comparison constructible-set.agda @ 27:bade0a35fdd9

OD, HOD, TC
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sun, 19 May 2019 15:30:04 +0900
parents a53ba59c5bda
children f36e40d5d2c3
comparison
equal deleted inserted replaced
26:a53ba59c5bda 27:bade0a35fdd9
23 ℵΦ< : {lx : Nat} → {x : OrdinalD {n} (Suc lx) } → Φ (Suc lx) d< (ℵ lx) 23 ℵΦ< : {lx : Nat} → {x : OrdinalD {n} (Suc lx) } → Φ (Suc lx) d< (ℵ lx)
24 ℵ< : {lx : Nat} → {x : OrdinalD {n} (Suc lx) } → OSuc (Suc lx) x d< (ℵ lx) 24 ℵ< : {lx : Nat} → {x : OrdinalD {n} (Suc lx) } → OSuc (Suc lx) x d< (ℵ lx)
25 25
26 open Ordinal 26 open Ordinal
27 27
28 _o<_ : {n : Level} ( x y : Ordinal ) → Set (suc n) 28 _o<_ : {n : Level} ( x y : Ordinal ) → Set n
29 _o<_ x y = (lv x < lv y ) ∨ ( ord x d< ord y ) 29 _o<_ x y = (lv x < lv y ) ∨ ( ord x d< ord y )
30 30
31 open import Data.Nat.Properties 31 open import Data.Nat.Properties
32 open import Data.Empty 32 open import Data.Empty
33 open import Relation.Nullary 33 open import Relation.Nullary
101 maxα x y | tri> ¬a ¬b c = y 101 maxα x y | tri> ¬a ¬b c = y
102 maxα x y | tri≈ ¬a refl ¬c = record { lv = lv x ; ord = maxαd (ord x) (ord y) } 102 maxα x y | tri≈ ¬a refl ¬c = record { lv = lv x ; ord = maxαd (ord x) (ord y) }
103 103
104 _o≤_ : {n : Level} → Ordinal → Ordinal → Set (suc n) 104 _o≤_ : {n : Level} → Ordinal → Ordinal → Set (suc n)
105 a o≤ b = (a ≡ b) ∨ ( a o< b ) 105 a o≤ b = (a ≡ b) ∨ ( a o< b )
106
107 ordtrans : {n : Level} {x y z : Ordinal {n} } → x o< y → y o< z → x o< z
108 ordtrans {n} {x} {y} {z} (case1 x₁) (case1 x₂) = case1 ( <-trans x₁ x₂ )
109 ordtrans {n} {x} {y} {z} (case1 x₁) (case2 x₂) with d<→lv x₂
110 ... | refl = case1 x₁
111 ordtrans {n} {x} {y} {z} (case2 x₁) (case1 x₂) with d<→lv x₁
112 ... | refl = case1 x₂
113 ordtrans {n} {x} {y} {z} (case2 x₁) (case2 x₂) with d<→lv x₁ | d<→lv x₂
114 ... | refl | refl = case2 ( orddtrans x₁ x₂ )
115
106 116
107 trio< : {n : Level } → Trichotomous {suc n} _≡_ _o<_ 117 trio< : {n : Level } → Trichotomous {suc n} _≡_ _o<_
108 trio< a b with <-cmp (lv a) (lv b) 118 trio< a b with <-cmp (lv a) (lv b)
109 trio< a b | tri< a₁ ¬b ¬c = tri< (case1 a₁) (λ refl → ¬b (cong ( λ x → lv x ) refl ) ) lemma1 where 119 trio< a b | tri< a₁ ¬b ¬c = tri< (case1 a₁) (λ refl → ¬b (cong ( λ x → lv x ) refl ) ) lemma1 where
110 lemma1 : ¬ (Suc (lv b) ≤ lv a) ∨ (ord b d< ord a) 120 lemma1 : ¬ (Suc (lv b) ≤ lv a) ∨ (ord b d< ord a)
167 ( TransFinite ψ caseℵ caseΦ caseOSuc (record { lv = lv ; ord = ord₁ } )) 177 ( TransFinite ψ caseℵ caseΦ caseOSuc (record { lv = lv ; ord = ord₁ } ))
168 TransFinite ψ caseℵ caseΦ caseOSuc record { lv = Suc lv₁ ; ord = ℵ lv₁ } = caseℵ lv₁ 178 TransFinite ψ caseℵ caseΦ caseOSuc record { lv = Suc lv₁ ; ord = ℵ lv₁ } = caseℵ lv₁
169 179
170 -- X' = { x ∈ X | ψ x } ∪ X , Mα = ( ∪ (β < α) Mβ ) ' 180 -- X' = { x ∈ X | ψ x } ∪ X , Mα = ( ∪ (β < α) Mβ ) '
171 181
172 record ConstructibleSet {n : Level} : Set (suc n) where 182 -- Ordinal Definable Set
183
184 record OD {n : Level} : Set (suc n) where
173 field 185 field
174 α : Ordinal {suc n} 186 α : Ordinal {n}
175 constructible : Ordinal {suc n} → Set n 187 def : (x : Ordinal {n} ) → x o< α → Set n
176 -- constructible : (x : Ordinal {suc n} ) → x o< α → Set n 188
177 189 open OD
178 open ConstructibleSet 190 open import Data.Unit
179 191
180 _∋_ : {n : Level} → (ConstructibleSet {n}) → (ConstructibleSet {n} ) → Set (suc n) 192 postulate -- this is proved by Godel numbering of def
181 a ∋ x = ( α x o< α a ) ∧ constructible a ( α x ) 193 _c<_ : {n : Level } → (x y : OD {n} ) → Set n
182 194 ODpre : {n : Level} → IsPreorder {suc n} {suc n} {n} _≡_ _c<_
183 c∅ : {n : Level} → ConstructibleSet 195
184 c∅ {n} = record {α = o∅ ; constructible = λ x → Lift n ⊥ } 196 -- o∋ : {n : Level} → {A : Ordinal {n}} → (OrdinalDefinable {n} A ) → (x : Ordinal {n} ) → (x o< A) → Set n
185 197 -- o∋ a x x<A = def a x x<A
186 record SupR {n m : Level} {S : Set n} ( _≤_ : S → S → Set m ) (ψ : S → S ) (X : S) : Set ((suc n) ⊔ m) where 198
199 -- TC u : Transitive Closure of OD u
200 --
201 -- all elements of u or elements of elements of u, etc...
202 --
203 -- TC Zero = u
204 -- TC (suc n) = ∪ (TC n)
205 --
206 -- TC u = TC ω u = ∪ ( TC n ) n ∈ ω
207 --
208 -- u ∪ ( ∪ u ) ∪ ( ∪ (∪ u ) ) ....
209 --
210 -- HOD = {x | TC x ⊆ OD } ⊆ OD
211 --
212
213 record HOD {n : Level} : Set (suc n) where
187 field 214 field
188 sup : S 215 hod : OD {n}
189 smax : ∀ { x : S } → x ≤ X → ψ x ≤ sup 216 tc : ?
190 suniq : {max : S} → ( ∀ { x : S } → x ≤ X → ψ x ≤ max ) → max ≤ sup
191
192 open SupR
193
194 record dom-ψ {n m : Level} (X : ConstructibleSet {n}) (ψ : ConstructibleSet {n} → ConstructibleSet {n} ) : Set (suc (suc n) ⊔ suc m) where
195 field
196 αψ : Ordinal {suc n}
197 inψ : (x : Ordinal {suc n} ) → Set m
198 X∋x : (x : ConstructibleSet {n} ) → inψ (α x) → X ∋ x
199 vψ : (x : Ordinal {suc n} ) → inψ x → ConstructibleSet {n}
200 cset≡ψ : (x : ConstructibleSet {n} ) → (t : inψ (α x) ) → x ≡ ψ ( vψ (α x) t )
201
202 open dom-ψ
203
204 postulate
205 ψ→C : {n m : Level} (X : ConstructibleSet {n}) (ψ : ConstructibleSet {n} → ConstructibleSet {n} ) → dom-ψ {n} {m} X ψ
206
207 _⊆_ : {n : Level} → ( A B : ConstructibleSet ) → ∀{ x : ConstructibleSet } → Set (suc n)
208 _⊆_ A B {x} = A ∋ x → B ∋ x
209
210 suptraverse : {n : Level} → (X : ConstructibleSet {n}) ( max : ConstructibleSet {n}) ( ψ : ConstructibleSet {n} → ConstructibleSet {n}) → ConstructibleSet {n}
211 suptraverse X max ψ = {!!}
212
213 Sup : {n : Level } → (ψ : ConstructibleSet → ConstructibleSet ) → (X : ConstructibleSet) → SupR (λ x a → (α a ≡ α x) ∨ (a ∋ x)) ψ X
214 sup (Sup {n} ψ X ) = suptraverse X (c∅ {n}) ψ
215 smax (Sup ψ X ) = {!!}
216 suniq (Sup ψ X ) = {!!}
217
218 open import Data.Unit
219 open SupR
220
221 ConstructibleSet→ZF : {n : Level} → ZF {suc n} {suc n}
222 ConstructibleSet→ZF {n} = record {
223 ZFSet = ConstructibleSet
224 ; _∋_ = _∋_
225 ; _≈_ = _≡_
226 ; ∅ = c∅
227 ; _,_ = _,_
228 ; Union = Union
229 ; Power = {!!}
230 ; Select = Select
231 ; Replace = Replace
232 ; infinite = {!!}
233 ; isZF = {!!}
234 } where
235 Select : (X : ConstructibleSet {n}) → (ConstructibleSet {n} → Set (suc n)) → ConstructibleSet {n}
236 Select X ψ = record { α = α X ; constructible = λ x → select x } where
237 select : Ordinal → Set n
238 select x with ψ (record { α = x ; constructible = λ x → constructible X x })
239 ... | t = Lift n ⊤
240 Replace : (X : ConstructibleSet {n} ) → (ConstructibleSet → ConstructibleSet) → ConstructibleSet
241 Replace X ψ = record { α = αψ {n} {suc (suc n)} (ψ→C X ψ) ; constructible = λ x → inψ (ψ→C X ψ) x }
242 _,_ : ConstructibleSet {n} → ConstructibleSet → ConstructibleSet
243 a , b = record { α = maxα (α a) (α b) ; constructible = a∨b } where
244 a∨b : Ordinal {suc n} → Set n
245 a∨b x with (x ≡ α a ) ∨ ( x ≡ α b )
246 ... | t = Lift n ⊤
247 Union : ConstructibleSet → ConstructibleSet
248 Union a = {!!}