view ordinal-definable.agda @ 58:323b561210b5

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Tue, 28 May 2019 23:02:50 +0900
parents 419688a279e0
children d13d1351a1fa
line wrap: on
line source

open import Level
module ordinal-definable where

open import zf
open import ordinal

open import Data.Nat renaming ( zero to Zero ; suc to Suc ;  ℕ to Nat ; _⊔_ to _n⊔_ ) 

open import  Relation.Binary.PropositionalEquality

open import Data.Nat.Properties 
open import Data.Empty
open import Relation.Nullary

open import Relation.Binary
open import Relation.Binary.Core

-- Ordinal Definable Set

record OD {n : Level}  : Set (suc n) where
  field
    def : (x : Ordinal {n} ) → Set n

open OD
open import Data.Unit

open Ordinal

postulate      
  od→ord : {n : Level} → OD {n} → Ordinal {n}
  ord→od : {n : Level} → Ordinal {n} → OD {n} 

_∋_ : { n : Level } → ( a x : OD {n} ) → Set n
_∋_ {n} a x  = def a ( od→ord x )

_c<_ : { n : Level } → ( a x : OD {n} ) → Set n
x c< a = a ∋ x 

record _==_ {n : Level} ( a b :  OD {n} ) : Set n where
  field
     eq→ : ∀ { x : Ordinal {n} } → def a x → def b x 
     eq← : ∀ { x : Ordinal {n} } → def b x → def a x 

id : {n : Level} {A : Set n} → A → A
id x = x

eq-refl : {n : Level} {  x :  OD {n} } → x == x
eq-refl {n} {x} = record { eq→ = id ; eq← = id }

open  _==_ 

eq-sym : {n : Level} {  x y :  OD {n} } → x == y → y == x
eq-sym eq = record { eq→ = eq← eq ; eq← = eq→ eq }

eq-trans : {n : Level} {  x y z :  OD {n} } → x == y → y == z → x == z
eq-trans x=y y=z = record { eq→ = λ t → eq→ y=z ( eq→ x=y  t) ; eq← = λ t → eq← x=y ( eq← y=z t) }

_c≤_ : {n : Level} →  OD {n} →  OD {n} → Set (suc n)
a c≤ b  = (a ≡ b)  ∨ ( b ∋ a )

od∅ : {n : Level} → OD {n} 
od∅ {n} = record { def = λ _ → Lift n ⊥ }

postulate      
  c<→o< : {n : Level} {x y : OD {n} } → x c< y → od→ord x o< od→ord y
  o<→c< : {n : Level} {x y : Ordinal {n} } → x o< y → ord→od x c< ord→od y
  oiso : {n : Level} {x : OD {n}} → ord→od ( od→ord x ) ≡ x
  diso : {n : Level} {x : Ordinal {n}} → od→ord ( ord→od x ) ≡ x
  sup-od : {n : Level } → ( OD {n} → OD {n}) →  OD {n}
  sup-c< : {n : Level } → ( ψ : OD {n} →  OD {n}) → ∀ {x : OD {n}} → ψ x  c< sup-od ψ
  ∅-base-def : {n : Level} → def ( ord→od (o∅ {n}) ) ≡ def (od∅ {n})

o∅→od∅ : {n : Level} → ord→od (o∅ {n}) ≡ od∅ {n}
o∅→od∅ {n} = cong ( λ k → record { def = k }) ( ∅-base-def ) 

∅1 : {n : Level} →  ( x : OD {n} )  → ¬ ( x c< od∅ {n} )
∅1 {n} x (lift ())

∅3 : {n : Level} →  { x : Ordinal {n}}  → ( ∀(y : Ordinal {n}) → ¬ (y o< x ) ) → x ≡ o∅ {n}
∅3 {n} {x} = TransFinite {n} c1 c2 c3 x where
   c0 : Nat →  Ordinal {n}  → Set n
   c0 lx x = (∀(y : Ordinal {n}) → ¬ (y o< x))  → x ≡ o∅ {n}
   c1 : ∀ (lx : Nat ) →  c0 lx (record { lv = Suc lx ; ord = ℵ lx } )  
   c1 lx not with not ( record { lv = lx ; ord = Φ lx } )
   ... | t with t (case1 ≤-refl )
   c1 lx not | t | ()
   c2 : (lx : Nat) → c0 lx (record { lv = lx ; ord = Φ lx } )
   c2 Zero not = refl
   c2 (Suc lx) not with not ( record { lv = lx ; ord = Φ lx } )
   ... | t with t (case1 ≤-refl )
   c2 (Suc lx) not | t | ()
   c3 : (lx : Nat) (x₁ : OrdinalD lx) → c0 lx  (record { lv = lx ; ord = x₁ })  → c0 lx (record { lv = lx ; ord = OSuc lx x₁ })
   c3 lx (Φ .lx) d not with not ( record { lv = lx ; ord = Φ lx } )
   ... | t with t (case2 Φ< )
   c3 lx (Φ .lx) d not | t | ()
   c3 lx (OSuc .lx x₁) d not with not (  record { lv = lx ; ord = OSuc lx x₁ } )
   ... | t with t (case2 (s< s<refl ) )
   c3 lx (OSuc .lx x₁) d not | t | ()
   c3 (Suc lx) (ℵ lx) d not with not ( record { lv = Suc lx ; ord = OSuc (Suc lx) (Φ (Suc lx)) }  )
   ... | t with t (case2 (s< ℵΦ<   )) 
   c3 .(Suc lx) (ℵ lx) d not | t | ()

def-subst : {n : Level } {Z : OD {n}} {X : Ordinal {n} }{z : OD {n}} {x : Ordinal {n} }→ def Z X → Z ≡ z  →  X ≡ x  →  def z x
def-subst df refl refl = df

transitive : {n : Level } { x y z : OD {n} } → y ∋ x → z ∋ y → z ∋ x
transitive  {n} {x} {y} {z} x∋y  z∋y with  ordtrans ( c<→o< {n} {x} {y} x∋y ) (  c<→o< {n} {y} {z} z∋y ) 
... | t = lemma0 (lemma t) where
   lemma : ( od→ord x ) o< ( od→ord z ) → def ( ord→od ( od→ord z )) ( od→ord ( ord→od ( od→ord x )))
   lemma xo<z = o<→c< xo<z
   lemma0 :  def ( ord→od ( od→ord z )) ( od→ord ( ord→od ( od→ord x ))) →  def z (od→ord x)
   lemma0 dz  = def-subst {n} { ord→od ( od→ord z )} { od→ord ( ord→od ( od→ord x))} dz (oiso) (diso)

record Minimumo {n : Level } (x : Ordinal {n}) : Set (suc n) where
  field
     mino : Ordinal {n}
     min<x :  mino o< x

ominimal : {n : Level} → (x : Ordinal {n} ) → o∅ o< x → Minimumo {n} x
ominimal {n} record { lv = Zero ; ord = (Φ .0) } (case1 ())
ominimal {n} record { lv = Zero ; ord = (Φ .0) } (case2 ())
ominimal {n} record { lv = Zero ; ord = (OSuc .0 ord) } (case1 ())
ominimal {n} record { lv = Zero ; ord = (OSuc .0 ord) } (case2 Φ<) = record { mino = record { lv = Zero ; ord = Φ 0 } ; min<x = case2 Φ< }
ominimal {n} record { lv = (Suc lv) ; ord = (Φ .(Suc lv)) } (case1 (s≤s x)) = record { mino = record { lv = lv ; ord = Φ lv } ; min<x = case1 (s≤s ≤-refl)}
ominimal {n} record { lv = (Suc lv) ; ord = (Φ .(Suc lv)) } (case2 ())
ominimal {n} record { lv = (Suc lv) ; ord = (OSuc .(Suc lv) ord) } (case1 (s≤s x)) = record { mino = record { lv = (Suc lv) ; ord = ord } ; min<x = case2 s<refl}
ominimal {n} record { lv = (Suc lv) ; ord = (OSuc .(Suc lv) ord) } (case2 ())
ominimal {n} record { lv = (Suc lx) ; ord = (ℵ .lx) } (case1 (s≤s z≤n)) = record { mino = record { lv = Suc lx ; ord = Φ (Suc lx) } ; min<x = case2 ℵΦ<  }
ominimal {n} record { lv = (Suc lx) ; ord = (ℵ .lx) } (case2 ())

∅5 : {n : Level} →  { x : Ordinal {n} }  → ¬ ( x  ≡ o∅ {n} ) → o∅ {n} o< x
∅5 {n} {record { lv = Zero ; ord = (Φ .0) }} not = ⊥-elim (not refl) 
∅5 {n} {record { lv = Zero ; ord = (OSuc .0 ord) }} not = case2 Φ<
∅5 {n} {record { lv = (Suc lv) ; ord = ord }} not = case1 (s≤s z≤n)

∅8 : {n : Level} →  ( x : Ordinal {n} )  → ¬  x o< o∅ {n}
∅8 {n} x (case1 ())
∅8 {n} x (case2 ())

ord-iso : {n : Level} {y : Ordinal {n} } → record { lv = lv (od→ord (ord→od y)) ; ord = ord (od→ord (ord→od y)) } ≡ record { lv = lv y ; ord = ord y }
ord-iso = cong ( λ k → record { lv = lv k ; ord = ord k } ) diso

-- avoiding lv != Zero error
orefl : {n : Level} →  { x : OD {n} } → { y : Ordinal {n} } → od→ord x ≡ y → od→ord x ≡ y
orefl refl = refl

==-iso : {n : Level} →  { x y : OD {n} } → ord→od (od→ord x) == ord→od (od→ord y)  →  x == y
==-iso {n} {x} {y} eq = record {
      eq→ = λ d →  lemma ( eq→  eq (def-subst d (sym oiso) refl )) ;
      eq← = λ d →  lemma ( eq←  eq (def-subst d (sym oiso) refl ))  }
        where
           lemma : {x : OD {n} } {z : Ordinal {n}} → def (ord→od (od→ord x)) z → def x z
           lemma {x} {z} d = def-subst d oiso refl

=-iso : {n : Level } {x y : OD {suc n} } → (x == y) ≡ (ord→od (od→ord x) == y)
=-iso {_} {_} {y} = cong ( λ k → k == y ) (sym oiso)

ord→== : {n : Level} →  { x y : OD {n} } → od→ord x ≡  od→ord y →  x == y
ord→== {n} {x} {y} eq = ==-iso (lemma (od→ord x) (od→ord y) (orefl eq)) where
   lemma : ( ox oy : Ordinal {n} ) → ox ≡ oy →  (ord→od ox) == (ord→od oy)
   lemma ox ox  refl = eq-refl

o≡→== : {n : Level} →  { x y : Ordinal {n} } → x ≡  y →  ord→od x == ord→od y
o≡→== {n} {x} {.x} refl = eq-refl

∅7 : {n : Level} →  { x : OD {n} } → od→ord x ≡ o∅ {n} →  x  == od∅ {n}
∅7 {n} {x} eq = record { eq→ = e1 (orefl eq) ; eq← = e2 } where
   e2 : {y : Ordinal {n}} → def od∅ y → def x y 
   e2 {y} (lift ())
   e1 : {ox y : Ordinal {n}} → ox ≡ o∅ {n}  →  def x y → def od∅ y
   e1 {o∅} {y} refl x>y = lift ( ∅8 y (o<-subst (c<→o< {n} {ord→od y} {x} (def-subst {n} {x} {y} x>y refl (sym diso))) ord-iso eq ))  

=→¬< : {x : Nat  } → ¬ ( x < x )
=→¬< {Zero} ()
=→¬< {Suc x} (s≤s lt) = =→¬< lt

>→¬< : {x y : Nat  } → (x < y ) → ¬ ( y < x )
>→¬< (s≤s x<y) (s≤s y<x) = >→¬< x<y y<x

c≤-refl : {n : Level} →  ( x : OD {n} ) → x c≤ x
c≤-refl x = case1 refl

o<> : {n : Level } ( ox oy : Ordinal {n}) → ox o<  oy  → oy o< ox  →  ⊥
o<> ox oy (case1 x<y) (case1 y<x) = >→¬< x<y y<x
o<> ox oy (case1 x<y) (case2 y<x) with d<→lv  y<x
... | refl = =→¬< x<y
o<> ox oy (case2 x<y) (case1 y<x) with d<→lv  x<y
... | refl = =→¬< y<x
o<> ox oy (case2 x<y) (case2 y<x) with d<→lv  x<y
... | refl = trio<> x<y y<x

o<¬≡ : {n : Level } ( ox oy : Ordinal {n}) → ox ≡ oy  → ox o< oy  → ⊥
o<¬≡ ox ox refl (case1 lt) =  =→¬< lt
o<¬≡ ox ox refl (case2 (s< lt)) = trio<≡ refl lt

o<→o> : {n : Level} →  { x y : OD {n} } →  (x == y) → (od→ord x ) o< ( od→ord y) → ⊥
o<→o> {n} {x} {y} record { eq→ = xy ; eq← = yx } (case1 lt) with
     yx (def-subst {n} {ord→od (od→ord y)} {od→ord (ord→od (od→ord x))} (o<→c< (case1 lt )) oiso diso )
... | oyx with o<¬≡ (od→ord x) (od→ord x) refl (c<→o< oyx )
... | ()
o<→o> {n} {x} {y} record { eq→ = xy ; eq← = yx } (case2 lt) with
     yx (def-subst {n} {ord→od (od→ord y)} {od→ord (ord→od (od→ord x))} (o<→c< (case2 lt )) oiso diso )
... | oyx with o<¬≡ (od→ord x) (od→ord x) refl (c<→o< oyx )
... | ()

o<→¬== : {n : Level} →  { x y : OD {n} } → (od→ord x ) o< ( od→ord y) →  ¬ (x == y )
o<→¬== {n} {x} {y} lt eq = o<→o> eq lt

o<→¬c> : {n : Level} →  { x y : OD {n} } → (od→ord x ) o< ( od→ord y) →  ¬ (y c< x )
o<→¬c> {n} {x} {y} olt clt = o<> (od→ord x) (od→ord y) olt (c<→o< clt ) where

o≡→¬c< : {n : Level} →  { x y : OD {n} } →  (od→ord x ) ≡ ( od→ord y) →   ¬ x c< y
o≡→¬c< {n} {x} {y} oeq lt  = o<¬≡ (od→ord x) (od→ord y) (orefl oeq ) (c<→o< lt) 

tri-c< : {n : Level} →  Trichotomous _==_ (_c<_ {suc n})
tri-c< {n} x y with trio< {n} (od→ord x) (od→ord y) 
tri-c< {n} x y | tri< a ¬b ¬c = tri< (def-subst (o<→c< a) oiso diso) (o<→¬== a) ( o<→¬c> a )
tri-c< {n} x y | tri≈ ¬a b ¬c = tri≈ (o≡→¬c< b) (ord→== b) (o≡→¬c< (sym b))
tri-c< {n} x y | tri> ¬a ¬b c = tri>  ( o<→¬c> c) (λ eq → o<→¬== c (eq-sym eq ) ) (def-subst (o<→c< c) oiso diso)

c<> : {n : Level } { x y : OD {suc n}} → x c<  y  → y c< x  →  ⊥
c<> {n} {x} {y} x<y y<x with tri-c< x y
c<> {n} {x} {y} x<y y<x | tri< a ¬b ¬c = ¬c y<x
c<> {n} {x} {y} x<y y<x | tri≈ ¬a b ¬c = o<→o> b ( c<→o< x<y )
c<> {n} {x} {y} x<y y<x | tri> ¬a ¬b c = ¬a x<y

∅2 : {n : Level} →  { x : OD {n} } → o∅ {n} o<  od→ord x → ¬ ( x  == od∅ {n} )
∅2 {n} {x} lt record { eq→ = eq→ ; eq← = eq← } with ominimal (od→ord x ) lt
... | min with eq→ ( def-subst (o<→c< (Minimumo.min<x min)) oiso refl )
... | ()
       
∅0 : {n : Level} →  { x : Ordinal {n} } → o∅ {n} o< x → ¬ ( ord→od x  == od∅ {n} )
∅0 {n} {x} lt record { eq→ = eq→ ; eq← = eq← } with ominimal x lt
... | min with eq→ (o<→c< (Minimumo.min<x min))
... | ()
       

is-od∅ : {n : Level} →  ( x : OD {suc n} ) → Dec ( x == od∅ {suc n} )
is-od∅ {n} x with trio< {n} (od→ord x) (o∅ {suc n})
is-od∅ {n} x | tri≈ ¬a b ¬c = yes ( ∅7 (orefl b) ) 
is-od∅ {n} x | tri< (case1 ()) ¬b ¬c
is-od∅ {n} x | tri< (case2 ()) ¬b ¬c
is-od∅ {n} x | tri> ¬a ¬b c = no ( ∅2 c )

is-∋ : {n : Level} →  ( x y : OD {suc n} ) → Dec ( x ∋ y )
is-∋ {n} x y with tri-c< x y
is-∋ {n} x y | tri< a ¬b ¬c = no ¬c
is-∋ {n} x y | tri≈ ¬a b ¬c = no ¬c
is-∋ {n} x y | tri> ¬a ¬b c = yes c

is-o∅ : {n : Level} →  ( x : Ordinal {suc n} ) → Dec ( x ≡ o∅ {suc n} )
is-o∅ {n} record { lv = Zero ; ord = (Φ .0) } = yes refl
is-o∅ {n} record { lv = Zero ; ord = (OSuc .0 ord₁) } = no ( λ () )
is-o∅ {n} record { lv = (Suc lv₁) ; ord = ord } = no (λ())

open _∧_

∅9 : {n : Level} → {x : OD {n} } → ¬ x == od∅ → o∅ o< od→ord x
∅9 {_} {x} not = ∅5  lemma where
   lemma : ¬ od→ord x ≡ o∅
   lemma eq = not ( ∅7  eq )

OD→ZF : {n : Level} → ZF {suc (suc n)} {suc n}
OD→ZF {n}  = record { 
    ZFSet = OD {suc n}
    ; _∋_ = _∋_ 
    ; _≈_ = _==_ 
    ; ∅  = od∅
    ; _,_ = _,_
    ; Union = Union
    ; Power = Power
    ; Select = Select
    ; Replace = Replace
    ; infinite = record { def = λ x → x ≡ record { lv = Suc Zero ; ord = ℵ Zero  }  }
    ; isZF = isZF 
 } where
    Replace : OD {suc n} → (OD {suc n} → OD {suc n} ) → OD {suc n}
    Replace X ψ = sup-od ψ
    Select : OD {suc n} → (OD {suc n} → Set (suc n) ) → OD {suc n}
    Select X ψ = record { def = λ x →  ( def X  x ∧  ψ ( ord→od x )) } 
    _,_ : OD {suc n} → OD {suc n} → OD {suc n}
    x , y = record { def = λ z → ( (z ≡ od→ord x ) ∨ ( z ≡ od→ord y )) }
    Union : OD {suc n} → OD {suc n}
    Union x = record { def = λ y → {z : Ordinal {suc n}} → def x z  → def (ord→od z) y  }
    Power : OD {suc n} → OD {suc n}
    Power x = record { def = λ y → (z : Ordinal {suc n} ) → ( def x y ∧ def (ord→od z) y )  }
    ZFSet = OD {suc n}
    _∈_ : ( A B : ZFSet  ) → Set (suc n)
    A ∈ B = B ∋ A
    _⊆_ : ( A B : ZFSet  ) → ∀{ x : ZFSet } →  Set (suc n)
    _⊆_ A B {x} = A ∋ x →  B ∋ x
    _∩_ : ( A B : ZFSet  ) → ZFSet
    A ∩ B = Select (A , B) (  λ x → ( A ∋ x ) ∧ (B ∋ x) )
    _∪_ : ( A B : ZFSet  ) → ZFSet
    A ∪ B = Select (A , B) (  λ x → (A ∋ x)  ∨ ( B ∋ x ) )
    infixr  200 _∈_
    infixr  230 _∩_ _∪_
    infixr  220 _⊆_
    isZF : IsZF (OD {suc n})  _∋_  _==_ od∅ _,_ Union Power Select Replace (record { def = λ x → x ≡ record { lv = Suc Zero ; ord = ℵ Zero }  })
    isZF = record {
           isEquivalence  = record { refl = eq-refl ; sym = eq-sym; trans = eq-trans }
       ;   pair  = pair
       ;   union→ = {!!}
       ;   union← = {!!}
       ;   empty = empty
       ;   power→ = {!!}
       ;   power← = {!!}
       ;   extentionality = {!!}
       ;   minimul = minimul
       ;   regularity = regularity
       ;   infinity∅ = {!!}
       ;   infinity = {!!}
       ;   selection = λ {ψ} {X} {y} → selection {ψ} {X} {y}
       ;   replacement = {!!}
     } where
         open _∧_ 
         open Minimumo
         pair : (A B : OD {suc n} ) → ((A , B) ∋ A) ∧  ((A , B) ∋ B)
         proj1 (pair A B ) =  case1 refl 
         proj2 (pair A B ) =  case2 refl 
         empty : (x : OD {suc n} ) → ¬  (od∅ ∋ x)
         empty x ()
         union→ : (X x y : OD {suc n} ) → (X ∋ x) →  (x ∋ y) →  (Union X ∋ y)
         union→ X x y X∋x x∋y = {!!}  where
            lemma : {z : Ordinal {suc n} } → def X z → z ≡ od→ord y
            lemma {z} X∋z = {!!}
         ψiso :  {ψ : OD {suc n} → Set (suc n)} {x y : OD {suc n}} → ψ x → x ≡ y   → ψ y
         ψiso {ψ} t refl = t
         selection : {ψ : OD → Set (suc n)} {X y : OD} → ((X ∋ y) ∧ ψ y) ⇔ (Select X ψ ∋ y)
         selection {ψ} {X} {y} = record {
              proj1 = λ cond → record { proj1 = proj1 cond ; proj2 = ψiso {ψ} (proj2 cond) (sym oiso)  }
            ; proj2 = λ select → record { proj1 = proj1 select  ; proj2 =  ψiso {ψ} (proj2 select) oiso  }
           }
         minord : (x : OD {suc n} ) → ¬ (x == od∅ )→ Minimumo (od→ord x)
         minord x not = ominimal (od→ord x) (∅9 not)
         minimul : (x : OD {suc n} ) → ¬ (x == od∅ )→ OD {suc n} 
         minimul x  not = ord→od ( mino (minord x not))
         minimul<x : (x : OD {suc n} ) →  (not :  ¬ x == od∅ ) → x ∋ minimul x not
         minimul<x x not = lemma0 (min<x (minord x not)) where
            lemma0 : mino (minord x not)  o< (od→ord x) → def x (od→ord (ord→od (mino (minord x not))))
            lemma0 m<x = def-subst {suc n} {ord→od (od→ord x)} {od→ord (ord→od (mino (minord x not)))} (o<→c< m<x) oiso refl
         regularity-ord :  (x : Ordinal ) (not :  ¬ (ord→od x == od∅)) →
            (ord→od x ∋ minimul (ord→od x) not) ∧ (Select (minimul (ord→od x) not) (λ x₁ → (minimul (ord→od x) not ∋ x₁) ∧ ((ord→od x) ∋ x₁)) == od∅)
         proj1 ( regularity-ord x not ) =  minimul<x (ord→od x) not 
         proj2 ( regularity-ord x not ) = reg1 where
            reg2 : {y : Ordinal} → ( def (minimul (ord→od x) not) y ∧ (minimul (ord→od x) not ∋ ord→od y) ∧ ((ord→od x) ∋ ord→od y) ) → ⊥ 
            reg2 {y} t with proj1 t | proj1 (proj2 t) | proj2 (proj2 t)
            ... | p1 | p2 | p3  with is-∋ (ord→od x) ( ord→od y)
            reg2 {y} t | p1 | p2 | p3 | no ¬p = ⊥-elim (¬p p3 )                         --  ¬ x ∋ ord→od y     empty x case
            reg2 {y} t | p1 | p2 | p3 | yes p with is-∋ (minimul (ord→od x) not) (ord→od y)
            reg2 {y} t | p1 | p2 | p3 | yes p | no ¬p = ⊥-elim (¬p p2 )                 --  minimum contains nothing q.e.d.
            reg2 {y} t | p1 | p2 | p3 | yes p | yes p₁ = {!!}
            reg0 : {y : Ordinal {suc n}} → def (Select (minimul (ord→od x) not) (λ z → (minimul (ord→od x) not ∋ z) ∧ ((ord→od x) ∋ z))) y → def od∅ y
            reg0 {y} t with trio< y (mino (minord (ord→od x) not)) 
            reg0 {y} t | tri< a ¬b ¬c with reg2 {y} t 
            ... | ()
            reg0 {y} t | tri≈ ¬a refl ¬c = lemma y ( mino (minord (ord→od x) not) ) refl
                     (def-subst {suc n} {ord→od y} {mino (minord (ord→od x)  not)} (proj1 t) refl (sym diso))
                  where
               lemma : ( ox oy : Ordinal {suc n} ) → ox ≡ oy  → ord→od ox c< ord→od oy  → Lift (suc n) ⊥
               lemma ox oy refl lt =  lift ( o≡→¬c< {suc n} {ord→od oy} {ord→od  oy} refl lt )
            reg0 {y} t | tri> ¬a ¬b c with o<> y (mino (minord (ord→od x) not)) (lemma {!!}) c where
                lemma : def (ord→od (mino (minord (ord→od x)  not))) y → y o< mino (minord (ord→od x) not)
                lemma d with c<→o< {suc n} {ord→od y} {ord→od (mino (minord (ord→od x) not))} 
                         (def-subst {suc n}  {ord→od (mino (minord (ord→od x) not))} {y} {!!} refl (sym diso))
                lemma d | clt = o<-subst clt ord-iso ord-iso
            ... | ()
            reg1 :  Select (minimul (ord→od x) not) (λ x₁ → (minimul (ord→od x) not ∋ x₁) ∧ ((ord→od x) ∋ x₁)) == od∅
            reg1 = record { eq→ = reg0  ; eq← = λ () } where
         ∅-iso :  {x : OD} → ¬ (x == od∅) → ¬ ((ord→od (od→ord x)) == od∅) 
         ∅-iso {x} neq = subst (λ k → ¬ k) (=-iso {n} ) neq  where
         regularity :  (x : OD) (not : ¬ (x == od∅)) →
            (x ∋ minimul x not) ∧ (Select (minimul x not) (λ x₁ → (minimul x not ∋ x₁) ∧ (x ∋ x₁)) == od∅)
         proj1 (regularity x not ) = minimul<x x not
         proj2 (regularity x not ) = record { eq→ = reg4 ; eq← = λ () } where
            reg4 :  {xd : Ordinal } → def (Select (minimul x not) (λ x₁ → (minimul x not ∋ x₁) ∧ (x ∋ x₁))) xd → def od∅ xd
            reg4 {xd} = {!!} (eq→ (proj1 (regularity-ord {!!} {!!} )) )