view src/generic-filter.agda @ 1256:0b7e4eb68afc

change to Ideal
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Thu, 16 Mar 2023 19:01:47 +0900
parents afecaee48825
children 004d8794697f
line wrap: on
line source

{-# OPTIONS --allow-unsolved-metas #-}
import Level
open import Ordinals
module generic-filter {n : Level.Level } (O : Ordinals {n})   where

import filter
open import zf
open import logic
-- open import partfunc {n} O
import OD

open import Relation.Nullary
open import Relation.Binary
open import Data.Empty
open import Relation.Binary
open import Relation.Binary.Core
open import Relation.Binary.PropositionalEquality
open import Data.Nat
import BAlgebra

open BAlgebra O

open inOrdinal O
open OD O
open OD.OD
open ODAxiom odAxiom
import OrdUtil
import ODUtil
open Ordinals.Ordinals  O
open Ordinals.IsOrdinals isOrdinal
open Ordinals.IsNext isNext
open OrdUtil O
open ODUtil O


import ODC

open filter O

open _∧_
open _∨_
open Bool


open HOD

-------
--    the set of finite partial functions from ω to 2
--
--

open import Data.List hiding (filter)
open import Data.Maybe

open import ZProduct O

record CountableModel : Set (Level.suc (Level.suc n)) where
   field
       ctl-M : HOD
       ctl→ : ℕ → Ordinal
       ctl<M : (x : ℕ) → odef (ctl-M) (ctl→ x)
       ctl← : (x : Ordinal )→  odef (ctl-M ) x → ℕ
       ctl-iso→ : { x : Ordinal } → (lt : odef (ctl-M) x )  → ctl→ (ctl← x lt ) ≡ x
       TC : {x y : Ordinal} → odef ctl-M x → odef (* x) y → odef ctl-M y
       is-model : (x : HOD) → & x o< & ctl-M → ctl-M ∋ (x ∩ ctl-M)
       -- we have no otherway round
       -- ctl-iso← : { x : ℕ }  →  ctl← (ctl→ x ) (ctl<M x)  ≡ x
--
-- almmost universe
-- find-p contains ∃ x : Ordinal → x o< & M → ∀ r ∈ M → ∈ Ord x
--

-- we expect  P ∈ * ctl-M ∧ G  ⊆ L ⊆ Power P  , ¬ G ∈ * ctl-M,

open CountableModel

----
--   a(n) ∈ M
--   ∃ q ∈ L ⊆ Power P → q ∈ a(n) ∧ p(n) ⊆ q
--
PGHOD :  (i : ℕ) (L : HOD) (C : CountableModel ) → (p : Ordinal) → HOD
PGHOD i L C p = record { od = record { def = λ x  →
       odef L x ∧ odef (* (ctl→ C i)) x  ∧  ( (y : Ordinal ) → odef (* p) y →  odef (* x) y ) }
   ; odmax = odmax L  ; <odmax = λ {y} lt → <odmax L (proj1 lt) }

---
--   p(n+1) = if ({q | q ∈ a(n) ∧ p(n) ⊆ q)} != ∅ then q otherwise p(n)
--
find-p :  (L : HOD ) (C : CountableModel )  (i : ℕ) → (x : Ordinal) → Ordinal
find-p L C zero x = x
find-p L C (suc i) x with is-o∅ ( & ( PGHOD i L C (find-p L C i x)) )
... | yes y  = find-p L C i x
... | no not  = & (ODC.minimal O ( PGHOD i L C (find-p L C i x)) (λ eq → not (=od∅→≡o∅ eq)))  -- axiom of choice

---
-- G = { r ∈ L ⊆ Power P | ∃ n → r ⊆ p(n) }
--
record PDN  (L p : HOD ) (C : CountableModel )  (x : Ordinal) : Set n where
   field
       gr : ℕ
       pn<gr : (y : Ordinal) → odef (* x) y → odef (* (find-p L C gr (& p))) y
       x∈PP  : odef L x

open PDN

---
-- G as a HOD
--
PDHOD :  (L p : HOD ) (C : CountableModel  ) → HOD
PDHOD L p C  = record { od = record { def = λ x →  PDN L p C x }
    ; odmax = odmax L ; <odmax = λ {y} lt → <odmax L {y} (PDN.x∈PP lt)  }

open PDN

----
--  Generic Filter on Power P for HOD's Countable Ordinal (G ⊆ Power P ≡ G i.e. ℕ → P → Set )
--
--  p 0 ≡ ∅
--  p (suc n) = if ∃ q ∈ M ∧ p n ⊆ q → q  (by axiom of choice) ( q =  * ( ctl→ n ) )
---             else p n

P∅ : {P : HOD} → odef (Power P) o∅
P∅ {P} =  subst (λ k → odef (Power P) k ) ord-od∅ (lemma o∅  o∅≡od∅) where
    lemma : (x : Ordinal ) → * x ≡ od∅ → odef (Power P) (& od∅)
    lemma x eq = power← P od∅  (λ {x} lt → ⊥-elim (¬x<0 lt ))
x<y→∋ : {x y : Ordinal} → odef (* x) y → * x ∋ * y
x<y→∋ {x} {y} lt = subst (λ k → odef (* x) k ) (sym &iso) lt

gf05 : {a b : HOD} {x : Ordinal } → (odef (a ∪ b) x ) → ¬ odef a x → ¬ odef b x → ⊥
gf05 {a} {b} {x} (case1 ax) nax nbx = nax ax
gf05 {a} {b} {x} (case2 bx) nax nbx = nbx bx

gf02 : {P a b : HOD } → (P \ a) ∩ (P \ b) ≡ ( P \ (a ∪ b) )
gf02 {P} {a} {b} = ==→o≡  record { eq→ = gf03 ; eq← = gf04 } where
       gf03 : {x : Ordinal} → odef ((P \ a) ∩ (P \ b)) x → odef (P \ (a ∪ b)) x
       gf03 {x} ⟪ ⟪ Px , ¬ax ⟫ , ⟪ _ , ¬bx ⟫ ⟫ = ⟪ Px , (λ pab → gf05 {a} {b} {x} pab ¬ax ¬bx )   ⟫
       gf04 : {x : Ordinal} → odef (P \ (a ∪ b)) x → odef ((P \ a) ∩ (P \ b)) x
       gf04 {x} ⟪ Px , abx ⟫  = ⟪ ⟪ Px , (λ ax → abx (case1 ax) ) ⟫ , ⟪ Px  , (λ bx → abx (case2 bx) ) ⟫ ⟫

gf45 : {P a b : HOD } → (P \ a) ∪ (P \ b) ≡ ( P \ (a ∩ b) )
gf45 {P} {a} {b} = ==→o≡  record { eq→ = gf03 ; eq← = gf04 } where
       gf03 : {x : Ordinal} → odef ((P \ a) ∪ (P \ b)) x → odef (P \ (a ∩ b)) x
       gf03 {x} (case1 pa) = ⟪ proj1 pa , (λ ab → proj2 pa (proj1 ab) ) ⟫ 
       gf03 {x} (case2 pb) = ⟪ proj1 pb , (λ ab → proj2 pb (proj2 ab) ) ⟫ 
       gf04 : {x : Ordinal} → odef (P \ (a ∩ b)) x → odef ((P \ a) ∪ (P \ b)) x
       gf04 {x} ⟪ Px , nab ⟫ with ODC.p∨¬p O (odef b x)
       ... | case1 bx = case1 ⟪ Px , ( λ ax → nab ⟪ ax , bx ⟫ ) ⟫
       ... | case2 nbx = case2 ⟪ Px , ( λ bx → nbx bx ) ⟫

open import Data.Nat.Properties
open import nat

p-monotonic1 :  (L p : HOD ) (C : CountableModel  ) → {n : ℕ} → (* (find-p L C n (& p))) ⊆ (* (find-p L C (suc n) (& p)))
p-monotonic1 L p C {n} {x} with is-o∅ (& (PGHOD n L C (find-p L C n (& p))))
... | yes y =  refl-⊆ {* (find-p L C n (& p))}
... | no not = λ  lt →   proj2 (proj2 fmin∈PGHOD) _ lt   where
    fmin : HOD
    fmin = ODC.minimal O (PGHOD n L C (find-p L C n (& p))) (λ eq → not (=od∅→≡o∅ eq))
    fmin∈PGHOD : PGHOD n L C (find-p L C n (& p)) ∋ fmin
    fmin∈PGHOD = ODC.x∋minimal O (PGHOD n L C (find-p L C n (& p))) (λ eq → not (=od∅→≡o∅ eq))

p-monotonic :  (L p : HOD ) (C : CountableModel  ) → {n m : ℕ} → n ≤ m → (* (find-p L C n (& p))) ⊆ (* (find-p L C m (& p)))
p-monotonic L p C {zero} {zero} n≤m = refl-⊆ {* (find-p L C zero (& p))}
p-monotonic L p C {zero} {suc m} z≤n lt = p-monotonic1 L p C {m} (p-monotonic L p C {zero} {m} z≤n lt )
p-monotonic L p C {suc n} {suc m} (s≤s n≤m) with <-cmp n m
... | tri< a ¬b ¬c = λ lt → p-monotonic1 L p C {m} (p-monotonic L p C {suc n} {m} a lt)
... | tri≈ ¬a refl ¬c = λ x → x
... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> n≤m c )

record Expansion  (L : HOD) {p : HOD } (dense : HOD) (Lp : L ∋ p) : Set (Level.suc n) where
   field
       expansion : HOD
       dense∋exp : dense ∋ expansion 
       p⊆exp : p ⊆ expansion 

record Dense  {L P : HOD } (LP : L ⊆ Power P)  : Set (Level.suc n) where
   field
       dense : HOD
       d⊆P :  dense ⊆ L
       has-expansion : {p : HOD} → (Lp : L ∋ p) → Expansion L dense Lp

record GenericFilter {L P : HOD} (LP : L ⊆ Power P) (M : HOD) : Set (Level.suc n) where
    field
       genf : Ideal {L} {P} LP
       generic : (D : Dense {L} {P} LP ) → M ∋ Dense.dense D → ¬ ( (Dense.dense D ∩ Ideal.ideal genf ) ≡ od∅ )

P-GenericFilter : (P L p0 : HOD ) → (LP : L ⊆ Power P) → L ∋ p0
      → (C : CountableModel ) → GenericFilter {L} {P} LP ( ctl-M C )
P-GenericFilter P L p0 L⊆PP Lp0 C = record {
      genf = record { ideal = PDHOD L p0 C ; i⊆L = x∈PP ; ideal1 = ideal1 ; ideal2 =  ? }
    ; generic = fdense
   } where
       ideal1 : {p q : HOD} → L ∋ q → PDHOD L p0 C ∋ p → q ⊆ p → PDHOD L p0 C ∋ q
       ideal1 {p} {q} Lq record { gr = gr ; pn<gr = pn<gr ; x∈PP = x∈PP } q⊆p =  
                 record { gr = gr ; pn<gr = λ y qy → pn<gr y (gf00 qy) ; x∈PP = Lq }  where
            gf00 : {y : Ordinal } →  odef (* (& q)) y → odef (* (& p)) y  
            gf00 {y} qy = subst (λ k → odef k y ) (sym *iso) (q⊆p (subst (λ k → odef k y) *iso qy ))
       ideal2 : {p q : HOD} → PDHOD L p0 C ∋ p → PDHOD L p0 C ∋ q → L ∋ (p ∪ q) → PDHOD L p0 C ∋ (p ∪ q)
       ideal2 {p} {q} record { gr = pgr ; pn<gr = ppn ; x∈PP = PPp } 
                      record { gr = qgr ; pn<gr = qpn ; x∈PP = PPq } Lpq = gf01 where
            Pp = record { gr = pgr ; pn<gr = ppn ; x∈PP = PPp } 
            Pq = record { gr = qgr ; pn<gr = qpn ; x∈PP = PPq } 
            gf01 : PDHOD L p0 C ∋ (p ∪ q)
            gf01 with <-cmp pgr qgr
            ... | tri< a ¬b ¬c = record { gr = qgr ; pn<gr = gf03 ; x∈PP = Lpq } where
               gf03 : (y : Ordinal) → odef (* (& (p ∪ q))) y → odef (* (find-p L C qgr (& p0))) y
               gf03 y pqy = gf15 y pqy where
                 gf16 : gr Pp ≤ gr Pq
                 gf16 = <to≤ a
                 gf15 :  (y : Ordinal) → odef (* (& (p ∪ q))) y → odef (* (find-p L C (gr Pq) (& p0))) y
                 gf15 y gpqy with subst (λ k → odef k y ) *iso gpqy
                 ... | case1 xpy = p-monotonic L p0 C gf16 (PDN.pn<gr Pp y (subst (λ k → odef k y) (sym *iso) xpy) )
                 ... | case2 xqy = PDN.pn<gr Pq _ (subst (λ k → odef k y) (sym *iso) xqy)
            ... | tri≈ ¬a refl ¬c = record { gr = qgr ; pn<gr = gf03 ; x∈PP = Lpq } where
               gf03 : (y : Ordinal) → odef (* (& (p ∪ q))) y → odef (* (find-p L C qgr (& p0))) y
               gf03 y pqy = gf15 y pqy where
                 gf16 : gr Pp ≤ gr Pq
                 gf16 = ≤-refl
                 gf15 :  (y : Ordinal) → odef (* (& (p ∪ q))) y → odef (* (find-p L C (gr Pq) (& p0))) y
                 gf15 y gpqy with subst (λ k → odef k y ) *iso gpqy
                 ... | case1 xpy = p-monotonic L p0 C gf16 (PDN.pn<gr Pp y (subst (λ k → odef k y) (sym *iso) xpy) )
                 ... | case2 xqy = PDN.pn<gr Pq _ (subst (λ k → odef k y) (sym *iso) xqy)
            ... | tri> ¬a ¬b c = record { gr = pgr ; pn<gr = gf03 ; x∈PP = Lpq } where
               gf03 : (y : Ordinal) → odef (* (& (p ∪ q))) y → odef (* (find-p L C pgr (& p0))) y
               gf03 y ppy = gf15 y ppy where
                 gf16 : gr Pq ≤ gr Pp
                 gf16 = <to≤ c
                 gf15 :  (y : Ordinal) → odef (* (& (p ∪ q))) y → odef (* (find-p L C (gr Pp) (& p0))) y
                 gf15 y gppy with subst (λ k → odef k y ) *iso gppy
                 ... | case2 xqy = p-monotonic L p0 C gf16 (PDN.pn<gr Pq y (subst (λ k → odef k y) (sym *iso) xqy) )
                 ... | case1 xpy = PDN.pn<gr Pp _ (subst (λ k → odef k y) (sym *iso) xpy)
       fdense : (D : Dense {L} {P} L⊆PP ) → (ctl-M C ) ∋ Dense.dense D  → ¬ (Dense.dense D ∩ (PDHOD L p0 C)) ≡ od∅
       fdense D MD eq0  = ⊥-elim (  ∅< {Dense.dense D ∩ PDHOD L p0 C} fd01 (≡od∅→=od∅ eq0 )) where
           open Dense
           open Expansion
           fd09 : (i : ℕ ) → odef L (find-p L C i (& p0))
           fd09 zero = Lp0
           fd09 (suc i) with is-o∅ ( & ( PGHOD i L C (find-p L C i (& p0))) )
           ... | yes _ = fd09 i
           ... | no not = fd17 where
              fd19 =  ODC.minimal O ( PGHOD i L C (find-p L C i (& p0))) (λ eq → not (=od∅→≡o∅ eq))  
              fd18 : PGHOD i L C (find-p L C i (& p0)) ∋ fd19
              fd18 = ODC.x∋minimal O (PGHOD i L C (find-p L C i (& p0))) (λ eq → not (=od∅→≡o∅ eq))
              fd17 :  odef L ( & (ODC.minimal O ( PGHOD i L C (find-p L C i (& p0))) (λ eq → not (=od∅→≡o∅ eq)))  )
              fd17 = proj1 fd18 
           an : ℕ
           an = ctl← C (& (dense D)) MD  
           pn : Ordinal
           pn = find-p L C an (& p0)
           pn+1 : Ordinal
           pn+1 = find-p L C (suc an) (& p0)
           d=an : dense D ≡ * (ctl→ C an) 
           d=an = begin dense D ≡⟨ sym *iso ⟩
                    * ( & (dense D)) ≡⟨ cong (*) (sym (ctl-iso→  C MD )) ⟩
                    * (ctl→ C an) ∎  where open ≡-Reasoning
           fd07 : odef (dense D) pn+1
           fd07 with is-o∅ ( & ( PGHOD an L C (find-p L C an (& p0))) )
           ... | yes y = ⊥-elim ( ¬x<0 ( _==_.eq→ fd10 fd21 ) ) where
              L∋pn : L ∋ * (find-p L C an (& p0))
              L∋pn = subst (λ k → odef L k) (sym &iso) (fd09 an )
              exp = has-expansion D L∋pn
              L∋df : L ∋ ( expansion exp )
              L∋df = (d⊆P D) (dense∋exp exp)
              pn∋df : (* (ctl→ C an)) ∋ ( expansion exp)
              pn∋df = subst (λ k → odef k (& ( expansion exp))) d=an (dense∋exp exp )
              pn⊆df : (y : Ordinal) → odef (* (find-p L C an (& p0))) y → odef (* (& (expansion exp))) y
              pn⊆df y py = subst (λ k → odef k y ) (sym *iso) (p⊆exp exp py)
              fd21 : odef (PGHOD an L C (find-p L C an (& p0)) ) (& (expansion exp))
              fd21 = ⟪ L∋df , ⟪ pn∋df , pn⊆df ⟫ ⟫
              fd10 :  PGHOD an L C (find-p L C an (& p0)) =h= od∅
              fd10 = ≡o∅→=od∅ y
           ... | no not = fd27 where
              fd29 =  ODC.minimal O ( PGHOD an L C (find-p L C an (& p0))) (λ eq → not (=od∅→≡o∅ eq))
              fd28 : PGHOD an L C (find-p L C an (& p0)) ∋ fd29
              fd28 = ODC.x∋minimal O (PGHOD an L C (find-p L C an (& p0))) (λ eq → not (=od∅→≡o∅ eq))
              fd27 :  odef (dense D) (& fd29)
              fd27 = subst (λ k → odef k (& fd29)) (sym d=an) (proj1 (proj2 fd28)) 
           fd03 : odef (PDHOD L p0 C) pn+1
           fd03 = record { gr = suc an ; pn<gr = λ y lt → lt ; x∈PP = fd09 (suc an)} 
           fd01 : (dense D ∩ PDHOD L p0 C) ∋ (* pn+1)
           fd01 = ⟪ subst (λ k → odef (dense D)  k ) (sym &iso) fd07 , subst (λ k → odef  (PDHOD L p0 C) k) (sym &iso) fd03 ⟫  

open GenericFilter
open Filter

record NotCompatible  (L p : HOD ) (L∋a : L ∋ p ) : Set (Level.suc (Level.suc n)) where
   field
      q r : HOD
      Lq : L ∋ q
      Lr : L ∋ r
      p⊆q : p ⊆ q  
      p⊆r : p ⊆ r  
      ¬compat : (s : HOD) → L ∋ s → ¬ ( (q ⊆ s) ∧ (r ⊆ s) )

lemma232 : (P L p0 : HOD ) → (LPP : L ⊆ Power P) → (Lp0 : L ∋ p0 )
      → (C : CountableModel ) 
      → ctl-M C ∋ L
      → ( {p : HOD} → (Lp : L ∋ p ) → NotCompatible L p Lp )
      →  ¬ ( ctl-M C ∋  Ideal.ideal (genf ( P-GenericFilter P L p0 LPP Lp0 C )))
lemma232 P L p0 LPP Lp0 C ML NC MF = ¬rgf∩D=0 record { eq→ = λ {x} rgf∩D → ⊥-elim( proj2 (proj1 rgf∩D) (proj2 rgf∩D)) 
        ; eq← = λ lt → ⊥-elim (¬x<0 lt) } where
    PG = P-GenericFilter P L p0 LPP Lp0 C 
    GF =  genf PG
    rgf =  Ideal.ideal (genf PG)
    M = ctl-M C
    D : HOD  
    D = L \ rgf
    M∋DM : M ∋ (D ∩ M )
    M∋DM = is-model C D ?
    M∋D : M ∋ D 
    M∋D = ?
    M∋G : M ∋ rgf
    M∋G = MF
    D⊆PP : D ⊆ Power P
    D⊆PP {x} ⟪ Lx , ngx ⟫  = LPP Lx 
    DD : Dense {L} {P} LPP
    DD = record { dense = D ; d⊆P = proj1 ; has-expansion = exp } where
        exp : {p : HOD} → (Lp : L ∋ p) → Expansion L D Lp
        exp {p} Lp = exp1 where
            q : HOD
            q = NotCompatible.q (NC Lp)
            r : HOD
            r = NotCompatible.r (NC Lp)
            Lq : L ∋ q
            Lq = NotCompatible.Lq (NC Lp)
            exp1 : Expansion L D Lp
            exp1  with ODC.p∨¬p O (rgf ∋ q)
            ... | case2 ngq = record { expansion = q  ; dense∋exp = ? ; p⊆exp = ? }  
            ... | case1 gq with ODC.p∨¬p O (rgf ∋ r)
            ... | case2 ngr = record { expansion = q  ; dense∋exp = ? ; p⊆exp = ? }  
            ... | case1 gr = ⊥-elim ( ll02 ⟪ ? , ? ⟫ ) where
                ll02 : ¬ ( (q ⊆ p) ∧ (r ⊆ p) )
                ll02 = NotCompatible.¬compat (NC Lp) p ? 
                ll05 : ¬ ( (q ⊆ (q ∪ r) ∧ (r ⊆ (q ∪ r)) ))
                ll05 = NotCompatible.¬compat (NC Lp )  (q ∪ r) ?
                ll03 : rgf ∋ p → rgf ∋ q → rgf ∋ (p ∪ q)
                ll03 rp rq = ? -- Ideal.ideal2 GF ⟪ rp , rq ⟫ 
                ll04 : rgf ∋ p → q ⊆ p → rgf ∋ q
                ll04 rp q⊆p = ? -- Ideal.ideal1 GF rp q⊆p ?
    ¬rgf∩D=0 : ¬ ( (D ∩ rgf ) =h= od∅ )
    ¬rgf∩D=0 eq =  generic PG DD M∋D (==→o≡ eq)

--
-- P-Generic Filter defines a countable model D ⊂ C from P
--

--
-- in D, we have V ≠ L
--

--
--   val x G = { val y G | ∃ p → G ∋ p → x ∋ < y , p > }
--

record valR (x : HOD) {P L : HOD} {LP : L ⊆ Power P} (C : CountableModel ) (G : GenericFilter {L} {P} LP (ctl-M C) ) : Set (Level.suc n) where
   field
     valx : HOD

record valS (ox oy oG : Ordinal) : Set n where
   field
     op : Ordinal
     p∈G : odef (* oG) op
     is-val : odef (* ox) ( & < * oy , * op >  )

val : (x : HOD) {P L : HOD } {LP : L ⊆ Power P}
    →  (G : GenericFilter {L} {P} LP {!!} )
    →  HOD
val x G = TransFinite {λ x → HOD } ind (& x) where
  ind : (x : Ordinal) → ((y : Ordinal) → y o< x → HOD) → HOD
  ind x valy = record { od = record { def = λ y → valS x y (& (Ideal.ideal (genf G))) } ; odmax = {!!} ; <odmax = {!!} }