### view cardinal.agda @ 420:53422a8ea836

bijection
author Shinji KONO Fri, 31 Jul 2020 17:42:25 +0900 f464e48e18cc cb067605fea0
line wrap: on
line source
```
open import Level
open import Ordinals
module cardinal {n : Level } (O : Ordinals {n}) where

open import zf
open import logic
import OD
import ODC
import OPair
open import Data.Nat renaming ( zero to Zero ; suc to Suc ;  ℕ to Nat ; _⊔_ to _n⊔_ )
open import Relation.Binary.PropositionalEquality
open import Data.Nat.Properties
open import Data.Empty
open import Relation.Nullary
open import Relation.Binary
open import Relation.Binary.Core

open inOrdinal O
open OD O
open OD.OD
open OPair O
open ODAxiom odAxiom

open _∧_
open _∨_
open Bool
open _==_

open HOD

-- _⊗_ : (A B : HOD) → HOD
-- A ⊗ B  = Union ( Replace B (λ b → Replace A (λ a → < a , b > ) ))

Func :  OD
Func = record { def = λ x → def ZFProduct x
∧ ( (a b c : Ordinal) → odef (ord→od x) (od→ord < ord→od a , ord→od b >) ∧ odef (ord→od x) (od→ord < ord→od a , ord→od c >) →  b ≡  c ) }

FuncP :  ( A B : HOD ) → HOD
FuncP A B = record { od = record { def = λ x → odef (ZFP A B) x
∧ ( (x : Ordinal ) (p q : odef (ZFP A B ) x ) → pi1 (proj1 p) ≡ pi1 (proj1 q) → pi2 (proj1 p) ≡ pi2 (proj1 q) ) }
; odmax = odmax (ZFP A B) ; <odmax = λ lt → <odmax (ZFP A B) (proj1 lt) }

Func∋f : {A B x : HOD} → ( f : HOD → HOD ) → ( (x : HOD ) → A ∋ x → B ∋ f x )
→ def Func (od→ord  (Replace A (λ x → < x , f x > )))
Func∋f = {!!}

FuncP∋f : {A B x : HOD} → ( f : HOD → HOD ) → ( (x : HOD ) → A ∋ x → B ∋ f x )
→ odef (FuncP A B) (od→ord  (Replace A (λ x → < x , f x > )))
FuncP∋f = {!!}

Func→f : {A B f x : HOD} → def Func (od→ord f)  → (x : HOD ) → A ∋ x  → ( HOD ∧ ((y : HOD ) → B ∋ y ))
Func→f = {!!}

Func₁ : {A B f : HOD} → def Func (od→ord f) → {!!}
Func₁ = {!!}

Cod : {A B f : HOD} → def Func (od→ord f) → {!!}
Cod = {!!}

1-1 : {A B f : HOD} → def Func (od→ord f) → {!!}
1-1 = {!!}

onto : {A B f : HOD} → def Func (od→ord f) → {!!}
onto  = {!!}

record Bijection (A B : Ordinal ) : Set n where
field
fun→ : Ordinal → Ordinal
fun← : Ordinal → Ordinal
fun→inA : (x : Ordinal) → odef (ord→od A) ( fun→ x )
fun←inB : (x : Ordinal) → odef (ord→od B) ( fun← x )
fiso→ : (x : Ordinal ) → odef (ord→od A)  x → fun→ ( fun← x ) ≡ x
fiso← : (x : Ordinal ) → odef (ord→od B)  x → fun← ( fun→ x ) ≡ x

Card : OD
Card = record { def = λ x → (a : Ordinal) → a o< x → ¬ Bijection a x }
```