view src/synchronizedQueue/synchronizedQueueForCas.c @ 56:4283b87ddbf4

Add stub to synchronizedQueues
author Tatsuki IHA <e125716@ie.u-ryukyu.ac.jp>
date Tue, 16 Jun 2015 15:59:48 +0900
parents 1b71266af056
children 2a40d697bf4e
line wrap: on
line source

#include <stdlib.h>
#include <stdio.h>

#include "synchronizedQueueContext.h"

#include "allocate.h"
#include "origin_cs.h"

#ifdef CLANG
#define _CbC_retrun __return
#define _CbC_environment __environment
#endif

#define NUM 100

extern __code initSynchronizedQueueContext(struct Context* context);

//__code code1(struct Context* context) {
//    context->data[Allocate]->allocate.size = sizeof(struct Element);
//    context->data[Allocate]->allocate.next = Code2;
//    goto meta(context, Allocator);
//}

__code meta(struct Context* context, enum Code next) {
    goto (context->code[next])(context);
}

//__code code2(struct Context* context) {
//    context->data[Allocate]->allocate.after_put = Code3;
//    context->data[context->dataNum] -> element.value = 1024;
//    goto meta(context, Sender);
//}

__code code1(struct Context* context, struct Allocate* allocate) {
    allocate->size = sizeof(long);
    allocate->next = Code2;
    goto meta(context, Allocator);
}

__code code1_stub(struct Context* context) {
    goto code1(context, &context->data[Allocate]->allocate);
}

__code code2(struct Context* context, long* count) {
    *count = 0;
    goto meta(context, Code3);
}

__code code2_stub(struct Context* context) {
    goto code2(context, &context->data[Counter]->count);
}


__code code3(struct Context* context, long* count, struct Allocate* allocate) {
    long loop = *count;
    if(loop == NUM) {
        goto meta(context, ThreadExit);
    }
    allocate->size = sizeof(struct Element);
    allocate->next = Code4;
    goto meta(context, Allocator);
}

__code code3_stub(struct Context* context) {
    goto code3(context, &context->data[Counter]->count, &context->data[Allocate]->allocate);
}

__code code4(struct Context* context, long* count, struct Allocate* allocate, struct Element* element) {
    allocate->after_put  = Code3;
    allocate->after_fail = Code3;
    element->value = (*count)++;
    goto meta(context, Sender);
}

__code code4_stub(struct Context* context) {
    goto code4(context, &context->data[Counter]->count, &context->data[Allocate]->allocate, &context->data[context->dataNum]->element);
}

__code sender(struct Context* context) {
    goto meta(context, Put);
}

__code sender_stub(struct Context* context) {
    goto sender(context);
}

__code meta_put(struct Context* context, struct Allocate* allocate, struct Queue* queue, struct Element* element, enum Code next) {
    struct Element *last_ds, *new_ds;
    last_ds = queue->last;
    new_ds  = element;
    new_ds->next = 0;
    int count = 0;
    while(!__sync_bool_compare_and_swap(&queue->last, last_ds, new_ds)) {
        if(count < 1000) {
            last_ds = queue->last;
            new_ds  = element;
            new_ds->next = 0;
            count++;
        } else {
            // error handle
            goto meta(context, context->data[Allocate]->allocate.after_fail); 
        }
    }

    if(queue->first) {
        last_ds->next = new_ds;
    } else {
        queue->first  = new_ds;
    }
    printf("Put %d\n\n", queue->last->value);
    queue->count++;
    goto (context->code[next])(context);
}

__code put(struct Context* context, struct Allocate* allocate, struct Queue* queue, struct Element* element) {
    goto meta_put(context, allocate, queue, element, allocate->after_put);
}

__code put_stub(struct Context* context) {
    goto put(context, &context->data[Allocate]->allocate, &context->data[Queue]->queue, &context->data[context->dataNum]->element);
}

__code code5(struct Context* context, struct Allocate* allocate) {
    allocate->size = sizeof(long);
    allocate->next = Code6;
    goto meta(context, Allocator);
}

__code code5_stub(struct Context* context) {
    goto code5(context, &context->data[Allocate]->allocate);
}

__code code6(struct Context* context, long* count) {
    *count = 0;
    goto meta(context, Code7);
}

__code code6_stub(struct Context* context) {
    goto code6(context, &context->data[Counter]->count);
}

__code code7(struct Context* context, long* count, struct Allocate* allocate) {
    long loop = *count;
    if(loop == NUM) {
        goto meta(context, ThreadExit);
    }
    (*count)++;
    allocate->after_get  = Code7;
    allocate->after_fail = Code7;
    goto meta(context, Receiver);
}

__code code7_stub(struct Context* context) {
    goto code7(context, &context->data[Counter]->count, &context->data[Allocate]->allocate);
}

__code receiver(struct Context* context) {
    goto meta(context, Get);
}

__code receiver_stub(struct Context* context) {
    goto receiver(context);
}

__code meta_get(struct Context* context, struct Allocate* allocate, struct Queue* queue, struct Element* element, enum Code next) {
    struct Element *first_ds, *new_ds;
    first_ds = queue->first;
    new_ds   = first_ds? first_ds->next : 0;
    int count = 0;
    while(!__sync_bool_compare_and_swap(&queue->first, first_ds, new_ds)) {
        if(count < 1000) {
            first_ds = queue->first;
            new_ds   = first_ds? first_ds->next : 0;
            count++;
        } else {
            // error handle
            goto meta(context, context->data[Allocate]->allocate.after_fail); 
        }
    }

    // success CAS
    if (first_ds == new_ds) {
        printf("queue is empty\n");
        goto meta(context, Get);
    } else {
        printf("     Get %d\n\n", first_ds->value);
        queue->count--;
        goto (context->code[next])(context);
    }
}

__code get(struct Context* context, struct Allocate* allocate, struct Queue* queue, struct Element* element) {
    goto meta_get(context, allocate, queue, element, allocate->after_get);
}

__code get_stub(struct Context* context) {
    goto get(context, &context->data[Allocate]->allocate, &context->data[Queue]->queue, &context->data[context->dataNum]->element);
}

__code thread_exit(struct Context* context) {
    free(context->code);
    free(context->data);
    free(context->heap_start);
    pthread_exit(0);
}

__code thread_exit_stub(struct Context* context) {
    goto thread_exit(context);
}

void* thread_func(void* context) {
    goto start_code((struct Context*)context, Code1);
    return 0;
}

void* thread_func2(void* context) {
    goto start_code((struct Context*)context, Code5);
    return 0;
}

int main() {
    struct Context* context1 = (struct Context*)malloc(sizeof(struct Context));
    initSynchronizedQueueContext(context1);
    struct Context* context2 = (struct Context*)malloc(sizeof(struct Context));
    initSynchronizedQueueContext(context2);
    struct Context* context3 = (struct Context*)malloc(sizeof(struct Context));
    initSynchronizedQueueContext(context3);
    struct Context* context4 = (struct Context*)malloc(sizeof(struct Context));
    initSynchronizedQueueContext(context4);
    context2->data[Queue] = context1->data[Queue];
    context3->data[Queue] = context1->data[Queue];
    context4->data[Queue] = context1->data[Queue];

    // thread
    pthread_t thread1, thread2, thread3, thread4;
    pthread_create(&thread1, NULL, thread_func, (void *)context1);
    pthread_create(&thread2, NULL, thread_func, (void *)context2);
    pthread_create(&thread3, NULL, thread_func2, (void *)context3);
    pthread_create(&thread4, NULL, thread_func2, (void *)context4);
    pthread_join(thread1, NULL);
    pthread_join(thread2, NULL);
    pthread_join(thread3, NULL);
    pthread_join(thread4, NULL);
}