f d) ≡⟨ cong (\fx -> (delta (g x) fx)) (delta-fmap-equiv f g eq d) ⟩ delta (g x) (delta-fmap g d) ∎