diff filter.agda @ 329:5544f4921a44

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sun, 05 Jul 2020 12:32:09 +0900
parents b012a915bbb5
children 12071f79f3cf
line wrap: on
line diff
--- a/filter.agda	Sun Jul 05 11:40:55 2020 +0900
+++ b/filter.agda	Sun Jul 05 12:32:09 2020 +0900
@@ -29,45 +29,45 @@
 open Bool
 
 -- Kunen p.76 and p.53, we use ⊆
-record Filter  ( L : OD  ) : Set (suc n) where
+record Filter  ( L : HOD  ) : Set (suc n) where
    field
-       filter : OD   
+       filter : HOD   
        f⊆PL :  filter ⊆ Power L 
-       filter1 : { p q : OD } →  q ⊆ L  → filter ∋ p →  p ⊆ q  → filter ∋ q
-       filter2 : { p q : OD } → filter ∋ p →  filter ∋ q  → filter ∋ (p ∩ q)
+       filter1 : { p q : HOD } →  q ⊆ L  → filter ∋ p →  p ⊆ q  → filter ∋ q
+       filter2 : { p q : HOD } → filter ∋ p →  filter ∋ q  → filter ∋ (p ∩ q)
 
 open Filter
 
-record prime-filter { L : OD } (P : Filter L) : Set (suc (suc n)) where
+record prime-filter { L : HOD } (P : Filter L) : Set (suc (suc n)) where
    field
        proper  : ¬ (filter P ∋ od∅)
-       prime   : {p q : OD } →  filter P ∋ (p ∪ q) → ( filter P ∋ p ) ∨ ( filter P ∋ q )
+       prime   : {p q : HOD } →  filter P ∋ (p ∪ q) → ( filter P ∋ p ) ∨ ( filter P ∋ q )
 
-record ultra-filter { L : OD } (P : Filter L) : Set (suc (suc n)) where
+record ultra-filter { L : HOD } (P : Filter L) : Set (suc (suc n)) where
    field
        proper  : ¬ (filter P ∋ od∅)
-       ultra   : {p : OD } → p ⊆ L →  ( filter P ∋ p ) ∨ (  filter P ∋ ( L \ p) )
+       ultra   : {p : HOD } → p ⊆ L →  ( filter P ∋ p ) ∨ (  filter P ∋ ( L \ p) )
 
 open _⊆_
 
-trans-⊆ :  { A B C : OD} → A ⊆ B → B ⊆ C → A ⊆ C
+trans-⊆ :  { A B C : HOD} → A ⊆ B → B ⊆ C → A ⊆ C
 trans-⊆ A⊆B B⊆C = record { incl = λ x → incl B⊆C (incl A⊆B x) }
 
-power→⊆ :  ( A t : OD) → Power A ∋ t → t ⊆ A
-power→⊆ A t  PA∋t = record { incl = λ {x} t∋x → ODC.double-neg-eilm O (t1 t∋x) } where
-   t1 : {x : OD }  → t ∋ x → ¬ ¬ (A ∋ x)
+power→⊆ :  ( A t : HOD) → Power A ∋ t → t ⊆ A
+power→⊆ A t  PA∋t = record { incl = λ {x} t∋x → HODC.double-neg-eilm O (t1 t∋x) } where
+   t1 : {x : HOD }  → t ∋ x → ¬ ¬ (A ∋ x)
    t1 = zf.IsZF.power→ isZF A t PA∋t
 
-∈-filter : {L p : OD} → (P : Filter L ) → filter P ∋ p → p ⊆ L
+∈-filter : {L p : HOD} → (P : Filter L ) → filter P ∋ p → p ⊆ L
 ∈-filter {L} {p} P lt = power→⊆ L p ( incl (f⊆PL P) lt )
 
-∪-lemma1 : {L p q : OD } → (p ∪ q)  ⊆ L → p ⊆ L
+∪-lemma1 : {L p q : HOD } → (p ∪ q)  ⊆ L → p ⊆ L
 ∪-lemma1 {L} {p} {q} lt = record { incl = λ {x} p∋x → incl lt (case1 p∋x) }
 
-∪-lemma2 : {L p q : OD } → (p ∪ q)  ⊆ L → q ⊆ L
+∪-lemma2 : {L p q : HOD } → (p ∪ q)  ⊆ L → q ⊆ L
 ∪-lemma2 {L} {p} {q} lt = record { incl = λ {x} p∋x → incl lt (case2 p∋x) }
 
-q∩q⊆q : {p q : OD } → (q ∩ p) ⊆ q 
+q∩q⊆q : {p q : HOD } → (q ∩ p) ⊆ q 
 q∩q⊆q = record { incl = λ lt → proj1 lt } 
 
 -----
@@ -75,12 +75,12 @@
 --  ultra filter is prime
 --
 
-filter-lemma1 :  {L : OD} → (P : Filter L)  → ∀ {p q : OD } → ultra-filter P  → prime-filter P 
+filter-lemma1 :  {L : HOD} → (P : Filter L)  → ∀ {p q : HOD } → ultra-filter P  → prime-filter P 
 filter-lemma1 {L} P u = record {
          proper = ultra-filter.proper u
        ; prime = lemma3
     } where
-  lemma3 : {p q : OD} → filter P ∋ (p ∪ q) → ( filter P ∋ p ) ∨ ( filter P ∋ q )
+  lemma3 : {p q : HOD} → filter P ∋ (p ∪ q) → ( filter P ∋ p ) ∨ ( filter P ∋ q )
   lemma3 {p} {q} lt with ultra-filter.ultra u (∪-lemma1 (∈-filter P lt) )
   ... | case1 p∈P  = case1 p∈P
   ... | case2 ¬p∈P = case2 (filter1 P {q ∩ (L \ p)} (∪-lemma2 (∈-filter P lt)) lemma7 lemma8) where
@@ -104,28 +104,28 @@
 --  if Filter contains L, prime filter is ultra
 --
 
-filter-lemma2 :  {L : OD} → (P : Filter L)  → filter P ∋ L → prime-filter P → ultra-filter P
+filter-lemma2 :  {L : HOD} → (P : Filter L)  → filter P ∋ L → prime-filter P → ultra-filter P
 filter-lemma2 {L} P f∋L prime = record {
          proper = prime-filter.proper prime
        ; ultra = λ {p}  p⊆L → prime-filter.prime prime (lemma p  p⊆L)
    } where
         open _==_
-        p+1-p=1 : {p : OD} → p ⊆ L → L == (p ∪ (L \ p)) 
-        eq→ (p+1-p=1 {p} p⊆L) {x} lt with ODC.decp O (def p x)
+        p+1-p=1 : {p : HOD} → p ⊆ L → L == (p ∪ (L \ p)) 
+        eq→ (p+1-p=1 {p} p⊆L) {x} lt with HODC.decp O (def p x)
         eq→ (p+1-p=1 {p} p⊆L) {x} lt | yes p∋x = case1 p∋x
         eq→ (p+1-p=1 {p} p⊆L) {x} lt | no ¬p = case2 (record { proj1 = lt ; proj2 = ¬p })
         eq← (p+1-p=1 {p} p⊆L) {x} ( case1 p∋x ) = subst (λ k → def L k ) diso (incl p⊆L ( subst (λ k → def p k) (sym diso) p∋x  )) 
         eq← (p+1-p=1 {p} p⊆L) {x} ( case2 ¬p  ) = proj1 ¬p
-        lemma : (p : OD) → p ⊆ L   →  filter P ∋ (p ∪ (L \ p))
+        lemma : (p : HOD) → p ⊆ L   →  filter P ∋ (p ∪ (L \ p))
         lemma p p⊆L = subst (λ k → filter P ∋ k ) (==→o≡ (p+1-p=1 p⊆L)) f∋L
 
-record Dense  (P : OD ) : Set (suc n) where
+record Dense  (P : HOD ) : Set (suc n) where
    field
-       dense : OD
+       dense : HOD
        incl :  dense ⊆ P 
-       dense-f : OD → OD
-       dense-d :  { p : OD} → P ∋ p  → dense ∋ dense-f p  
-       dense-p :  { p : OD} → P ∋ p  →  p ⊆ (dense-f p) 
+       dense-f : HOD → HOD
+       dense-d :  { p : HOD} → P ∋ p  → dense ∋ dense-f p  
+       dense-p :  { p : HOD} → P ∋ p  →  p ⊆ (dense-f p) 
 
 --    the set of finite partial functions from ω to 2
 --
@@ -134,18 +134,18 @@
 --
 -- Hω2 : Filter (Power (Power infinite))
 
-record Ideal  ( L : OD  ) : Set (suc n) where
+record Ideal  ( L : HOD  ) : Set (suc n) where
    field
-       ideal : OD   
+       ideal : HOD   
        i⊆PL :  ideal ⊆ Power L 
-       ideal1 : { p q : OD } →  q ⊆ L  → ideal ∋ p →  q ⊆ p  → ideal ∋ q
-       ideal2 : { p q : OD } → ideal ∋ p →  ideal ∋ q  → ideal ∋ (p ∪ q)
+       ideal1 : { p q : HOD } →  q ⊆ L  → ideal ∋ p →  q ⊆ p  → ideal ∋ q
+       ideal2 : { p q : HOD } → ideal ∋ p →  ideal ∋ q  → ideal ∋ (p ∪ q)
 
 open Ideal
 
-proper-ideal : {L : OD} → (P : Ideal L ) → {p : OD} → Set n
+proper-ideal : {L : HOD} → (P : Ideal L ) → {p : HOD} → Set n
 proper-ideal {L} P {p} = ideal P ∋ od∅
 
-prime-ideal : {L : OD} → Ideal L → ∀ {p q : OD } → Set n
+prime-ideal : {L : HOD} → Ideal L → ∀ {p q : HOD } → Set n
 prime-ideal {L} P {p} {q} =  ideal P ∋ ( p ∩ q) → ( ideal P ∋ p ) ∨ ( ideal P ∋ q )