diff zf.agda @ 65:164ad5a703d8

¬∅=→∅∈ : {n : Level} → { x : OD {suc n} } → ¬ ( x == od∅ {suc n} ) → x ∋ od∅ {suc n} ¬∅=→∅∈ {n} {x} ne = def-subst (lemma (od→ord x) (subst (λ k → ¬ (k == od∅ {suc n} )) (sym oiso) ne )) oiso refl where lemma : (ox : Ordinal {suc n}) → ¬ (ord→od ox == od∅ {suc n} ) → ord→od ox ∋ od∅ {suc n} lemma ox = TransFinite {suc n} {λ ox → ¬ (ord→od ox == od∅ {suc n} ) → ord→od ox ∋ od∅ {suc n} } { }0 { }1 { }2 ox
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Thu, 30 May 2019 01:02:47 +0900
parents 33fb8228ace9
children 93abc0133b8a
line wrap: on
line diff
--- a/zf.agda	Wed May 29 18:50:57 2019 +0900
+++ b/zf.agda	Thu May 30 01:02:47 2019 +0900
@@ -68,8 +68,8 @@
      -- power : ∀ X ∃ A ∀ t ( t ∈ A ↔ t ⊆ X ) )
      power→ : ∀( A t : ZFSet  ) → Power A ∋ t → ∀ {x}  →  _⊆_ t A {x} 
      power← : ∀( A t : ZFSet  ) → ∀ {x}  →  _⊆_ t A {x}  → Power A ∋ t 
-     -- extentionality : ∀ z ( z ∈ x ⇔ z ∈ y ) ⇒ ∀ w ( x ∈ w ⇔ y ∈ w )
-     extentionality :  ( A B z  : ZFSet  ) → (( A ∋ z ) ⇔ (B ∋ z) ) → A ≈ B
+     -- extensionality : ∀ z ( z ∈ x ⇔ z ∈ y ) ⇒ ∀ w ( x ∈ w ⇔ y ∈ w )
+     extensionality :  ( A B z  : ZFSet  ) → (( A ∋ z ) ⇔ (B ∋ z) ) → A ≈ B
      -- regularity : ∀ x ( x ≠ ∅ → ∃ y ∈ x ( y ∩ x = ∅ ) )
      minimul : (x : ZFSet ) → ¬ (x ≈ ∅) → ZFSet 
      regularity : ∀( x : ZFSet  ) → (not : ¬ (x ≈ ∅)) → (  minimul x not  ∈ x ∧  (  minimul x not  ∩ x  ≈ ∅ ) )