comparison cardinal.agda @ 235:846e0926bb89

fix cardinal
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Thu, 15 Aug 2019 04:51:24 +0900
parents e06b76e5b682
children 650bdad56729
comparison
equal deleted inserted replaced
234:e06b76e5b682 235:846e0926bb89
53 53
54 -- power→ : ( A t : OD) → Power A ∋ t → {x : OD} → t ∋ x → ¬ ¬ (A ∋ x) 54 -- power→ : ( A t : OD) → Power A ∋ t → {x : OD} → t ∋ x → ¬ ¬ (A ∋ x)
55 55
56 func←od : { dom cod : OD } → {f : Ordinal } → def (Func dom cod ) f → (Ordinal → Ordinal ) 56 func←od : { dom cod : OD } → {f : Ordinal } → def (Func dom cod ) f → (Ordinal → Ordinal )
57 func←od {dom} {cod} {f} lt x = sup-o ( λ y → lemma y ) where 57 func←od {dom} {cod} {f} lt x = sup-o ( λ y → lemma y ) where
58 lemma1 = subst (λ k → def (Power (dom ⊗ cod)) k ) (sym {!!}) lt
59 lemma : Ordinal → Ordinal 58 lemma : Ordinal → Ordinal
60 lemma y with IsZF.power→ isZF (dom ⊗ cod) (ord→od f) (subst (λ k → def (Power (dom ⊗ cod)) k ) {!!} lt ) | ∋-p (ord→od f) (ord→od y) 59 lemma y with IsZF.power→ isZF (dom ⊗ cod) (ord→od f) (subst (λ k → def (Power (dom ⊗ cod)) k ) (sym diso) lt ) | ∋-p (ord→od f) (ord→od y)
61 lemma y | p | no n = o∅ 60 lemma y | p | no n = o∅
62 lemma y | p | yes f∋y with double-neg-eilm ( p {ord→od y} f∋y ) -- p : {x : OD} → f ∋ x → ¬ ¬ (dom ⊗ cod ∋ x) 61 lemma y | p | yes f∋y with double-neg-eilm ( p {ord→od y} f∋y ) -- p : {x : OD} → f ∋ x → ¬ ¬ (dom ⊗ cod ∋ x)
63 ... | t with decp ( x ≡ π1 t ) 62 ... | t with decp ( x ≡ π1 t )
64 ... | yes _ = π2 t 63 ... | yes _ = π2 t
65 ... | no _ = o∅ 64 ... | no _ = o∅
69 68
70 69
71 -- contra position of sup-o< 70 -- contra position of sup-o<
72 -- 71 --
73 72
74 postulate 73 -- postulate
75 -- contra-position of mimimulity of supermum required in Cardinal 74 -- -- contra-position of mimimulity of supermum required in Cardinal
76 sup-x : ( Ordinal → Ordinal ) → Ordinal 75 -- sup-x : ( Ordinal → Ordinal ) → Ordinal
77 sup-lb : { ψ : Ordinal → Ordinal } → {z : Ordinal } → z o< sup-o ψ → z o< osuc (ψ (sup-x ψ)) 76 -- sup-lb : { ψ : Ordinal → Ordinal } → {z : Ordinal } → z o< sup-o ψ → z o< osuc (ψ (sup-x ψ))
78 77
79 ------------ 78 ------------
80 -- 79 --
81 -- Onto map 80 -- Onto map
82 -- def X x -> xmap 81 -- def X x -> xmap