changeset 43:90b171e3a73e

Rename to Delta from Similar
author Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
date Sat, 01 Nov 2014 15:19:04 +0900
parents 1df4f9d88025
children 6e270dfe2bb9
files agda/delta.agda agda/similar.agda delta.hs similar.hs
diffstat 4 files changed, 218 insertions(+), 218 deletions(-) [+]
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/agda/delta.agda	Sat Nov 01 15:19:04 2014 +0900
@@ -0,0 +1,166 @@
+open import list
+open import basic
+
+open import Level
+open import Relation.Binary.PropositionalEquality
+open ≡-Reasoning
+
+module delta where
+
+data Delta {l : Level} (A : Set l) : (Set (suc l)) where
+  similar : List String -> A -> List String -> A -> Delta A
+
+
+-- Functor
+fmap : {l ll : Level} {A : Set l} {B : Set ll} -> (A -> B) -> (Delta A) -> (Delta B)
+fmap f (similar xs x ys y) = similar xs (f x) ys (f y)
+
+
+-- Monad (Category)
+mu : {l : Level} {A : Set l} -> Delta (Delta A) -> Delta A
+mu (similar lx (similar llx x _ _) ly (similar _ _ lly y)) = similar (lx ++ llx) x (ly ++ lly) y
+
+eta : {l : Level} {A : Set l} -> A -> Delta A
+eta x = similar [] x [] x
+
+returnS : {l : Level} {A : Set l} -> A -> Delta A
+returnS x = similar [[ (show x) ]] x [[ (show x) ]] x
+
+returnSS : {l : Level} {A : Set l} -> A -> A -> Delta A
+returnSS x y = similar [[ (show x) ]] x [[ (show y) ]] y
+
+
+-- Monad (Haskell)
+return : {l : Level} {A : Set l} -> A -> Delta A
+return = eta
+
+
+_>>=_ : {l ll : Level} {A : Set l} {B : Set ll} ->
+        (x : Delta A) -> (f : A -> (Delta B)) -> (Delta B)
+x >>= f = mu (fmap f x)
+
+
+
+-- proofs
+
+
+-- Functor-laws
+
+-- Functor-law-1 : T(id) = id'
+functor-law-1 :  {l : Level} {A : Set l} ->  (s : Delta A) -> (fmap id) s ≡ id s
+functor-law-1 (similar lx x ly y) = refl
+
+-- Functor-law-2 : T(f . g) = T(f) . T(g)
+functor-law-2 : {l ll lll : Level} {A : Set l} {B : Set ll} {C : Set lll} ->
+                (f : B -> C) -> (g : A -> B) -> (s : Delta A) ->
+                (fmap (f ∙ g)) s ≡ ((fmap f) ∙ (fmap g)) s
+functor-law-2 f g (similar lx x ly y) = refl
+
+
+
+-- Monad-laws (Category)
+
+-- monad-law-1 : join . fmap join = join . join
+monad-law-1 : {l : Level} {A : Set l} -> (s : Delta (Delta (Delta A))) -> ((mu ∙ (fmap mu)) s) ≡ ((mu ∙ mu) s)
+monad-law-1 (similar lx (similar llx (similar lllx x _ _) _ (similar _ _ _ _))
+                     ly (similar   _ (similar _ _ _ _)  lly (similar _ _  llly y))) = begin
+    similar (lx ++ (llx ++ lllx)) x (ly ++ (lly ++ llly)) y
+  ≡⟨ cong (\left-list -> similar left-list x (ly ++ (lly ++ llly)) y) (list-associative lx llx lllx) ⟩
+    similar (lx ++ llx ++ lllx) x (ly ++ (lly ++ llly)) y
+  ≡⟨ cong (\right-list -> similar (lx ++ llx ++ lllx) x right-list y ) (list-associative ly lly llly) ⟩
+    similar (lx ++ llx ++ lllx) x (ly ++ lly ++ llly) y
+  ∎
+
+
+-- monad-law-2 : join . fmap return = join . return = id
+-- monad-law-2-1 join . fmap return = join . return
+monad-law-2-1 : {l : Level} {A : Set l} -> (s : Delta  A) ->
+  (mu ∙ fmap eta) s ≡ (mu ∙ eta) s
+monad-law-2-1 (similar lx x ly y) = begin
+    similar (lx ++ []) x (ly ++ []) y
+  ≡⟨ cong (\left-list -> similar left-list x (ly ++ []) y) (empty-append lx)⟩
+    similar lx x (ly ++ []) y
+  ≡⟨ cong (\right-list -> similar lx x right-list y) (empty-append ly) ⟩
+    similar lx x ly y
+  ∎
+
+-- monad-law-2-2 :  join . return = id
+monad-law-2-2 : {l : Level} {A : Set l } -> (s : Delta A) -> (mu ∙ eta) s ≡ id s
+monad-law-2-2 (similar lx x ly y) = refl
+
+-- monad-law-3 : return . f = fmap f . return
+monad-law-3 : {l : Level} {A B : Set l} (f : A -> B) (x : A) -> (eta ∙ f) x ≡ (fmap f ∙ eta) x
+monad-law-3 f x = refl
+
+-- monad-law-4 : join . fmap (fmap f) = fmap f . join
+monad-law-4 : {l ll : Level} {A : Set l} {B : Set ll} (f : A -> B) (s : Delta (Delta A)) ->
+              (mu ∙ fmap (fmap f)) s ≡ (fmap f ∙ mu) s
+monad-law-4 f (similar lx (similar llx x _ _) ly (similar _ _ lly y)) = refl
+
+
+-- Monad-laws (Haskell)
+-- monad-law-h-1 : return a >>= k  =  k a
+monad-law-h-1 : {l ll : Level} {A : Set l} {B : Set ll} ->
+                (a : A) -> (k : A -> (Delta B)) ->
+                (return a >>= k)  ≡ (k a)
+monad-law-h-1 a k = begin
+    return a >>= k
+  ≡⟨ refl ⟩
+    mu (fmap k (return a))
+  ≡⟨ refl ⟩
+    mu (return (k a))
+  ≡⟨ refl ⟩
+    (mu ∙ return) (k a)
+  ≡⟨ refl ⟩
+    (mu ∙ eta) (k a)
+  ≡⟨ (monad-law-2-2 (k a)) ⟩
+    id (k a)
+  ≡⟨ refl ⟩
+    k a
+  ∎
+
+-- monad-law-h-2 : m >>= return  =  m
+monad-law-h-2 : {l : Level}{A : Set l} -> (m : Delta A) -> (m >>= return)  ≡ m
+monad-law-h-2 (similar lx x ly y) = monad-law-2-1 (similar lx x ly y)
+
+-- monad-law-h-3 : m >>= (\x -> k x >>= h)  =  (m >>= k) >>= h
+monad-law-h-3 : {l ll lll : Level} {A : Set l} {B : Set ll} {C : Set lll} ->
+                (m : Delta A)  -> (k : A -> (Delta B)) -> (h : B -> (Delta C)) ->
+                (m >>= (\x -> k x >>= h)) ≡ ((m >>= k) >>= h)
+monad-law-h-3 (similar lx x ly y) k h = begin
+    ((similar lx x ly y) >>= (\x -> (k x) >>= h))
+  ≡⟨ refl ⟩
+    mu (fmap (\x -> k x >>= h) (similar lx x ly y))
+  ≡⟨ refl ⟩
+    (mu ∙ fmap (\x -> k x >>= h)) (similar lx x ly y)
+  ≡⟨ refl ⟩
+    (mu ∙ fmap (\x -> mu (fmap h (k x)))) (similar lx x ly y)
+  ≡⟨ refl ⟩
+    (mu ∙ fmap (mu ∙ (\x -> fmap h (k x)))) (similar lx x ly y)
+  ≡⟨ refl ⟩
+    (mu ∙ (fmap mu ∙ (fmap (\x -> fmap h (k x))))) (similar lx x ly y)
+  ≡⟨ refl ⟩
+    (mu ∙ (fmap mu)) ((fmap (\x -> fmap h (k x))) (similar lx x ly y))
+  ≡⟨ monad-law-1 (((fmap (\x -> fmap h (k x))) (similar lx x ly y))) ⟩
+    (mu ∙ mu) ((fmap (\x -> fmap h (k x))) (similar lx x ly y))
+  ≡⟨ refl ⟩
+    (mu ∙ (mu ∙ (fmap (\x -> fmap h (k x))))) (similar lx x ly y)
+  ≡⟨ refl ⟩
+    (mu ∙ (mu ∙ (fmap ((fmap h) ∙ k)))) (similar lx x ly y)
+  ≡⟨ refl ⟩
+    (mu ∙ (mu ∙ ((fmap (fmap h)) ∙ (fmap k)))) (similar lx x ly y)
+  ≡⟨ refl ⟩
+    (mu ∙ (mu ∙ (fmap (fmap h)))) (fmap k (similar lx x ly y))
+  ≡⟨ refl ⟩
+    mu ((mu ∙ (fmap (fmap h))) (fmap k (similar lx x ly y)))
+  ≡⟨ cong (\fx -> mu fx) (monad-law-4 h (fmap k (similar lx x ly y))) ⟩
+    mu (fmap h (mu (similar lx (k x) ly (k y))))
+  ≡⟨ refl ⟩
+    (mu ∙ fmap h) (mu (fmap k (similar lx x ly y)))
+  ≡⟨ refl ⟩
+    mu (fmap h (mu (fmap k (similar lx x ly y))))
+  ≡⟨ refl ⟩
+    (mu (fmap k (similar lx x ly y))) >>= h
+  ≡⟨ refl ⟩
+    ((similar lx x ly y) >>= k) >>= h
+  ∎
--- a/agda/similar.agda	Fri Oct 24 14:08:50 2014 +0900
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,166 +0,0 @@
-open import list
-open import basic
-
-open import Level
-open import Relation.Binary.PropositionalEquality
-open ≡-Reasoning
-
-module similar where
-
-data Similar {l : Level} (A : Set l) : (Set (suc l)) where
-  similar : List String -> A -> List String -> A -> Similar A
-
-
--- Functor
-fmap : {l ll : Level} {A : Set l} {B : Set ll} -> (A -> B) -> (Similar A) -> (Similar B)
-fmap f (similar xs x ys y) = similar xs (f x) ys (f y)
-
-
--- Monad (Category)
-mu : {l : Level} {A : Set l} -> Similar (Similar A) -> Similar A
-mu (similar lx (similar llx x _ _) ly (similar _ _ lly y)) = similar (lx ++ llx) x (ly ++ lly) y
-
-eta : {l : Level} {A : Set l} -> A -> Similar A
-eta x = similar [] x [] x
-
-returnS : {l : Level} {A : Set l} -> A -> Similar A
-returnS x = similar [[ (show x) ]] x [[ (show x) ]] x
-
-returnSS : {l : Level} {A : Set l} -> A -> A -> Similar A
-returnSS x y = similar [[ (show x) ]] x [[ (show y) ]] y
-
-
--- Monad (Haskell)
-return : {l : Level} {A : Set l} -> A -> Similar A
-return = eta
-
-
-_>>=_ : {l ll : Level} {A : Set l} {B : Set ll} ->
-        (x : Similar A) -> (f : A -> (Similar B)) -> (Similar B)
-x >>= f = mu (fmap f x)
-
-
-
--- proofs
-
-
--- Functor-laws
-
--- Functor-law-1 : T(id) = id'
-functor-law-1 :  {l : Level} {A : Set l} ->  (s : Similar A) -> (fmap id) s ≡ id s
-functor-law-1 (similar lx x ly y) = refl
-
--- Functor-law-2 : T(f . g) = T(f) . T(g)
-functor-law-2 : {l ll lll : Level} {A : Set l} {B : Set ll} {C : Set lll} ->
-                (f : B -> C) -> (g : A -> B) -> (s : Similar A) ->
-                (fmap (f ∙ g)) s ≡ ((fmap f) ∙ (fmap g)) s
-functor-law-2 f g (similar lx x ly y) = refl
-
-
-
--- Monad-laws (Category)
-
--- monad-law-1 : join . fmap join = join . join
-monad-law-1 : {l : Level} {A : Set l} -> (s : Similar (Similar (Similar A))) -> ((mu ∙ (fmap mu)) s) ≡ ((mu ∙ mu) s)
-monad-law-1 (similar lx (similar llx (similar lllx x _ _) _ (similar _ _ _ _))
-                     ly (similar   _ (similar _ _ _ _)  lly (similar _ _  llly y))) = begin
-    similar (lx ++ (llx ++ lllx)) x (ly ++ (lly ++ llly)) y
-  ≡⟨ cong (\left-list -> similar left-list x (ly ++ (lly ++ llly)) y) (list-associative lx llx lllx) ⟩
-    similar (lx ++ llx ++ lllx) x (ly ++ (lly ++ llly)) y
-  ≡⟨ cong (\right-list -> similar (lx ++ llx ++ lllx) x right-list y ) (list-associative ly lly llly) ⟩
-    similar (lx ++ llx ++ lllx) x (ly ++ lly ++ llly) y
-  ∎
-
-
--- monad-law-2 : join . fmap return = join . return = id
--- monad-law-2-1 join . fmap return = join . return
-monad-law-2-1 : {l : Level} {A : Set l} -> (s : Similar  A) ->
-  (mu ∙ fmap eta) s ≡ (mu ∙ eta) s
-monad-law-2-1 (similar lx x ly y) = begin
-    similar (lx ++ []) x (ly ++ []) y
-  ≡⟨ cong (\left-list -> similar left-list x (ly ++ []) y) (empty-append lx)⟩
-    similar lx x (ly ++ []) y
-  ≡⟨ cong (\right-list -> similar lx x right-list y) (empty-append ly) ⟩
-    similar lx x ly y
-  ∎
-
--- monad-law-2-2 :  join . return = id
-monad-law-2-2 : {l : Level} {A : Set l } -> (s : Similar A) -> (mu ∙ eta) s ≡ id s
-monad-law-2-2 (similar lx x ly y) = refl
-
--- monad-law-3 : return . f = fmap f . return
-monad-law-3 : {l : Level} {A B : Set l} (f : A -> B) (x : A) -> (eta ∙ f) x ≡ (fmap f ∙ eta) x
-monad-law-3 f x = refl
-
--- monad-law-4 : join . fmap (fmap f) = fmap f . join
-monad-law-4 : {l ll : Level} {A : Set l} {B : Set ll} (f : A -> B) (s : Similar (Similar A)) ->
-              (mu ∙ fmap (fmap f)) s ≡ (fmap f ∙ mu) s
-monad-law-4 f (similar lx (similar llx x _ _) ly (similar _ _ lly y)) = refl
-
-
--- Monad-laws (Haskell)
--- monad-law-h-1 : return a >>= k  =  k a
-monad-law-h-1 : {l ll : Level} {A : Set l} {B : Set ll} ->
-                (a : A) -> (k : A -> (Similar B)) ->
-                (return a >>= k)  ≡ (k a)
-monad-law-h-1 a k = begin
-    return a >>= k
-  ≡⟨ refl ⟩
-    mu (fmap k (return a))
-  ≡⟨ refl ⟩
-    mu (return (k a))
-  ≡⟨ refl ⟩
-    (mu ∙ return) (k a)
-  ≡⟨ refl ⟩
-    (mu ∙ eta) (k a)
-  ≡⟨ (monad-law-2-2 (k a)) ⟩
-    id (k a)
-  ≡⟨ refl ⟩
-    k a
-  ∎
-
--- monad-law-h-2 : m >>= return  =  m
-monad-law-h-2 : {l : Level}{A : Set l} -> (m : Similar A) -> (m >>= return)  ≡ m
-monad-law-h-2 (similar lx x ly y) = monad-law-2-1 (similar lx x ly y)
-
--- monad-law-h-3 : m >>= (\x -> k x >>= h)  =  (m >>= k) >>= h
-monad-law-h-3 : {l ll lll : Level} {A : Set l} {B : Set ll} {C : Set lll} ->
-                (m : Similar A)  -> (k : A -> (Similar B)) -> (h : B -> (Similar C)) ->
-                (m >>= (\x -> k x >>= h)) ≡ ((m >>= k) >>= h)
-monad-law-h-3 (similar lx x ly y) k h = begin
-    ((similar lx x ly y) >>= (\x -> (k x) >>= h))
-  ≡⟨ refl ⟩
-    mu (fmap (\x -> k x >>= h) (similar lx x ly y))
-  ≡⟨ refl ⟩
-    (mu ∙ fmap (\x -> k x >>= h)) (similar lx x ly y)
-  ≡⟨ refl ⟩
-    (mu ∙ fmap (\x -> mu (fmap h (k x)))) (similar lx x ly y)
-  ≡⟨ refl ⟩
-    (mu ∙ fmap (mu ∙ (\x -> fmap h (k x)))) (similar lx x ly y)
-  ≡⟨ refl ⟩
-    (mu ∙ (fmap mu ∙ (fmap (\x -> fmap h (k x))))) (similar lx x ly y)
-  ≡⟨ refl ⟩
-    (mu ∙ (fmap mu)) ((fmap (\x -> fmap h (k x))) (similar lx x ly y))
-  ≡⟨ monad-law-1 (((fmap (\x -> fmap h (k x))) (similar lx x ly y))) ⟩
-    (mu ∙ mu) ((fmap (\x -> fmap h (k x))) (similar lx x ly y)) 
-  ≡⟨ refl ⟩
-    (mu ∙ (mu ∙ (fmap (\x -> fmap h (k x))))) (similar lx x ly y)
-  ≡⟨ refl ⟩
-    (mu ∙ (mu ∙ (fmap ((fmap h) ∙ k)))) (similar lx x ly y)
-  ≡⟨ refl ⟩
-    (mu ∙ (mu ∙ ((fmap (fmap h)) ∙ (fmap k)))) (similar lx x ly y)
-  ≡⟨ refl ⟩
-    (mu ∙ (mu ∙ (fmap (fmap h)))) (fmap k (similar lx x ly y))
-  ≡⟨ refl ⟩
-    mu ((mu ∙ (fmap (fmap h))) (fmap k (similar lx x ly y)))
-  ≡⟨ cong (\fx -> mu fx) (monad-law-4 h (fmap k (similar lx x ly y))) ⟩
-    mu (fmap h (mu (similar lx (k x) ly (k y))))
-  ≡⟨ refl ⟩
-    (mu ∙ fmap h) (mu (fmap k (similar lx x ly y)))
-  ≡⟨ refl ⟩
-    mu (fmap h (mu (fmap k (similar lx x ly y))))
-  ≡⟨ refl ⟩
-    (mu (fmap k (similar lx x ly y))) >>= h
-  ≡⟨ refl ⟩
-    ((similar lx x ly y) >>= k) >>= h
-  ∎
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/delta.hs	Sat Nov 01 15:19:04 2014 +0900
@@ -0,0 +1,52 @@
+import Control.Applicative
+import Data.Numbers.Primes -- $ cabal install primes
+
+data Delta a = Delta [String] a [String] a deriving (Show)
+
+value :: (Delta a) -> a
+value (Delta _ x _ _) = x
+
+similar :: (Delta a) -> a
+similar (Delta _ _ _ y) = y
+
+instance (Eq a) => Eq (Delta a) where
+    s == ss = (value s) == (value ss)
+
+instance Functor Delta where
+    fmap f (Delta xs x ys y) = Delta xs (f x) ys (f y)
+
+instance Applicative Delta where
+    pure f                                      = Delta [] f [] f
+    (Delta lf f lg g) <*> (Delta lx x ly y) = Delta (lf ++ lx) (f x) (lg ++ ly) (g y)
+
+mu :: Delta (Delta a) -> Delta a
+mu (Delta lx (Delta llx x _ _) ly (Delta _ _ lly y)) = Delta (lx ++ llx) x (ly ++ lly) y
+
+instance Monad Delta where
+    return x = Delta [] x [] x
+    s >>= f  = mu $ fmap f s
+
+
+returnS :: (Show s) => s -> Delta s
+returnS x = Delta [(show x)] x [(show x)] x
+
+returnSS :: (Show s) => s -> s -> Delta s
+returnSS x y = Delta [(show x)] x [(show y)] y
+
+-- samples
+
+generator :: Int -> Delta [Int]
+generator x = let intList = [1..x] in
+                  returnS intList
+
+primeFilter :: [Int] -> Delta [Int]
+primeFilter xs = let primeList    = filter isPrime xs
+                     refactorList = filter even xs    in
+                 returnSS primeList refactorList
+
+count :: [Int] -> Delta Int
+count xs = let primeCount = length xs in
+           returnS primeCount
+
+primeCount :: Int -> Delta Int
+primeCount x = generator x >>= primeFilter >>= count
--- a/similar.hs	Fri Oct 24 14:08:50 2014 +0900
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,52 +0,0 @@
-import Control.Applicative
-import Data.Numbers.Primes -- $ cabal install primes
-
-data Similar a = Similar [String] a [String] a deriving (Show)
-
-value :: (Similar a) -> a
-value (Similar _ x _ _) = x
-
-similar :: (Similar a) -> a
-similar (Similar _ _ _ y) = y
-
-instance (Eq a) => Eq (Similar a) where
-    s == ss = (value s) == (value ss)
-
-instance Functor Similar where
-    fmap f (Similar xs x ys y) = Similar xs (f x) ys (f y)
-
-instance Applicative Similar where
-    pure f                                      = Similar [] f [] f
-    (Similar lf f lg g) <*> (Similar lx x ly y) = Similar (lf ++ lx) (f x) (lg ++ ly) (g y)
-
-mu :: Similar (Similar a) -> Similar a
-mu (Similar lx (Similar llx x _ _) ly (Similar _ _ lly y)) = Similar (lx ++ llx) x (ly ++ lly) y
-
-instance Monad Similar where
-    return x = Similar [] x [] x
-    s >>= f  = mu $ fmap f s
-
-
-returnS :: (Show s) => s -> Similar s
-returnS x = Similar [(show x)] x [(show x)] x
-
-returnSS :: (Show s) => s -> s -> Similar s
-returnSS x y = Similar [(show x)] x [(show y)] y
-
--- samples
-
-generator :: Int -> Similar [Int]
-generator x = let intList = [1..x] in
-                  returnS intList
-
-primeFilter :: [Int] -> Similar [Int]
-primeFilter xs = let primeList    = filter isPrime xs
-                     refactorList = filter even xs    in
-                 returnSS primeList refactorList
-
-count :: [Int] -> Similar Int
-count xs = let primeCount = length xs in
-           returnS primeCount
-
-primeCount :: Int -> Similar Int
-primeCount x = generator x >>= primeFilter >>= count