### diff ODC.agda @ 276:6f10c47e4e7a

separate choice fix sup-o
author Shinji KONO Sat, 09 May 2020 09:02:52 +0900 OD.agda@29a85a427ed2 d9d3654baee1
line wrap: on
line diff
```--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/ODC.agda	Sat May 09 09:02:52 2020 +0900
@@ -0,0 +1,139 @@
+open import Level
+open import Ordinals
+module ODC {n : Level } (O : Ordinals {n} ) where
+
+open import zf
+open import Data.Nat renaming ( zero to Zero ; suc to Suc ;  ℕ to Nat ; _⊔_ to _n⊔_ )
+open import  Relation.Binary.PropositionalEquality
+open import Data.Nat.Properties
+open import Data.Empty
+open import Relation.Nullary
+open import Relation.Binary
+open import Relation.Binary.Core
+
+open import logic
+open import nat
+import OD
+
+open inOrdinal O
+open OD O
+open OD.OD
+open OD._==_
+
+postulate
+  -- mimimul and x∋minimal is an Axiom of choice
+  minimal : (x : OD  ) → ¬ (x == od∅ )→ OD
+  -- this should be ¬ (x == od∅ )→ ∃ ox → x ∋ Ord ox  ( minimum of x )
+  x∋minimal : (x : OD  ) → ( ne : ¬ (x == od∅ ) ) → def x ( od→ord ( minimal x ne ) )
+  -- minimality (may proved by ε-induction )
+  minimal-1 : (x : OD  ) → ( ne : ¬ (x == od∅ ) ) → (y : OD ) → ¬ ( def (minimal x ne) (od→ord y)) ∧ (def x (od→ord  y) )
+
+
+--
+-- Axiom of choice in intutionistic logic implies the exclude middle
+--     https://plato.stanford.edu/entries/axiom-choice/#AxiChoLog
+--
+
+ppp :  { p : Set n } { a : OD  } → record { def = λ x → p } ∋ a → p
+ppp  {p} {a} d = d
+
+p∨¬p : ( p : Set n ) → p ∨ ( ¬ p )         -- assuming axiom of choice
+p∨¬p  p with is-o∅ ( od→ord ( record { def = λ x → p } ))
+p∨¬p  p | yes eq = case2 (¬p eq) where
+   ps = record { def = λ x → p }
+   lemma : ps == od∅ → p → ⊥
+   lemma eq p0 = ¬x<0  {od→ord ps} (eq→ eq p0 )
+   ¬p : (od→ord ps ≡ o∅) → p → ⊥
+   ¬p eq = lemma ( subst₂ (λ j k → j ==  k ) oiso o∅≡od∅ ( o≡→== eq ))
+p∨¬p  p | no ¬p = case1 (ppp  {p} {minimal ps (λ eq →  ¬p (eqo∅ eq))} lemma) where
+   ps = record { def = λ x → p }
+   eqo∅ : ps ==  od∅  → od→ord ps ≡  o∅
+   eqo∅ eq = subst (λ k → od→ord ps ≡ k) ord-od∅ ( cong (λ k → od→ord k ) (==→o≡ eq))
+   lemma : ps ∋ minimal ps (λ eq →  ¬p (eqo∅ eq))
+   lemma = x∋minimal ps (λ eq →  ¬p (eqo∅ eq))
+
+decp : ( p : Set n ) → Dec p   -- assuming axiom of choice
+decp  p with p∨¬p p
+decp  p | case1 x = yes x
+decp  p | case2 x = no x
+
+double-neg-eilm : {A : Set n} → ¬ ¬ A → A      -- we don't have this in intutionistic logic
+double-neg-eilm  {A} notnot with decp  A                         -- assuming axiom of choice
+... | yes p = p
+... | no ¬p = ⊥-elim ( notnot ¬p )
+
+OrdP : ( x : Ordinal  ) ( y : OD  ) → Dec ( Ord x ∋ y )
+OrdP  x y with trio< x (od→ord y)
+OrdP  x y | tri< a ¬b ¬c = no ¬c
+OrdP  x y | tri≈ ¬a refl ¬c = no ( o<¬≡ refl )
+OrdP  x y | tri> ¬a ¬b c = yes c
+
+open import zfc
+
+OD→ZFC : ZFC
+OD→ZFC   = record {
+    ZFSet = OD
+    ; _∋_ = _∋_
+    ; _≈_ = _==_
+    ; ∅  = od∅
+    ; Select = Select
+    ; isZFC = isZFC
+ } where
+    -- infixr  200 _∈_
+    -- infixr  230 _∩_ _∪_
+    isZFC : IsZFC (OD )  _∋_  _==_ od∅ Select
+    isZFC = record {
+       choice-func = choice-func ;
+       choice = choice
+     } where
+         -- Axiom of choice ( is equivalent to the existence of minimal in our case )
+         -- ∀ X [ ∅ ∉ X → (∃ f : X → ⋃ X ) → ∀ A ∈ X ( f ( A ) ∈ A ) ]
+         choice-func : (X : OD  ) → {x : OD } → ¬ ( x == od∅ ) → ( X ∋ x ) → OD
+         choice-func X {x} not X∋x = minimal x not
+         choice : (X : OD  ) → {A : OD } → ( X∋A : X ∋ A ) → (not : ¬ ( A == od∅ )) → A ∋ choice-func X not X∋A
+         choice X {A} X∋A not = x∋minimal A not
+
+         --- With assuption of OD is ordered,  p ∨ ( ¬ p ) <=> axiom of choice
+         ---
+         record choiced  ( X : OD) : Set (suc n) where
+          field
+             a-choice : OD
+             is-in : X ∋ a-choice
+
+         choice-func' :  (X : OD ) → (p∨¬p : ( p : Set (suc n)) → p ∨ ( ¬ p )) → ¬ ( X == od∅ ) → choiced X
+         choice-func'  X p∨¬p not = have_to_find where
+                 ψ : ( ox : Ordinal ) → Set (suc n)
+                 ψ ox = (( x : Ordinal ) → x o< ox  → ( ¬ def X x )) ∨ choiced X
+                 lemma-ord : ( ox : Ordinal  ) → ψ ox
+                 lemma-ord  ox = TransFinite {ψ} induction ox where
+                    ∋-p : (A x : OD ) → Dec ( A ∋ x )
+                    ∋-p A x with p∨¬p (Lift (suc n) ( A ∋ x )) -- LEM
+                    ∋-p A x | case1 (lift t)  = yes t
+                    ∋-p A x | case2 t  = no (λ x → t (lift x ))
+                    ∀-imply-or :  {A : Ordinal  → Set n } {B : Set (suc n) }
+                        → ((x : Ordinal ) → A x ∨ B) →  ((x : Ordinal ) → A x) ∨ B
+                    ∀-imply-or  {A} {B} ∀AB with p∨¬p (Lift ( suc n ) ((x : Ordinal ) → A x)) -- LEM
+                    ∀-imply-or  {A} {B} ∀AB | case1 (lift t) = case1 t
+                    ∀-imply-or  {A} {B} ∀AB | case2 x  = case2 (lemma (λ not → x (lift not ))) where
+                         lemma : ¬ ((x : Ordinal ) → A x) →  B
+                         lemma not with p∨¬p B
+                         lemma not | case1 b = b
+                         lemma not | case2 ¬b = ⊥-elim  (not (λ x → dont-orb (∀AB x) ¬b ))
+                    induction : (x : Ordinal) → ((y : Ordinal) → y o< x → ψ y) → ψ x
+                    induction x prev with ∋-p X ( ord→od x)
+                    ... | yes p = case2 ( record { a-choice = ord→od x ; is-in = p } )
+                    ... | no ¬p = lemma where
+                         lemma1 : (y : Ordinal) → (y o< x → def X y → ⊥) ∨ choiced X
+                         lemma1 y with ∋-p X (ord→od y)
+                         lemma1 y | yes y<X = case2 ( record { a-choice = ord→od y ; is-in = y<X } )
+                         lemma1 y | no ¬y<X = case1 ( λ lt y<X → ¬y<X (subst (λ k → def X k ) (sym diso) y<X ) )
+                         lemma :  ((y : Ordinals.ord O) → (O Ordinals.o< y) x → def X y → ⊥) ∨ choiced X
+                         lemma = ∀-imply-or lemma1
+                 have_to_find : choiced X
+                 have_to_find = dont-or  (lemma-ord (od→ord X )) ¬¬X∋x where
+                     ¬¬X∋x : ¬ ((x : Ordinal) → x o< (od→ord X) → def X x → ⊥)
+                     ¬¬X∋x nn = not record {
+                            eq→ = λ {x} lt → ⊥-elim  (nn x (def→o< lt) lt)
+                          ; eq← = λ {x} lt → ⊥-elim ( ¬x<0 lt )
+                        }
+         ```