view ordinal-definable.agda @ 180:11490a3170d4

new ordinal-definable
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sat, 20 Jul 2019 14:05:32 +0900
parents ea0e7927637a
children 7012158bf2d9
line wrap: on
line source

{-# OPTIONS --allow-unsolved-metas #-}

open import Level
module ordinal-definable where

open import zf
open import ordinal
open import HOD

open import Data.Nat renaming ( zero to Zero ; suc to Suc ;  ℕ to Nat ; _⊔_ to _n⊔_ ) 
open import  Relation.Binary.PropositionalEquality
open import Data.Nat.Properties 
open import Data.Empty
open import Relation.Nullary
open import Relation.Binary
open import Relation.Binary.Core

-- Ordinal Definable Set

open OD
open import Data.Unit

open Ordinal
open _==_


postulate      
  -- a property of supermum required in Power Set Axiom
  sup-x  : {n : Level } → ( Ordinal {n} → Ordinal {n}) →  Ordinal {n}
  sup-lb : {n : Level } → { ψ : Ordinal {n} →  Ordinal {n}} → {z : Ordinal {n}}  →  z o< sup-o ψ → z o< osuc (ψ (sup-x ψ))
  -- sup-lb : {n : Level } → ( ψ : Ordinal {n} →  Ordinal {n}) → ( ∀ {x : Ordinal {n}} →  ψx  o<  z ) →  z o< osuc ( sup-o ψ ) 
  o<→c<  : {n : Level} {x y : Ordinal {n} } → x o< y             → def (ord→od y) x 

transitive : {n : Level } { z y x : OD {suc n} } → z ∋ y → y ∋ x → z  ∋ x
transitive  {n} {z} {y} {x} z∋y x∋y  with  ordtrans ( c<→o< {suc n} {x} {y} x∋y ) (  c<→o< {suc n} {y} {z} z∋y ) 
... | t = lemma0 (lemma t) where
   lemma : ( od→ord x ) o< ( od→ord z ) → def ( ord→od ( od→ord z )) ( od→ord x)
   lemma xo<z = o<→c< xo<z
   lemma0 :  def ( ord→od ( od→ord z )) ( od→ord x) →  def z (od→ord x)
   lemma0 dz  = def-subst {suc n} { ord→od ( od→ord z )} { od→ord x} dz (oiso)  refl

o<→o> : {n : Level} →  { x y : OD {n} } →  (x == y) → (od→ord x ) o< ( od→ord y) → ⊥
o<→o> {n} {x} {y} record { eq→ = xy ; eq← = yx } (case1 lt) with
     yx (def-subst {n} {ord→od (od→ord y)} {od→ord x} (o<→c< (case1 lt )) oiso refl )
... | oyx with o<¬≡ refl (c<→o< {n} {x} oyx )
... | ()
o<→o> {n} {x} {y} record { eq→ = xy ; eq← = yx } (case2 lt) with
     yx (def-subst {n} {ord→od (od→ord y)} {od→ord x} (o<→c< (case2 lt )) oiso refl )
... | oyx with o<¬≡ refl (c<→o< {n} {x} oyx )
... | ()

==→o≡o : {n : Level} →  { x y : Ordinal {suc n} } → ord→od x == ord→od y →  x ≡ y 
==→o≡o {n} {x} {y} eq with trio< {n} x y
==→o≡o {n} {x} {y} eq | tri< a ¬b ¬c = ⊥-elim ( o<→o> eq (o<-subst a (sym ord-iso) (sym ord-iso )))
==→o≡o {n} {x} {y} eq | tri≈ ¬a b ¬c = b
==→o≡o {n} {x} {y} eq | tri> ¬a ¬b c = ⊥-elim ( o<→o> (eq-sym eq) (o<-subst c (sym ord-iso) (sym ord-iso )))

≡-def : {n : Level} →  { x : Ordinal {suc n} } → x ≡ od→ord (record { def = λ z → z o< x } )
≡-def {n} {x} = ==→o≡o {n} (subst (λ k → ord→od x == k ) (sym oiso) lemma ) where
    lemma :  ord→od x == record { def = λ z → z o< x }
    eq→ lemma {w} z = subst₂ (λ k j → k o< j ) diso refl (subst (λ k → (od→ord ( ord→od w)) o< k ) diso t ) where 
        t : (od→ord ( ord→od w)) o< (od→ord (ord→od x))
        t = c<→o< {suc n} {ord→od w} {ord→od x} (def-subst {suc n} {_} {_} {ord→od x} {_} z refl (sym diso))
    eq← lemma {w} z = def-subst {suc n} {_} {_} {ord→od x} {w} ( o<→c< {suc n} {_} {_} z ) refl refl

od≡-def : {n : Level} →  { x : Ordinal {suc n} } → ord→od x ≡ record { def = λ z → z o< x } 
od≡-def {n} {x} = subst (λ k  → ord→od x ≡ k ) oiso (cong ( λ k → ord→od k ) (≡-def {n} {x} ))

==→o≡1 : {n : Level} →  { x y : OD {suc n} } → x == y →  od→ord x ≡ od→ord y 
==→o≡1 eq = ==→o≡o (subst₂ (λ k j → k == j ) (sym oiso) (sym oiso) eq )

==-def-l : {n : Level } {x y : Ordinal {suc n} } { z : OD {suc n} }→ (ord→od x == ord→od y) → def z x → def z y
==-def-l {n} {x} {y} {z} eq z>x = subst ( λ k → def z k ) (==→o≡o eq) z>x

==-def-r : {n : Level } {x y : OD {suc n} } { z : Ordinal {suc n} }→ (x == y) → def x z → def y z
==-def-r {n} {x} {y} {z} eq z>x = subst (λ k → def k z ) (subst₂ (λ j k → j ≡ k ) oiso oiso (cong (λ k → ord→od k) (==→o≡1 eq))) z>x  

o<∋→ : {n : Level} →  { a x : OD {suc n} } → od→ord x o< od→ord a → a ∋ x 
o<∋→ {n} {a} {x} lt = subst₂ (λ k j → def k j ) oiso refl t  where
         t : def (ord→od (od→ord a)) (od→ord x)
         t = o<→c< {suc n} {od→ord x} {od→ord a} lt 

o<→¬== : {n : Level} →  { x y : OD {n} } → (od→ord x ) o< ( od→ord y) →  ¬ (x == y )
o<→¬== {n} {x} {y} lt eq = o<→o> eq lt

tri-c< : {n : Level} →  Trichotomous _==_ (_c<_ {suc n})
tri-c< {n} x y with trio< {n} (od→ord x) (od→ord y) 
tri-c< {n} x y | tri< a ¬b ¬c = tri< (def-subst (o<→c< a) oiso refl) (o<→¬== a) ( o<→¬c> a )
tri-c< {n} x y | tri≈ ¬a b ¬c = tri≈ (o≡→¬c< b) (ord→== b) (o≡→¬c< (sym b))
tri-c< {n} x y | tri> ¬a ¬b c = tri>  ( o<→¬c> c) (λ eq → o<→¬== c (eq-sym eq ) ) (def-subst (o<→c< c) oiso refl)

c<> : {n : Level } { x y : OD {suc n}} → x c<  y  → y c< x  →  ⊥
c<> {n} {x} {y} x<y y<x with tri-c< x y
c<> {n} {x} {y} x<y y<x | tri< a ¬b ¬c = ¬c y<x
c<> {n} {x} {y} x<y y<x | tri≈ ¬a b ¬c = o<→o> b ( c<→o< x<y )
c<> {n} {x} {y} x<y y<x | tri> ¬a ¬b c = ¬a x<y


is-∋ : {n : Level} →  ( x y : OD {suc n} ) → Dec ( x ∋ y )
is-∋ {n} x y with tri-c< x y
is-∋ {n} x y | tri< a ¬b ¬c = no ¬c
is-∋ {n} x y | tri≈ ¬a b ¬c = no ¬c
is-∋ {n} x y | tri> ¬a ¬b c = yes c


open _∧_

--
-- This menas OD is Ordinal here
--
¬∅=→∅∈ :  {n : Level} →  { x : OD {suc n} } → ¬ (  x  == od∅ {suc n} ) → x ∋ od∅ {suc n} 
¬∅=→∅∈  {n} {x} ne = def-subst (lemma (od→ord x) (subst (λ k → ¬ (k == od∅ {suc n} )) (sym oiso) ne )) oiso refl where
     lemma : (ox : Ordinal {suc n}) →  ¬ (ord→od  ox  == od∅ {suc n} ) → ord→od ox ∋ od∅ {suc n}
     lemma ox ne with is-o∅ ox
     lemma ox ne | yes refl with ne ( ord→== lemma1 ) where
         lemma1 : od→ord (ord→od o∅) ≡ od→ord od∅
         lemma1 = cong ( λ k → od→ord k ) o∅≡od∅
     lemma o∅ ne | yes refl | ()
     lemma ox ne | no ¬p = subst ( λ k → def (ord→od ox) (od→ord k) ) o∅≡od∅ (o<→c< (subst (λ k → k o< ox ) (sym diso) (∅5 ¬p)) )  

-- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) 
-- postulate f-extensionality : { n : Level}  → Relation.Binary.PropositionalEquality.Extensionality (suc n) (suc (suc n))

csuc :  {n : Level} →  OD {suc n} → OD {suc n}
csuc x = Ord ( osuc ( od→ord x ))

Ord→ZF : {n : Level} → ZF {suc (suc n)} {suc n}
Ord→ZF {n}  = record { 
    ZFSet = OD {suc n}
    ; _∋_ = _∋_ 
    ; _≈_ = _==_ 
    ; ∅  = od∅
    ; _,_ = _,_
    ; Union = Union
    ; Power = Power
    ; Select = Select
    ; Replace = Replace
    ; infinite = ord→od ( record { lv = Suc Zero ; ord = Φ 1 } )
    ; isZF = isZF 
 } where
    Select : OD {suc n} → (OD {suc n} → Set (suc n) ) → OD {suc n}
    Select X ψ = record { def = λ x →  ( def X  x ∧  ψ ( ord→od x )) } 
    _,_ : OD {suc n} → OD {suc n} → OD {suc n}
    x , y = record { def = λ z → z o< (omax (od→ord x) (od→ord y)) }
    _∩_ : ( A B : OD {suc n} ) → OD
    A ∩ B = record { def = λ x → def A x  ∧ def B x }
    Replace : OD {suc n} → (OD {suc n} → OD {suc n} ) → OD {suc n}
    Replace X ψ = record { def = λ x → (x o< sup-o ( λ x → od→ord (ψ (ord→od x )))) ∧ def (in-codomain X ψ) x }
    Union : OD {suc n} → OD {suc n}
    Union U = record { def = λ y → osuc y o< (od→ord U) }
    -- power : ∀ X ∃ A ∀ t ( t ∈ A ↔ ( ∀ {x} → t ∋ x →  X ∋ x )
    Power : OD {suc n} → OD {suc n}
    Power A = Def A
    ZFSet = OD {suc n}
    _∈_ : ( A B : ZFSet  ) → Set (suc n)
    A ∈ B = B ∋ A
    _⊆_ : ( A B : ZFSet  ) → ∀{ x : ZFSet } →  Set (suc n)
    _⊆_ A B {x} = A ∋ x →  B ∋ x
    -- _∪_ : ( A B : ZFSet  ) → ZFSet
    -- A ∪ B = Select (A , B) (  λ x → (A ∋ x)  ∨ ( B ∋ x ) )
    infixr  200 _∈_
    -- infixr  230 _∩_ _∪_
    infixr  220 _⊆_
    isZF : IsZF (OD {suc n})  _∋_  _==_ od∅ _,_ Union Power Select Replace (ord→od ( record { lv = Suc Zero ; ord = Φ 1} ))
    isZF = record {
           isEquivalence  = record { refl = eq-refl ; sym = eq-sym; trans = eq-trans }
       ;   pair  = pair
       ;   union→ = union→
       ;   union← = union←
       ;   empty = empty
       ;   power→ = power→
       ;   power← = power← 
       ;   extensionality = extensionality
       ;   minimul = minimul
       ;   regularity = regularity
       ;   infinity∅ = infinity∅
       ;   infinity = infinity
       ;   selection = λ {ψ} {X} {y} → selection {ψ} {X} {y}
       ;   replacement← = replacement←
       ;   replacement→ = replacement→
     } where

         pair : (A B : OD {suc n} ) → ((A , B) ∋ A) ∧  ((A , B) ∋ B)
         proj1 (pair A B ) = omax-x {n} (od→ord A) (od→ord B)
         proj2 (pair A B ) = omax-y {n} (od→ord A) (od→ord B)

         empty : (x : OD {suc n} ) → ¬  (od∅ ∋ x)
         empty x (case1 ())
         empty x (case2 ())

         ---
         --- ZFSubset A x =  record { def = λ y → def A y ∧  def x y }                   subset of A
         --- Power X = ord→od ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )) ) )       Power X is a sup of all subset of A
         --
         --  if Power A ∋ t, from a propertiy of minimum sup there is osuc ZFSubset A ∋ t 
         --    then ZFSubset A ≡ t or ZFSubset A ∋ t. In the former case ZFSubset A ∋ x implies A ∋ x
         --    In case of later, ZFSubset A ∋ t and t ∋ x implies ZFSubset A ∋ x by transitivity
         --
         power→ : (A t : OD) → Power A ∋ t → {x : OD} → t ∋ x → ¬ ¬ (A ∋ x)
         power→ A t P∋t {x} t∋x = double-neg (proj1 lemma-s) where
              minsup :  OD
              minsup =  ZFSubset A ( ord→od ( sup-x (λ x → od→ord ( ZFSubset A (ord→od x))))) 
              lemma-t : csuc minsup ∋ t
              lemma-t = {!!} -- o<→c< (o<-subst (sup-lb (o<-subst (c<→o< P∋t) refl diso )) refl refl ) 
              lemma-s : ZFSubset A ( ord→od ( sup-x (λ x → od→ord ( ZFSubset A (ord→od x)))))  ∋ x
              lemma-s with osuc-≡< ( o<-subst (c<→o< {!!}  ) refl diso  )
              lemma-s | case1 eq = def-subst ( ==-def-r (o≡→== eq) (subst (λ k → def k (od→ord x)) (sym oiso) t∋x ) ) oiso refl
              lemma-s | case2 lt = transitive {n} {minsup} {t} {x} (def-subst (o<→c< lt) oiso refl ) t∋x
         -- 
         -- we have t ∋ x → A ∋ x means t is a subset of A, that is ZFSubset A t == t
         -- Power A is a sup of ZFSubset A t, so Power A ∋ t
         -- 
         power← : (A t : OD) → ({x : OD} → (t ∋ x → A ∋ x)) → Power A ∋ t
         power← A t t→A  = def-subst {suc n} {_} {_} {Power A} {od→ord t}
                  {!!} refl lemma1 where
              lemma-eq :  ZFSubset A t == t
              eq→ lemma-eq {z} w = proj2 w 
              eq← lemma-eq {z} w = record { proj2 = w  ;
                 proj1 = def-subst {suc n} {_} {_} {A} {z} ( t→A (def-subst {suc n} {_} {_} {t} {od→ord (ord→od z)} w refl (sym diso) )) refl diso  }
              lemma1 : od→ord (ZFSubset A (ord→od (od→ord t))) ≡ od→ord t
              lemma1 = subst (λ k → od→ord (ZFSubset A k) ≡ od→ord t ) (sym oiso) (==→o≡1 (lemma-eq))
              lemma :  od→ord (ZFSubset A (ord→od (od→ord t)) ) o< sup-o (λ x → od→ord (ZFSubset A (ord→od x)))
              lemma = sup-o<   

         union-lemma-u : {X z : OD {suc n}} → (U>z : Union X ∋ z ) → csuc z ∋ z
         union-lemma-u {X} {z} U>z = {!!} where -- lemma <-osuc where
             lemma : {oz ooz : Ordinal {suc n}} → oz o< ooz → def (ord→od ooz) oz
             lemma {oz} {ooz} lt = def-subst {suc n} {ord→od  ooz} (o<→c< lt) refl refl
         union→ :  (X z u : OD) → (X ∋ u) ∧ (u ∋ z) → Union X ∋ z
         union→ X y u xx with trio< ( od→ord u ) ( osuc ( od→ord y ))
         union→ X y u xx | tri< a ¬b ¬c with  osuc-< a (c<→o< (proj2 xx))
         union→ X y u xx | tri< a ¬b ¬c | ()
         union→ X y u xx | tri≈ ¬a b ¬c = lemma b (c<→o< (proj1 xx )) where
             lemma : {oX ou ooy : Ordinal {suc n}} →  ou ≡ ooy  → ou o< oX   → ooy  o< oX
             lemma refl lt = lt
         union→ X y u xx | tri> ¬a ¬b c = ordtrans {suc n} {osuc ( od→ord y )} {od→ord u} {od→ord X} c ( c<→o< (proj1 xx )) 
         union← :  (X z : OD) (X∋z : Union X ∋ z) →  ¬  ( (u : OD ) → ¬ ((X ∋  u) ∧ (u ∋ z ))) -- (X ∋ csuc z) ∧ (csuc z ∋ z )
         union← X z X∋z not = not (csuc z) 
             record { proj1 = def-subst {suc n} {_} {_} {X} {od→ord (csuc z )} (o<→c< X∋z) oiso (sym {!!}) ; proj2 = union-lemma-u X∋z } 

         ψiso :  {ψ : OD {suc n} → Set (suc n)} {x y : OD {suc n}} → ψ x → x ≡ y   → ψ y
         ψiso {ψ} t refl = t
         selection : {ψ : OD → Set (suc n)} {X y : OD} → ((X ∋ y) ∧ ψ y) ⇔ (Select X ψ ∋ y)
         selection {ψ} {X} {y} = record {
              proj1 = λ cond → record { proj1 = proj1 cond ; proj2 = ψiso {ψ} (proj2 cond) (sym oiso)  }
            ; proj2 = λ select → record { proj1 = proj1 select  ; proj2 =  ψiso {ψ} (proj2 select) oiso  }
           }

         replacement← : {ψ : OD → OD} (X x : OD) →  X ∋ x → Replace X ψ ∋ ψ x
         replacement← {ψ} X x lt = record { proj1 =  sup-c< ψ {x} ; proj2 = lemma } where
             lemma : def (in-codomain X ψ) (od→ord (ψ x))
             lemma not = ⊥-elim ( not ( od→ord x ) (record { proj1 = lt ; proj2 = cong (λ k → od→ord (ψ k)) (sym oiso)} ) )
         replacement→ : {ψ : OD → OD} (X x : OD) → (lt : Replace X ψ ∋ x) → ¬ ( (y : OD) → ¬ (x == ψ y))
         replacement→ {ψ} X x lt = contra-position lemma (lemma2 {!!}) where
            lemma2 :  ¬ ((y : Ordinal) → ¬ def X y ∧ ((od→ord x) ≡ od→ord (ψ (Ord y))))
                    → ¬ ((y : Ordinal) → ¬ def X y ∧ (ord→od (od→ord x) == ψ (Ord y)))
            lemma2 not not2  = not ( λ y d →  not2 y (record { proj1 = proj1 d ; proj2 = lemma3 (proj2 d)})) where
                lemma3 : {y : Ordinal } → (od→ord x ≡ od→ord (ψ (Ord y))) → (ord→od (od→ord x) == ψ (Ord y))  
                lemma3 {y} eq = subst (λ k  → ord→od (od→ord x) == k ) oiso (o≡→== eq )
            lemma :  ( (y : OD) → ¬ (x == ψ y)) → ( (y : Ordinal) → ¬ def X y ∧ (ord→od (od→ord x) == ψ (Ord y)) )
            lemma not y not2 = not (Ord y) (subst (λ k → k == ψ (Ord y)) oiso  ( proj2 not2 ))

         minimul-o : (x : OD {suc n} ) → ¬ (x == od∅ )→ OD {suc n} 
         minimul-o x  not = od∅   
         regularity :  (x : OD) (not : ¬ (x == od∅)) →
            (x ∋ minimul x not) ∧ (Select (minimul x not) (λ x₁ → (minimul x not ∋ x₁) ∧ (x ∋ x₁)) == od∅)
         proj1 (regularity x not ) = {!!}
         proj2 (regularity x not ) = record { eq→ = reg ; eq← = lemma } where
            lemma : {ox : Ordinal} → def od∅ ox → def (Select (minimul x not) (λ y → (minimul x not ∋ y) ∧ (x ∋ y))) ox
            lemma (case1 ())
            lemma (case2 ())
            reg : {y : Ordinal} → def (Select (minimul x not) (λ x₂ → (minimul x not ∋ x₂) ∧ (x ∋ x₂))) y → def od∅ y
            reg {y} t = ⊥-elim ( ¬x<0 {!!} )

         extensionality : {A B : OD {suc n}} → ((z : OD) → (A ∋ z) ⇔ (B ∋ z)) → A == B
         eq→ (extensionality {A} {B} eq ) {x} d = def-iso {suc n} {A} {B} (sym diso) (proj1 (eq (ord→od x))) d  
         eq← (extensionality {A} {B} eq ) {x} d = def-iso {suc n} {B} {A} (sym diso) (proj2 (eq (ord→od x))) d  

         xx-union : {x  : OD {suc n}} → (x , x) ≡ record { def = λ z → z o< osuc (od→ord x) }
         xx-union {x} = cong ( λ k → record { def = λ z → z o< k } ) (omxx (od→ord x))
         xxx-union : {x  : OD {suc n}} → (x , (x , x)) ≡ record { def = λ z → z o< osuc (osuc (od→ord x))}
         xxx-union {x} = cong ( λ k → record { def = λ z → z o< k } ) lemma where
             lemma1 : {x  : OD {suc n}} → od→ord x o< od→ord (x , x)
             lemma1 {x} = c<→o< ( proj1 (pair x x ) )
             lemma2 : {x  : OD {suc n}} → od→ord (x , x) ≡ osuc (od→ord x)
             lemma2 = trans ( cong ( λ k →  od→ord k ) xx-union ) (sym ≡-def)
             lemma : {x  : OD {suc n}} → omax (od→ord x) (od→ord (x , x)) ≡ osuc (osuc (od→ord x))
             lemma {x} = trans ( sym ( omax< (od→ord x) (od→ord (x , x)) lemma1 ) ) ( cong ( λ k → osuc k ) lemma2 )
         uxxx-union : {x  : OD {suc n}} → Union (x , (x , x)) ≡ record { def = λ z → osuc z o< osuc (osuc (od→ord x)) }
         uxxx-union {x} = cong ( λ k → record { def = λ z → osuc z o< k } ) lemma where
             lemma : od→ord (x , (x , x)) ≡ osuc (osuc (od→ord x))
             lemma = trans ( cong ( λ k → od→ord k ) xxx-union ) (sym ≡-def )
         uxxx-2 : {x  : OD {suc n}} → record { def = λ z → osuc z o< osuc (osuc (od→ord x)) } == record { def = λ z → z o< osuc (od→ord x) }
         eq→ ( uxxx-2 {x} ) {m} lt = proj1 (osuc2 m (od→ord x)) lt
         eq← ( uxxx-2 {x} ) {m} lt = proj2 (osuc2 m (od→ord x)) lt
         uxxx-ord : {x  : OD {suc n}} → od→ord (Union (x , (x , x))) ≡ osuc (od→ord x)
         uxxx-ord {x} = trans (cong (λ k →  od→ord k ) uxxx-union) (==→o≡o (subst₂ (λ j k → j == k ) (sym oiso) (sym od≡-def ) uxxx-2 )) 
         omega = record { lv = Suc Zero ; ord = Φ 1 }
         infinite : OD {suc n}
         infinite = ord→od ( omega )
         infinity∅ : ord→od ( omega ) ∋ od∅ {suc n}
         infinity∅ = def-subst {suc n} {_} {o∅} {infinite} {od→ord od∅}
              (o<→c< ( case1 (s≤s z≤n )))  refl (subst ( λ k → ( k ≡ od→ord od∅ )) diso (cong (λ k →  od→ord k) o∅≡od∅ ))
         infinite∋x : (x : OD) → infinite ∋ x → od→ord x o< omega
         infinite∋x x lt = subst (λ k → od→ord x o< k ) diso t where
              t  : od→ord x o< od→ord (ord→od (omega))
              t  = ∋→o< {n} {infinite} {x} lt
         infinite∋uxxx : (x : OD) → osuc (od→ord x) o< omega → infinite ∋ Union (x , (x , x ))
         infinite∋uxxx x lt = o<∋→ t where
              t  :  od→ord (Union (x , (x , x))) o< od→ord (ord→od (omega))
              t  = subst (λ k →  od→ord (Union (x , (x , x))) o< k ) (sym diso ) ( subst ( λ k → k o< omega ) ( sym  (uxxx-ord {x} ) ) lt ) 
         infinity : (x : OD) → infinite ∋ x → infinite ∋ Union (x , (x , x ))
         infinity x lt = infinite∋uxxx x ( lemma (od→ord x) (infinite∋x x lt ))   where
              lemma : (ox : Ordinal {suc n} ) → ox o< omega → osuc ox o< omega 
              lemma record { lv = Zero ; ord = (Φ .0) } (case1 (s≤s x)) = case1 (s≤s z≤n)
              lemma record { lv = Zero ; ord = (OSuc .0 ord₁) } (case1 (s≤s x)) = case1 (s≤s z≤n)
              lemma record { lv = (Suc lv₁) ; ord = (Φ .(Suc lv₁)) } (case1 (s≤s ()))
              lemma record { lv = (Suc lv₁) ; ord = (OSuc .(Suc lv₁) ord₁) } (case1 (s≤s ()))
              lemma record { lv = 1 ; ord = (Φ 1) } (case2 c2) with d<→lv c2
              lemma record { lv = (Suc Zero) ; ord = (Φ .1) } (case2 ()) | refl

         -- Axiom of choice ( is equivalent to the existence of minimul in our case )
         -- ∀ X [ ∅ ∉ X → (∃ f : X → ⋃ X ) → ∀ A ∈ X ( f ( A ) ∈ A ) ] 
         choice-func : (X : OD {suc n} ) → {x : OD } → ¬ ( x == od∅ ) → ( X ∋ x ) → OD
         choice-func X {x} not X∋x = od∅ {suc n}
         choice : (X : OD {suc n} ) → {A : OD } → ( X∋A : X ∋ A ) → (not : ¬ ( A == od∅ )) → A ∋ choice-func X not X∋A
         choice X {A} X∋A not = ¬∅=→∅∈ not

         -- another form of regularity 
         --
         ε-induction : {n m : Level} { ψ : OD {suc n} → Set m}
             → ( {x : OD {suc n} } → ({ y : OD {suc n} } →  x ∋ y → ψ y ) → ψ x )
             → (x : OD {suc n} ) → ψ x
         ε-induction {n} {m} {ψ} ind x = subst (λ k → ψ k ) oiso (ε-induction-ord (lv (osuc (od→ord x))) (ord (osuc (od→ord x)))  <-osuc) where
            ε-induction-ord : (lx : Nat) ( ox : OrdinalD {suc n} lx ) {ly : Nat} {oy : OrdinalD {suc n} ly }
                → (ly < lx) ∨ (oy d< ox  ) → ψ (ord→od (record { lv = ly ; ord = oy } ) )
            ε-induction-ord Zero (Φ 0)  (case1 ())
            ε-induction-ord Zero (Φ 0)  (case2 ())
            ε-induction-ord lx  (OSuc lx ox) {ly} {oy} y<x =
                ind {ord→od (record { lv = ly ; ord = oy })} ( λ {y} lt → subst (λ k → ψ k ) oiso (ε-induction-ord lx ox (lemma y lt ))) where
                    lemma :  (y : OD) → ord→od record { lv = ly ; ord = oy } ∋ y → od→ord y o< record { lv = lx ; ord = ox }
                    lemma y lt with osuc-≡< y<x
                    lemma y lt | case1 refl = o<-subst (c<→o< lt) refl diso
                    lemma y lt | case2 lt1 = ordtrans  (o<-subst (c<→o< lt) refl diso) lt1
            ε-induction-ord (Suc lx) (Φ (Suc lx)) {ly} {oy} (case1 y<sox ) =
                ind {ord→od (record { lv = ly ; ord = oy })} ( λ {y} lt → lemma y lt )  where
                    --
                    --     if lv of z if less than x Ok
                    --     else lv z = lv x. We can create OSuc of z which is larger than z and less than x in lemma
                    --
                    --                         lx    Suc lx      (1) lz(a) <lx by case1
                    --                 ly(1)   ly(2)             (2) lz(b) <lx by case1
                    --           lz(a) lz(b)   lz(c)                 lz(c) <lx by case2 ( ly==lz==lx)
                    --
                    lemma0 : { lx ly : Nat } → ly < Suc lx  → lx < ly → ⊥
                    lemma0 {Suc lx} {Suc ly} (s≤s lt1) (s≤s lt2) = lemma0 lt1 lt2
                    lemma1 : {n : Level } {ly : Nat} {oy : OrdinalD {suc n} ly} → lv (od→ord (ord→od (record { lv = ly ; ord = oy }))) ≡ ly
                    lemma1 {n} {ly} {oy} = let open ≡-Reasoning in begin
                            lv (od→ord (ord→od (record { lv = ly ; ord = oy })))
                         ≡⟨ cong ( λ k → lv k ) diso ⟩
                            lv (record { lv = ly ; ord = oy })
                         ≡⟨⟩
                            ly

                    lemma :  (z : OD) → ord→od record { lv = ly ; ord = oy } ∋ z → ψ z
                    lemma z lt with  c<→o< {suc n} {z} {ord→od (record { lv = ly ; ord = oy })} lt
                    lemma z lt | case1 lz<ly with <-cmp lx ly
                    lemma z lt | case1 lz<ly | tri< a ¬b ¬c = ⊥-elim ( lemma0 y<sox a) -- can-t happen
                    lemma z lt | case1 lz<ly | tri≈ ¬a refl ¬c =    -- ly(1)
                          subst (λ k → ψ k ) oiso (ε-induction-ord lx (Φ lx) {_} {ord (od→ord z)} (case1 (subst (λ k → lv (od→ord z) < k ) lemma1 lz<ly ) ))
                    lemma z lt | case1 lz<ly | tri> ¬a ¬b c =       -- lz(a)
                          subst (λ k → ψ k ) oiso (ε-induction-ord lx (Φ lx) {_} {ord (od→ord z)} (case1 (<-trans lz<ly (subst (λ k → k < lx ) (sym lemma1) c))))
                    lemma z lt | case2 lz=ly with <-cmp lx ly
                    lemma z lt | case2 lz=ly | tri< a ¬b ¬c = ⊥-elim ( lemma0 y<sox a) -- can-t happen
                    lemma z lt | case2 lz=ly | tri> ¬a ¬b c with d<→lv lz=ly        -- lz(b)
                    ... | eq = subst (λ k → ψ k ) oiso
                         (ε-induction-ord lx (Φ lx) {_} {ord (od→ord z)} (case1 (subst (λ k → k < lx ) (trans (sym lemma1)(sym eq) ) c )))
                    lemma z lt | case2 lz=ly | tri≈ ¬a lx=ly ¬c with d<→lv lz=ly    -- lz(c)
                    ... | eq = lemma6 {ly} {Φ lx} {oy} lx=ly (sym (subst (λ k → lv (od→ord z) ≡  k) lemma1 eq)) where
                          lemma5 : (ox : OrdinalD lx) → (lv (od→ord z) < lx) ∨ (ord (od→ord z) d< ox) → ψ z
                          lemma5 ox lt = subst (λ k → ψ k ) oiso (ε-induction-ord lx ox lt )
                          lemma6 : { ly : Nat } { ox : OrdinalD {suc n} lx } { oy : OrdinalD {suc n} ly }  →
                               lx ≡ ly → ly ≡ lv (od→ord z)  → ψ z
                          lemma6 {ly} {ox} {oy} refl refl = lemma5 (OSuc lx (ord (od→ord z)) ) (case2 s<refl)