diff zf.agda @ 288:4fcac1eebc74 release

axiom of choice clean up
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sun, 07 Jun 2020 20:31:30 +0900
parents 6f10c47e4e7a
children fbabb20f222e
line wrap: on
line diff
--- a/zf.agda	Thu Aug 29 16:18:37 2019 +0900
+++ b/zf.agda	Sun Jun 07 20:31:30 2020 +0900
@@ -19,7 +19,7 @@
      (Select :  (X : ZFSet  ) → ( ψ : (x : ZFSet ) → Set m ) → ZFSet ) 
      (Replace : ZFSet → ( ZFSet → ZFSet ) → ZFSet )
      (infinite : ZFSet)
-       : Set (suc (n ⊔ m)) where
+       : Set (suc (n ⊔ suc m)) where
   field
      isEquivalence : IsEquivalence {n} {m} {ZFSet} _≈_ 
      -- ∀ x ∀ y ∃ z ∀ t ( z ∋ t → t ≈ x ∨ t  ≈ y)
@@ -35,7 +35,7 @@
   _∩_ : ( A B : ZFSet  ) → ZFSet
   A ∩ B = Select A (  λ x → ( A ∋ x ) ∧ ( B ∋ x )  )
   _∪_ : ( A B : ZFSet  ) → ZFSet
-  A ∪ B = Union (A , B)    -- Select A (  λ x → ( A ∋ x ) ∨ ( B ∋ x )  ) is easier
+  A ∪ B = Union (A , B)    
   {_} : ZFSet → ZFSet
   { x } = ( x ,  x )
   infixr  200 _∈_
@@ -48,14 +48,10 @@
      power← : ∀( A t : ZFSet  ) → ( ∀ {x}  →  _⊆_ t A {x})  → Power A ∋ t 
      -- extensionality : ∀ z ( z ∈ x ⇔ z ∈ y ) ⇒ ∀ w ( x ∈ w ⇔ y ∈ w )
      extensionality :  { A B w : ZFSet  } → ( (z : ZFSet) → ( A ∋ z ) ⇔ (B ∋ z)  ) → ( A ∈ w ⇔ B ∈ w )
-     -- This form of regurality forces choice function
-     -- regularity : ∀ x ( x ≠ ∅ → ∃ y ∈ x ( y ∩ x = ∅ ) )
-     -- minimul : (x : ZFSet ) → ¬ (x ≈ ∅) → ZFSet 
-     -- regularity : ∀( x : ZFSet  ) → (not : ¬ (x ≈ ∅)) → (  minimul x not  ∈ x ∧  (  minimul x not  ∩ x  ≈ ∅ ) )
-     -- another form of regularity
-     -- ε-induction : { ψ : ZFSet → Set m}
-     --         → ( {x : ZFSet } → ({ y : ZFSet } →  x ∋ y → ψ y ) → ψ x )
-     --         → (x : ZFSet ) → ψ x
+     -- regularity without minimum
+     ε-induction : { ψ : ZFSet → Set (suc m)}
+              → ( {x : ZFSet } → ({ y : ZFSet } →  x ∋ y → ψ y ) → ψ x )
+              → (x : ZFSet ) → ψ x
      -- infinity : ∃ A ( ∅ ∈ A ∧ ∀ x ∈ A ( x ∪ { x } ∈ A ) )
      infinity∅ :  ∅ ∈ infinite
      infinity :  ∀( x : ZFSet  ) → x ∈ infinite →  ( x ∪ { x }) ∈ infinite 
@@ -63,11 +59,8 @@
      -- replacement : ∀ x ∀ y ∀ z ( ( ψ ( x , y ) ∧ ψ ( x , z ) ) → y = z ) → ∀ X ∃ A ∀ y ( y ∈ A ↔ ∃ x ∈ X ψ ( x , y ) )
      replacement← : {ψ : ZFSet → ZFSet} → ∀ ( X x : ZFSet  ) → x ∈ X → ψ x ∈  Replace X ψ 
      replacement→ : {ψ : ZFSet → ZFSet} → ∀ ( X x : ZFSet  ) →  ( lt : x ∈  Replace X ψ ) → ¬ ( ∀ (y : ZFSet)  →  ¬ ( x ≈ ψ y ) )
-     -- ∀ X [ ∅ ∉ X → (∃ f : X → ⋃ X ) → ∀ A ∈ X ( f ( A ) ∈ A ) ]
-     choice-func : (X : ZFSet ) → {x : ZFSet } → ¬ ( x ≈ ∅ ) → ( X ∋ x ) → ZFSet
-     choice : (X : ZFSet  ) → {A : ZFSet } → ( X∋A : X ∋ A ) → (not : ¬ ( A ≈ ∅ )) → A ∋ choice-func X not X∋A
 
-record ZF {n m : Level } : Set (suc (n ⊔ m)) where
+record ZF {n m : Level } : Set (suc (n ⊔ suc m)) where
   infixr  210 _,_
   infixl  200 _∋_ 
   infixr  220 _≈_