view src/BAlgebra.agda @ 1464:484f83b04b5d default tip

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Wed, 03 Jan 2024 19:29:23 +0900
parents 47d3cc596d68
children
line wrap: on
line source

{-# OPTIONS --cubical-compatible --safe #-}
open import Level
open import Ordinals
import HODBase
import OD
module BAlgebra {n : Level } (O : Ordinals {n} ) (HODAxiom : HODBase.ODAxiom O)  (ho< : OD.ODAxiom-ho< O HODAxiom )
       (AC : OD.AxiomOfChoice O HODAxiom )
   where

-- open import Data.Nat renaming ( zero to Zero ; suc to Suc ;  ℕ to Nat ; _⊔_ to _n⊔_ )
open import  Relation.Binary.PropositionalEquality hiding ( [_] )
open import Data.Empty
open import Data.Unit
open import Relation.Nullary
open import Relation.Binary  hiding (_⇔_)
open import Relation.Binary.Core hiding (_⇔_)
import Relation.Binary.Reasoning.Setoid as EqR

open import logic
import OrdUtil
open import nat

open Ordinals.Ordinals  O
open Ordinals.IsOrdinals isOrdinal
-- open Ordinals.IsNext isNext
open OrdUtil O
import ODUtil
open ODUtil O HODAxiom ho<
import ODC

-- Ordinal Definable Set

open HODBase.HOD 
open HODBase.OD 

open _∧_
open _∨_
open Bool

open  HODBase._==_

open HODBase.ODAxiom HODAxiom  
open OD O HODAxiom
open AxiomOfChoice AC

open _∧_
open _∨_
open Bool

L\L=0 : { L  : HOD  } → (L \ L) =h= od∅ 
L\L=0 {L} = record { eq→ = lem0 ; eq← =  lem1 }  where
    lem0 : {x : Ordinal} → odef (L \ L) x → odef od∅ x
    lem0 {x} ⟪ lx , ¬lx ⟫ = ⊥-elim (¬lx lx)
    lem1 : {x : Ordinal} → odef  od∅ x → odef (L \ L) x
    lem1 {x} lt = ⊥-elim ( ¬∅∋ (subst (λ k → odef od∅ k) (sym &iso) lt ))

L\Lx=x : { L x : HOD  } → x ⊆ L   → (L \ ( L \ x )) =h= x
L\Lx=x {L} {x} x⊆L = record { eq→ = lem03 ; eq← = lem04 }  where
    lem03 :  {z : Ordinal} → odef (L \ (L \ x)) z → odef x z 
    lem03 {z} ⟪ Lz , Lxz ⟫ with ODC.∋-p O HODAxiom AC  x (* z)
    ... | yes y = subst (λ k → odef x k ) &iso y 
    ... | no n = ⊥-elim ( Lxz ⟪ Lz , ( subst (λ k → ¬ odef x k ) &iso n ) ⟫ )
    lem04 :  {z : Ordinal} → odef x z → odef (L \ (L \ x)) z 
    lem04 {z} xz with ODC.∋-p O HODAxiom AC L (* z)
    ... | yes y = ⟪ subst (λ k → odef L k ) &iso y  , ( λ p → proj2 p xz )  ⟫
    ... | no  n = ⊥-elim ( n (subst (λ k → odef L k ) (sym &iso) ( x⊆L xz) ))
     
L\0=L : { L  : HOD  } → (L \ od∅) =h= L 
L\0=L {L} = record { eq→ = lem05 ; eq← = lem06 }  where
    lem05 : {x : Ordinal} → odef (L \ od∅) x → odef L x
    lem05 {x} ⟪ Lx , _ ⟫ = Lx
    lem06 : {x : Ordinal} → odef L x → odef (L \ od∅) x
    lem06 {x} Lx = ⟪ Lx , (λ lt → ¬x<0 lt)  ⟫

∨L\X : { L X : HOD } → {x : Ordinal } → odef L x → odef X x ∨ odef (L \ X) x
∨L\X {L} {X} {x} Lx with ODC.∋-p O HODAxiom AC X (* x)
... | yes y = case1 ( subst (λ k → odef X k ) &iso y  )
... | no  n = case2 ⟪ Lx , subst (λ k → ¬ odef X k) &iso n ⟫

\-⊆ : { P A B : HOD } →  A ⊆ P → ( A ⊆ B → ( P \ B ) ⊆ ( P \ A )) ∧ (( P \ B ) ⊆ ( P \ A ) → A ⊆ B ) 
\-⊆ {P} {A} {B} A⊆P = ⟪ ( λ a<b {x} pbx → ⟪ proj1 pbx  , (λ ax → proj2 pbx (a<b ax))   ⟫ )  , lem07 ⟫ where
    lem07 : (P \ B) ⊆ (P \ A) → A ⊆ B
    lem07 pba {x} ax with ODC.p∨¬p O HODAxiom AC (odef B x)
    ... | case1 bx = bx
    ... | case2 ¬bx = ⊥-elim ( proj2 ( pba ⟪ A⊆P ax  , ¬bx ⟫ ) ax )

RC\ : {L : HOD} → RCod (Power (Union L)) (λ z → L \ z )
RC\ {L} = record { ≤COD = λ {x} lt z xz → lemm {x} lt z xz ; ψ-eq = λ {x} {y} → wdf {x} {y}  } where
    lemm : {x : HOD} → (L \ x) ⊆ Power (Union L )
    lemm {x} ⟪ Ly , nxy ⟫ z xz = record { owner = _ ; ao = Ly ; ox = xz }
    wdf : {x y : HOD} → od x == od y → (L \ x) =h= (L \ y)
    wdf {x} {y} x=y = record { eq→ = λ {p} lxp → ⟪ proj1 lxp , (λ yp → proj2 lxp (eq← x=y yp) ) ⟫ 
                             ; eq← = λ {p} lxp → ⟪ proj1 lxp , (λ yp → proj2 lxp (eq→ x=y yp) ) ⟫  }


[a-b]∩b=0 : { A B : HOD } → ((A \ B) ∩ B) =h= od∅
[a-b]∩b=0 {A} {B} = record { eq← = λ lt → ⊥-elim ( ¬∅∋ (subst (λ k → odef od∅ k) (sym &iso) lt ))
     ; eq→ =  λ {x} lt → ⊥-elim (proj2 (proj1 lt ) (proj2 lt)) }

U-F=∅→F⊆U : {F U : HOD} →  ((x : Ordinal) →  ¬ ( odef F x ∧ ( ¬ odef U x ))) → F ⊆ U
U-F=∅→F⊆U {F} {U} not = gt02  where
    gt02 : { x : Ordinal } → odef F x → odef U x
    gt02 {x} fx with ODC.∋-p O HODAxiom AC U (* x)
    ... | yes y = subst (λ k → odef U k ) &iso y
    ... | no  n = ⊥-elim ( not x ⟪ fx , subst (λ k → ¬ odef U k ) &iso n ⟫ )

∪-Union : { A B : HOD } → Union (A , B) =h= ( A ∪ B )
∪-Union {A} {B} = ( record { eq→ =  lemma1 ; eq← = lemma2 } )  where
    lemma1 :  {x : Ordinal} → odef (Union (A , B)) x → odef (A ∪ B) x
    lemma1 {x} record { owner = owner ; ao = abo ; ox = ox } with pair=∨ (subst₂ (λ j k → odef (j , k ) owner) ? (sym ?) abo )
    ... | case1 a=o = case1 (subst (λ k → odef k x ) ( begin 
         * owner ≡⟨ cong (*) (sym a=o)  ⟩ 
         * (& A) ≡⟨ ? ⟩ 
         A ∎ ) ox ) where open ≡-Reasoning
    ... | case2 b=o = case2 (subst (λ k → odef k x ) (trans (cong (*) (sym b=o)) ?  ) ox)
    lemma2 :  {x : Ordinal} → odef (A ∪ B) x → odef (Union (A , B)) x
    lemma2 {x} (case1 A∋x) = subst (λ k → odef (Union (A , B)) k) &iso ( union→ (A , B) (* x) A
        ⟪ case1 refl , d→∋ A A∋x ⟫ )
    lemma2 {x} (case2 B∋x) = subst (λ k → odef (Union (A , B)) k) &iso ( union→ (A , B) (* x) B
        ⟪ case2 refl , d→∋ B B∋x ⟫ )

∩-Select : { A B : HOD } →  Select A (  λ x → ( A ∋ x ) ∧ ( B ∋ x )) ?  =h= ( A ∩ B )
∩-Select {A} {B} =  record { eq→ =  lemma1 ; eq← = lemma2 }  where
    lemma1 : {x : Ordinal} → odef (Select A (λ x₁ → (A ∋ x₁) ∧ (B ∋ x₁)) ? ) x → odef (A ∩ B) x
    lemma1 {x} lt = ⟪ proj1 lt , subst (λ k → odef B k ) &iso (proj2 (proj2 lt)) ⟫
    lemma2 : {x : Ordinal} → odef (A ∩ B) x → odef (Select A (λ x₁ → (A ∋ x₁) ∧ (B ∋ x₁)) ? ) x
    lemma2 {x} lt = ⟪ proj1 lt , ⟪ d→∋ A (proj1 lt) , d→∋ B (proj2 lt) ⟫ ⟫

dist-ord : {p q r : HOD } → (p ∩ ( q ∪ r )) =h=  ( ( p ∩ q ) ∪ ( p ∩ r ))
dist-ord {p} {q} {r} = record { eq→ = lemma1 ; eq← = lemma2 }  where
    lemma1 :  {x : Ordinal} → odef (p ∩ (q ∪ r)) x → odef ((p ∩ q) ∪ (p ∩ r)) x
    lemma1 {x} lt with proj2 lt
    lemma1 {x} lt | case1 q∋x = case1 ⟪ proj1 lt , q∋x ⟫ 
    lemma1 {x} lt | case2 r∋x = case2 ⟪ proj1 lt , r∋x ⟫ 
    lemma2  : {x : Ordinal} → odef ((p ∩ q) ∪ (p ∩ r)) x → odef (p ∩ (q ∪ r)) x
    lemma2 {x} (case1 p∩q) = ⟪ proj1 p∩q , case1 (proj2 p∩q ) ⟫ 
    lemma2 {x} (case2 p∩r) = ⟪ proj1 p∩r , case2 (proj2 p∩r ) ⟫ 

dist-ord2 : {p q r : HOD } → (p ∪ ( q ∩ r )) =h=  ( ( p ∪ q ) ∩ ( p ∪ r ))
dist-ord2 {p} {q} {r} = record { eq→ = lemma1 ; eq← = lemma2 }  where
    lemma1 : {x : Ordinal} → odef (p ∪ (q ∩ r)) x → odef ((p ∪ q) ∩ (p ∪ r)) x
    lemma1 {x} (case1 cp) = ⟪ case1 cp , case1 cp ⟫
    lemma1 {x} (case2 cqr) = ⟪ case2 (proj1 cqr) , case2 (proj2 cqr) ⟫
    lemma2 : {x : Ordinal} → odef ((p ∪ q) ∩ (p ∪ r)) x → odef (p ∪ (q ∩ r)) x
    lemma2 {x} lt with proj1 lt | proj2 lt
    lemma2 {x} lt | case1 cp | _ = case1 cp
    lemma2 {x} lt | _ | case1 cp = case1 cp 
    lemma2 {x} lt | case2 cq | case2 cr = case2 ⟪ cq , cr ⟫ 

record IsBooleanAlgebra {n m : Level} ( L : Set n)
       ( _==_ : L → L → Set m )
       ( b1 : L )
       ( b0 : L )
       ( -_ : L → L  )
       ( _+_ : L → L → L )
       ( _x_ : L → L → L ) : Set (n ⊔ m) where
   field
       +-assoc : {a b c : L } → (a + ( b + c )) == ((a + b) + c)
       x-assoc : {a b c : L } → (a x ( b x c )) == ((a x b) x c)
       +-sym : {a b : L } → (a + b) == (b + a)
       x-sym : {a b : L } → (a x b)  == (b x a)
       +-aab : {a b : L } → (a + ( a x b )) == a
       x-aab : {a b : L } → (a x ( a + b )) == a
       +-dist : {a b c : L } → (a + ( b x c )) == (( a + b ) x ( a + c ))
       x-dist : {a b c : L } → (a x ( b + c )) == (( a x b ) + ( a x c ))
       a+0 : {a : L } → (a + b0) == a
       ax1 : {a : L } → (a x b1) == a
       a+-a1 : {a : L } → (a + ( - a )) == b1
       ax-a0 : {a : L } → (a x ( - a )) == b0

record BooleanAlgebra {n m : Level} ( L : Set n) : Set (n ⊔ suc m) where
   field
       _=b=_ : L → L → Set m 
       b1 : L
       b0 : L
       -_ : L → L 
       _+_ : L → L → L
       _x_ : L → L → L
       isBooleanAlgebra : IsBooleanAlgebra L _=b=_ b1 b0 -_ _+_ _x_

record PowerP (P : HOD) : Set (suc n) where
    constructor ⟦_,_⟧
    field
       hod : HOD
       x⊆P : hod ⊆ P  

open PowerP

HODBA : (P : HOD) → BooleanAlgebra {suc n} {n} (PowerP P)
HODBA P = record { _=b=_ = λ x y → hod x =h= hod y ; b1 = ⟦ P , (λ x → x) ⟧   ; b0 = ⟦ od∅ , (λ x →  ⊥-elim (¬x<0 x)) ⟧ 
  ; -_ = λ x → ⟦  P \ hod x , proj1 ⟧
  ; _+_ = λ x y → ⟦ hod x ∪ hod y , ba00 x y ⟧ ; _x_ = λ x y → ⟦ hod x ∩ hod y , (λ lt → x⊆P x (proj1 lt))  ⟧ 
   ; isBooleanAlgebra = record {
       +-assoc = λ {a} {b} {c} →  record { eq→ = ba01 a b c ; eq← = ba02 a b c  }
     ; x-assoc = λ {a} {b} {c} →  
        record { eq→ = λ lt → ⟪ ⟪ proj1 lt  , proj1 (proj2 lt) ⟫ , proj2 (proj2 lt)  ⟫ 
               ; eq← = λ lt → ⟪ proj1 (proj1 lt) , ⟪ proj2 (proj1 lt)  , proj2 lt ⟫ ⟫ } 
     ; +-sym = λ {a} {b} →  record { eq→ = λ {x} lt → ba05 {hod a} {hod b} lt  ; eq← = ba05 {hod b} {hod a} }
     ; x-sym = λ {a} {b} →  record { eq→ = λ lt → ⟪ proj2 lt , proj1 lt ⟫ ; eq← = λ lt → ⟪ proj2 lt , proj1 lt ⟫  }
     ; +-aab = λ {a} {b} →  record { eq→ = ba03 a b ; eq← = case1  }
     ; x-aab = λ {a} {b} →  record { eq→ = proj1 ; eq← = λ ax →  ⟪ ax , case1 ax ⟫ }
     ; +-dist = λ {p} {q} {r} → dist-ord2 {hod p} {hod q} {hod r} 
     ; x-dist = λ {p} {q} {r} → dist-ord {hod p} {hod q} {hod r} 
     ; a+0 = λ {a} →  record { eq→ = ba04 (hod a) ; eq← = case1 }
     ; ax1 = λ {a} →  record { eq→ = proj1 ; eq← = λ ax → ⟪ ax , x⊆P a ax ⟫ }
     ; a+-a1 = λ {a} →  record { eq→ = ba06 a ; eq← = ba07 a }
     ; ax-a0 =  λ {a} →  record { eq→ = ba08 a ; eq← = λ lt → ⊥-elim (¬x<0 lt) }
       } } where
     ba00 : (x y : PowerP P ) →  (hod x ∪ hod y) ⊆ P
     ba00 x y (case1 px) = x⊆P x px
     ba00 x y (case2 py) = x⊆P y py
     ba01 : (a b c : PowerP P) → {x : Ordinal} → odef (hod a) x ∨ odef (hod b ∪ hod c) x →
            odef (hod a ∪ hod b) x ∨ odef (hod c) x
     ba01 a b c {x} (case1 ax) = case1 (case1 ax)
     ba01 a b c {x} (case2 (case1 bx)) = case1 (case2 bx)
     ba01 a b c {x} (case2 (case2 cx)) = case2 cx
     ba02 : (a b c : PowerP P) → {x : Ordinal} → odef (hod a ∪ hod b) x ∨ odef (hod c) x
         → odef (hod a) x ∨ odef (hod b ∪ hod c) x 
     ba02 a b c {x} (case1 (case1 ax)) = case1 ax
     ba02 a b c {x} (case1 (case2 bx)) = case2 (case1 bx)
     ba02 a b c {x} (case2 cx) = case2 (case2 cx)
     ba03 : (a b : PowerP P) → {x : Ordinal} →
            odef (hod a) x ∨ odef (hod a ∩ hod b) x → def (od (hod a)) x
     ba03 a b (case1 ax) = ax
     ba03 a b (case2 ab) = proj1 ab
     ba04 : (a : HOD) →  {x : Ordinal} → odef a x ∨ odef od∅ x → odef a x
     ba04 a (case1 ax) = ax
     ba04 a (case2 x) = ⊥-elim (¬x<0 x)
     ba05 : {a b : HOD} {x : Ordinal} →  odef a x ∨ odef b x → odef b x ∨ odef a x
     ba05 (case1 x) = case2 x
     ba05 (case2 x) = case1 x
     ba06 : (a : PowerP P ) → { x : Ordinal} → odef (hod a) x ∨ odef (P \ hod a) x → def (od P) x
     ba06 a {x} (case1 ax) = x⊆P a ax
     ba06 a {x} (case2 nax) = proj1 nax
     ba07 : (a : PowerP P ) → { x : Ordinal} → def (od P) x → odef (hod a) x ∨ odef (P \ hod a) x 
     ba07 a {x} px with ODC.∋-p O HODAxiom AC (hod a) (* x)
     ... | yes y = case1 (subst (λ k → odef (hod a) k) &iso y)
     ... | no n = case2 ⟪ px , subst (λ k → ¬ odef (hod a) k) &iso n ⟫
     ba08 : (a : PowerP P) → {x : Ordinal} → def (od (hod a ∩ (P \ hod a))) x → def (od od∅) x
     ba08 a {x} ⟪ ax , ⟪ px , nax ⟫ ⟫ = ⊥-elim ( nax ax )