# HG changeset patch # User Yasutaka Higa # Date 1414822744 -32400 # Node ID 90b171e3a73e65325e9c1e92742ef09c2985585c # Parent 1df4f9d88025c6ec3ec414d6392266676f42ffab Rename to Delta from Similar diff -r 1df4f9d88025 -r 90b171e3a73e agda/delta.agda --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/agda/delta.agda Sat Nov 01 15:19:04 2014 +0900 @@ -0,0 +1,166 @@ +open import list +open import basic + +open import Level +open import Relation.Binary.PropositionalEquality +open ≡-Reasoning + +module delta where + +data Delta {l : Level} (A : Set l) : (Set (suc l)) where + similar : List String -> A -> List String -> A -> Delta A + + +-- Functor +fmap : {l ll : Level} {A : Set l} {B : Set ll} -> (A -> B) -> (Delta A) -> (Delta B) +fmap f (similar xs x ys y) = similar xs (f x) ys (f y) + + +-- Monad (Category) +mu : {l : Level} {A : Set l} -> Delta (Delta A) -> Delta A +mu (similar lx (similar llx x _ _) ly (similar _ _ lly y)) = similar (lx ++ llx) x (ly ++ lly) y + +eta : {l : Level} {A : Set l} -> A -> Delta A +eta x = similar [] x [] x + +returnS : {l : Level} {A : Set l} -> A -> Delta A +returnS x = similar [[ (show x) ]] x [[ (show x) ]] x + +returnSS : {l : Level} {A : Set l} -> A -> A -> Delta A +returnSS x y = similar [[ (show x) ]] x [[ (show y) ]] y + + +-- Monad (Haskell) +return : {l : Level} {A : Set l} -> A -> Delta A +return = eta + + +_>>=_ : {l ll : Level} {A : Set l} {B : Set ll} -> + (x : Delta A) -> (f : A -> (Delta B)) -> (Delta B) +x >>= f = mu (fmap f x) + + + +-- proofs + + +-- Functor-laws + +-- Functor-law-1 : T(id) = id' +functor-law-1 : {l : Level} {A : Set l} -> (s : Delta A) -> (fmap id) s ≡ id s +functor-law-1 (similar lx x ly y) = refl + +-- Functor-law-2 : T(f . g) = T(f) . T(g) +functor-law-2 : {l ll lll : Level} {A : Set l} {B : Set ll} {C : Set lll} -> + (f : B -> C) -> (g : A -> B) -> (s : Delta A) -> + (fmap (f ∙ g)) s ≡ ((fmap f) ∙ (fmap g)) s +functor-law-2 f g (similar lx x ly y) = refl + + + +-- Monad-laws (Category) + +-- monad-law-1 : join . fmap join = join . join +monad-law-1 : {l : Level} {A : Set l} -> (s : Delta (Delta (Delta A))) -> ((mu ∙ (fmap mu)) s) ≡ ((mu ∙ mu) s) +monad-law-1 (similar lx (similar llx (similar lllx x _ _) _ (similar _ _ _ _)) + ly (similar _ (similar _ _ _ _) lly (similar _ _ llly y))) = begin + similar (lx ++ (llx ++ lllx)) x (ly ++ (lly ++ llly)) y + ≡⟨ cong (\left-list -> similar left-list x (ly ++ (lly ++ llly)) y) (list-associative lx llx lllx) ⟩ + similar (lx ++ llx ++ lllx) x (ly ++ (lly ++ llly)) y + ≡⟨ cong (\right-list -> similar (lx ++ llx ++ lllx) x right-list y ) (list-associative ly lly llly) ⟩ + similar (lx ++ llx ++ lllx) x (ly ++ lly ++ llly) y + ∎ + + +-- monad-law-2 : join . fmap return = join . return = id +-- monad-law-2-1 join . fmap return = join . return +monad-law-2-1 : {l : Level} {A : Set l} -> (s : Delta A) -> + (mu ∙ fmap eta) s ≡ (mu ∙ eta) s +monad-law-2-1 (similar lx x ly y) = begin + similar (lx ++ []) x (ly ++ []) y + ≡⟨ cong (\left-list -> similar left-list x (ly ++ []) y) (empty-append lx)⟩ + similar lx x (ly ++ []) y + ≡⟨ cong (\right-list -> similar lx x right-list y) (empty-append ly) ⟩ + similar lx x ly y + ∎ + +-- monad-law-2-2 : join . return = id +monad-law-2-2 : {l : Level} {A : Set l } -> (s : Delta A) -> (mu ∙ eta) s ≡ id s +monad-law-2-2 (similar lx x ly y) = refl + +-- monad-law-3 : return . f = fmap f . return +monad-law-3 : {l : Level} {A B : Set l} (f : A -> B) (x : A) -> (eta ∙ f) x ≡ (fmap f ∙ eta) x +monad-law-3 f x = refl + +-- monad-law-4 : join . fmap (fmap f) = fmap f . join +monad-law-4 : {l ll : Level} {A : Set l} {B : Set ll} (f : A -> B) (s : Delta (Delta A)) -> + (mu ∙ fmap (fmap f)) s ≡ (fmap f ∙ mu) s +monad-law-4 f (similar lx (similar llx x _ _) ly (similar _ _ lly y)) = refl + + +-- Monad-laws (Haskell) +-- monad-law-h-1 : return a >>= k = k a +monad-law-h-1 : {l ll : Level} {A : Set l} {B : Set ll} -> + (a : A) -> (k : A -> (Delta B)) -> + (return a >>= k) ≡ (k a) +monad-law-h-1 a k = begin + return a >>= k + ≡⟨ refl ⟩ + mu (fmap k (return a)) + ≡⟨ refl ⟩ + mu (return (k a)) + ≡⟨ refl ⟩ + (mu ∙ return) (k a) + ≡⟨ refl ⟩ + (mu ∙ eta) (k a) + ≡⟨ (monad-law-2-2 (k a)) ⟩ + id (k a) + ≡⟨ refl ⟩ + k a + ∎ + +-- monad-law-h-2 : m >>= return = m +monad-law-h-2 : {l : Level}{A : Set l} -> (m : Delta A) -> (m >>= return) ≡ m +monad-law-h-2 (similar lx x ly y) = monad-law-2-1 (similar lx x ly y) + +-- monad-law-h-3 : m >>= (\x -> k x >>= h) = (m >>= k) >>= h +monad-law-h-3 : {l ll lll : Level} {A : Set l} {B : Set ll} {C : Set lll} -> + (m : Delta A) -> (k : A -> (Delta B)) -> (h : B -> (Delta C)) -> + (m >>= (\x -> k x >>= h)) ≡ ((m >>= k) >>= h) +monad-law-h-3 (similar lx x ly y) k h = begin + ((similar lx x ly y) >>= (\x -> (k x) >>= h)) + ≡⟨ refl ⟩ + mu (fmap (\x -> k x >>= h) (similar lx x ly y)) + ≡⟨ refl ⟩ + (mu ∙ fmap (\x -> k x >>= h)) (similar lx x ly y) + ≡⟨ refl ⟩ + (mu ∙ fmap (\x -> mu (fmap h (k x)))) (similar lx x ly y) + ≡⟨ refl ⟩ + (mu ∙ fmap (mu ∙ (\x -> fmap h (k x)))) (similar lx x ly y) + ≡⟨ refl ⟩ + (mu ∙ (fmap mu ∙ (fmap (\x -> fmap h (k x))))) (similar lx x ly y) + ≡⟨ refl ⟩ + (mu ∙ (fmap mu)) ((fmap (\x -> fmap h (k x))) (similar lx x ly y)) + ≡⟨ monad-law-1 (((fmap (\x -> fmap h (k x))) (similar lx x ly y))) ⟩ + (mu ∙ mu) ((fmap (\x -> fmap h (k x))) (similar lx x ly y)) + ≡⟨ refl ⟩ + (mu ∙ (mu ∙ (fmap (\x -> fmap h (k x))))) (similar lx x ly y) + ≡⟨ refl ⟩ + (mu ∙ (mu ∙ (fmap ((fmap h) ∙ k)))) (similar lx x ly y) + ≡⟨ refl ⟩ + (mu ∙ (mu ∙ ((fmap (fmap h)) ∙ (fmap k)))) (similar lx x ly y) + ≡⟨ refl ⟩ + (mu ∙ (mu ∙ (fmap (fmap h)))) (fmap k (similar lx x ly y)) + ≡⟨ refl ⟩ + mu ((mu ∙ (fmap (fmap h))) (fmap k (similar lx x ly y))) + ≡⟨ cong (\fx -> mu fx) (monad-law-4 h (fmap k (similar lx x ly y))) ⟩ + mu (fmap h (mu (similar lx (k x) ly (k y)))) + ≡⟨ refl ⟩ + (mu ∙ fmap h) (mu (fmap k (similar lx x ly y))) + ≡⟨ refl ⟩ + mu (fmap h (mu (fmap k (similar lx x ly y)))) + ≡⟨ refl ⟩ + (mu (fmap k (similar lx x ly y))) >>= h + ≡⟨ refl ⟩ + ((similar lx x ly y) >>= k) >>= h + ∎ diff -r 1df4f9d88025 -r 90b171e3a73e agda/similar.agda --- a/agda/similar.agda Fri Oct 24 14:08:50 2014 +0900 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,166 +0,0 @@ -open import list -open import basic - -open import Level -open import Relation.Binary.PropositionalEquality -open ≡-Reasoning - -module similar where - -data Similar {l : Level} (A : Set l) : (Set (suc l)) where - similar : List String -> A -> List String -> A -> Similar A - - --- Functor -fmap : {l ll : Level} {A : Set l} {B : Set ll} -> (A -> B) -> (Similar A) -> (Similar B) -fmap f (similar xs x ys y) = similar xs (f x) ys (f y) - - --- Monad (Category) -mu : {l : Level} {A : Set l} -> Similar (Similar A) -> Similar A -mu (similar lx (similar llx x _ _) ly (similar _ _ lly y)) = similar (lx ++ llx) x (ly ++ lly) y - -eta : {l : Level} {A : Set l} -> A -> Similar A -eta x = similar [] x [] x - -returnS : {l : Level} {A : Set l} -> A -> Similar A -returnS x = similar [[ (show x) ]] x [[ (show x) ]] x - -returnSS : {l : Level} {A : Set l} -> A -> A -> Similar A -returnSS x y = similar [[ (show x) ]] x [[ (show y) ]] y - - --- Monad (Haskell) -return : {l : Level} {A : Set l} -> A -> Similar A -return = eta - - -_>>=_ : {l ll : Level} {A : Set l} {B : Set ll} -> - (x : Similar A) -> (f : A -> (Similar B)) -> (Similar B) -x >>= f = mu (fmap f x) - - - --- proofs - - --- Functor-laws - --- Functor-law-1 : T(id) = id' -functor-law-1 : {l : Level} {A : Set l} -> (s : Similar A) -> (fmap id) s ≡ id s -functor-law-1 (similar lx x ly y) = refl - --- Functor-law-2 : T(f . g) = T(f) . T(g) -functor-law-2 : {l ll lll : Level} {A : Set l} {B : Set ll} {C : Set lll} -> - (f : B -> C) -> (g : A -> B) -> (s : Similar A) -> - (fmap (f ∙ g)) s ≡ ((fmap f) ∙ (fmap g)) s -functor-law-2 f g (similar lx x ly y) = refl - - - --- Monad-laws (Category) - --- monad-law-1 : join . fmap join = join . join -monad-law-1 : {l : Level} {A : Set l} -> (s : Similar (Similar (Similar A))) -> ((mu ∙ (fmap mu)) s) ≡ ((mu ∙ mu) s) -monad-law-1 (similar lx (similar llx (similar lllx x _ _) _ (similar _ _ _ _)) - ly (similar _ (similar _ _ _ _) lly (similar _ _ llly y))) = begin - similar (lx ++ (llx ++ lllx)) x (ly ++ (lly ++ llly)) y - ≡⟨ cong (\left-list -> similar left-list x (ly ++ (lly ++ llly)) y) (list-associative lx llx lllx) ⟩ - similar (lx ++ llx ++ lllx) x (ly ++ (lly ++ llly)) y - ≡⟨ cong (\right-list -> similar (lx ++ llx ++ lllx) x right-list y ) (list-associative ly lly llly) ⟩ - similar (lx ++ llx ++ lllx) x (ly ++ lly ++ llly) y - ∎ - - --- monad-law-2 : join . fmap return = join . return = id --- monad-law-2-1 join . fmap return = join . return -monad-law-2-1 : {l : Level} {A : Set l} -> (s : Similar A) -> - (mu ∙ fmap eta) s ≡ (mu ∙ eta) s -monad-law-2-1 (similar lx x ly y) = begin - similar (lx ++ []) x (ly ++ []) y - ≡⟨ cong (\left-list -> similar left-list x (ly ++ []) y) (empty-append lx)⟩ - similar lx x (ly ++ []) y - ≡⟨ cong (\right-list -> similar lx x right-list y) (empty-append ly) ⟩ - similar lx x ly y - ∎ - --- monad-law-2-2 : join . return = id -monad-law-2-2 : {l : Level} {A : Set l } -> (s : Similar A) -> (mu ∙ eta) s ≡ id s -monad-law-2-2 (similar lx x ly y) = refl - --- monad-law-3 : return . f = fmap f . return -monad-law-3 : {l : Level} {A B : Set l} (f : A -> B) (x : A) -> (eta ∙ f) x ≡ (fmap f ∙ eta) x -monad-law-3 f x = refl - --- monad-law-4 : join . fmap (fmap f) = fmap f . join -monad-law-4 : {l ll : Level} {A : Set l} {B : Set ll} (f : A -> B) (s : Similar (Similar A)) -> - (mu ∙ fmap (fmap f)) s ≡ (fmap f ∙ mu) s -monad-law-4 f (similar lx (similar llx x _ _) ly (similar _ _ lly y)) = refl - - --- Monad-laws (Haskell) --- monad-law-h-1 : return a >>= k = k a -monad-law-h-1 : {l ll : Level} {A : Set l} {B : Set ll} -> - (a : A) -> (k : A -> (Similar B)) -> - (return a >>= k) ≡ (k a) -monad-law-h-1 a k = begin - return a >>= k - ≡⟨ refl ⟩ - mu (fmap k (return a)) - ≡⟨ refl ⟩ - mu (return (k a)) - ≡⟨ refl ⟩ - (mu ∙ return) (k a) - ≡⟨ refl ⟩ - (mu ∙ eta) (k a) - ≡⟨ (monad-law-2-2 (k a)) ⟩ - id (k a) - ≡⟨ refl ⟩ - k a - ∎ - --- monad-law-h-2 : m >>= return = m -monad-law-h-2 : {l : Level}{A : Set l} -> (m : Similar A) -> (m >>= return) ≡ m -monad-law-h-2 (similar lx x ly y) = monad-law-2-1 (similar lx x ly y) - --- monad-law-h-3 : m >>= (\x -> k x >>= h) = (m >>= k) >>= h -monad-law-h-3 : {l ll lll : Level} {A : Set l} {B : Set ll} {C : Set lll} -> - (m : Similar A) -> (k : A -> (Similar B)) -> (h : B -> (Similar C)) -> - (m >>= (\x -> k x >>= h)) ≡ ((m >>= k) >>= h) -monad-law-h-3 (similar lx x ly y) k h = begin - ((similar lx x ly y) >>= (\x -> (k x) >>= h)) - ≡⟨ refl ⟩ - mu (fmap (\x -> k x >>= h) (similar lx x ly y)) - ≡⟨ refl ⟩ - (mu ∙ fmap (\x -> k x >>= h)) (similar lx x ly y) - ≡⟨ refl ⟩ - (mu ∙ fmap (\x -> mu (fmap h (k x)))) (similar lx x ly y) - ≡⟨ refl ⟩ - (mu ∙ fmap (mu ∙ (\x -> fmap h (k x)))) (similar lx x ly y) - ≡⟨ refl ⟩ - (mu ∙ (fmap mu ∙ (fmap (\x -> fmap h (k x))))) (similar lx x ly y) - ≡⟨ refl ⟩ - (mu ∙ (fmap mu)) ((fmap (\x -> fmap h (k x))) (similar lx x ly y)) - ≡⟨ monad-law-1 (((fmap (\x -> fmap h (k x))) (similar lx x ly y))) ⟩ - (mu ∙ mu) ((fmap (\x -> fmap h (k x))) (similar lx x ly y)) - ≡⟨ refl ⟩ - (mu ∙ (mu ∙ (fmap (\x -> fmap h (k x))))) (similar lx x ly y) - ≡⟨ refl ⟩ - (mu ∙ (mu ∙ (fmap ((fmap h) ∙ k)))) (similar lx x ly y) - ≡⟨ refl ⟩ - (mu ∙ (mu ∙ ((fmap (fmap h)) ∙ (fmap k)))) (similar lx x ly y) - ≡⟨ refl ⟩ - (mu ∙ (mu ∙ (fmap (fmap h)))) (fmap k (similar lx x ly y)) - ≡⟨ refl ⟩ - mu ((mu ∙ (fmap (fmap h))) (fmap k (similar lx x ly y))) - ≡⟨ cong (\fx -> mu fx) (monad-law-4 h (fmap k (similar lx x ly y))) ⟩ - mu (fmap h (mu (similar lx (k x) ly (k y)))) - ≡⟨ refl ⟩ - (mu ∙ fmap h) (mu (fmap k (similar lx x ly y))) - ≡⟨ refl ⟩ - mu (fmap h (mu (fmap k (similar lx x ly y)))) - ≡⟨ refl ⟩ - (mu (fmap k (similar lx x ly y))) >>= h - ≡⟨ refl ⟩ - ((similar lx x ly y) >>= k) >>= h - ∎ diff -r 1df4f9d88025 -r 90b171e3a73e delta.hs --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/delta.hs Sat Nov 01 15:19:04 2014 +0900 @@ -0,0 +1,52 @@ +import Control.Applicative +import Data.Numbers.Primes -- $ cabal install primes + +data Delta a = Delta [String] a [String] a deriving (Show) + +value :: (Delta a) -> a +value (Delta _ x _ _) = x + +similar :: (Delta a) -> a +similar (Delta _ _ _ y) = y + +instance (Eq a) => Eq (Delta a) where + s == ss = (value s) == (value ss) + +instance Functor Delta where + fmap f (Delta xs x ys y) = Delta xs (f x) ys (f y) + +instance Applicative Delta where + pure f = Delta [] f [] f + (Delta lf f lg g) <*> (Delta lx x ly y) = Delta (lf ++ lx) (f x) (lg ++ ly) (g y) + +mu :: Delta (Delta a) -> Delta a +mu (Delta lx (Delta llx x _ _) ly (Delta _ _ lly y)) = Delta (lx ++ llx) x (ly ++ lly) y + +instance Monad Delta where + return x = Delta [] x [] x + s >>= f = mu $ fmap f s + + +returnS :: (Show s) => s -> Delta s +returnS x = Delta [(show x)] x [(show x)] x + +returnSS :: (Show s) => s -> s -> Delta s +returnSS x y = Delta [(show x)] x [(show y)] y + +-- samples + +generator :: Int -> Delta [Int] +generator x = let intList = [1..x] in + returnS intList + +primeFilter :: [Int] -> Delta [Int] +primeFilter xs = let primeList = filter isPrime xs + refactorList = filter even xs in + returnSS primeList refactorList + +count :: [Int] -> Delta Int +count xs = let primeCount = length xs in + returnS primeCount + +primeCount :: Int -> Delta Int +primeCount x = generator x >>= primeFilter >>= count diff -r 1df4f9d88025 -r 90b171e3a73e similar.hs --- a/similar.hs Fri Oct 24 14:08:50 2014 +0900 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,52 +0,0 @@ -import Control.Applicative -import Data.Numbers.Primes -- $ cabal install primes - -data Similar a = Similar [String] a [String] a deriving (Show) - -value :: (Similar a) -> a -value (Similar _ x _ _) = x - -similar :: (Similar a) -> a -similar (Similar _ _ _ y) = y - -instance (Eq a) => Eq (Similar a) where - s == ss = (value s) == (value ss) - -instance Functor Similar where - fmap f (Similar xs x ys y) = Similar xs (f x) ys (f y) - -instance Applicative Similar where - pure f = Similar [] f [] f - (Similar lf f lg g) <*> (Similar lx x ly y) = Similar (lf ++ lx) (f x) (lg ++ ly) (g y) - -mu :: Similar (Similar a) -> Similar a -mu (Similar lx (Similar llx x _ _) ly (Similar _ _ lly y)) = Similar (lx ++ llx) x (ly ++ lly) y - -instance Monad Similar where - return x = Similar [] x [] x - s >>= f = mu $ fmap f s - - -returnS :: (Show s) => s -> Similar s -returnS x = Similar [(show x)] x [(show x)] x - -returnSS :: (Show s) => s -> s -> Similar s -returnSS x y = Similar [(show x)] x [(show y)] y - --- samples - -generator :: Int -> Similar [Int] -generator x = let intList = [1..x] in - returnS intList - -primeFilter :: [Int] -> Similar [Int] -primeFilter xs = let primeList = filter isPrime xs - refactorList = filter even xs in - returnSS primeList refactorList - -count :: [Int] -> Similar Int -count xs = let primeCount = length xs in - returnS primeCount - -primeCount :: Int -> Similar Int -primeCount x = generator x >>= primeFilter >>= count