view ordinal.agda @ 258:63df67b6281c

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Wed, 04 Sep 2019 01:12:18 +0900
parents c10048d69614
children d9d178d1457c
line wrap: on
line source

open import Level
module ordinal where

open import zf

open import Data.Nat renaming ( zero to Zero ; suc to Suc ;  ℕ to Nat ; _⊔_ to _n⊔_ ) 
open import Data.Empty
open import  Relation.Binary.PropositionalEquality
open import  logic
open import  nat

data OrdinalD {n : Level} :  (lv : Nat) → Set n where
   Φ : (lv : Nat) → OrdinalD  lv
   OSuc : (lv : Nat) → OrdinalD {n} lv → OrdinalD lv

record Ordinal {n : Level} : Set n where
   constructor ordinal  
   field
     lv : Nat
     ord : OrdinalD {n} lv

data _d<_ {n : Level} :   {lx ly : Nat} → OrdinalD {n} lx  →  OrdinalD {n} ly  → Set n where
   Φ<  : {lx : Nat} → {x : OrdinalD {n} lx}  →  Φ lx d< OSuc lx x
   s<  : {lx : Nat} → {x y : OrdinalD {n} lx}  →  x d< y  → OSuc  lx x d< OSuc  lx y

open Ordinal

_o<_ : {n : Level} ( x y : Ordinal ) → Set n
_o<_ x y =  (lv x < lv y )  ∨ ( ord x d< ord y )

s<refl : {n : Level } {lx : Nat } { x : OrdinalD {n} lx } → x d< OSuc lx x
s<refl {n} {lv} {Φ lv}  = Φ<
s<refl {n} {lv} {OSuc lv x}  = s< s<refl 

trio<> : {n : Level} →  {lx : Nat} {x  : OrdinalD {n} lx } { y : OrdinalD  lx }  →  y d< x → x d< y → ⊥
trio<>  {n} {lx} {.(OSuc lx _)} {.(OSuc lx _)} (s< s) (s< t) = trio<> s t
trio<> {n} {lx} {.(OSuc lx _)} {.(Φ lx)} Φ< ()

d<→lv : {n : Level} {x y  : Ordinal {n}}   → ord x d< ord y → lv x ≡ lv y
d<→lv Φ< = refl
d<→lv (s< lt) = refl

o<-subst : {n : Level } {Z X z x : Ordinal {n}}  → Z o< X → Z ≡ z  →  X ≡ x  →  z o< x
o<-subst df refl refl = df

open import Data.Nat.Properties 
open import Data.Unit using ( ⊤ )
open import Relation.Nullary

open import Relation.Binary
open import Relation.Binary.Core

o∅ : {n : Level} → Ordinal {n}
o∅  = record { lv = Zero ; ord = Φ Zero }

open import Relation.Binary.HeterogeneousEquality using (_≅_;refl)

ordinal-cong : {n : Level} {x y : Ordinal {n}}  →
      lv x  ≡ lv y → ord x ≅ ord y →  x ≡ y
ordinal-cong refl refl = refl

≡→¬d< : {n : Level} →  {lv : Nat} → {x  : OrdinalD {n}  lv }  → x d< x → ⊥
≡→¬d<  {n} {lx} {OSuc lx y} (s< t) = ≡→¬d< t

trio<≡ : {n : Level} →  {lx : Nat} {x  : OrdinalD {n} lx } { y : OrdinalD  lx }  → x ≡ y  → x d< y → ⊥
trio<≡ refl = ≡→¬d<

trio>≡ : {n : Level} →  {lx : Nat} {x  : OrdinalD {n} lx } { y : OrdinalD  lx }  → x ≡ y  → y d< x → ⊥
trio>≡ refl = ≡→¬d<

triOrdd : {n : Level} →  {lx : Nat}   → Trichotomous  _≡_ ( _d<_  {n} {lx} {lx} )
triOrdd  {_} {lv} (Φ lv) (Φ lv) = tri≈ ≡→¬d< refl ≡→¬d<
triOrdd  {_} {lv} (Φ lv) (OSuc lv y) = tri< Φ< (λ ()) ( λ lt → trio<> lt Φ< )
triOrdd  {_} {lv} (OSuc lv x) (Φ lv) = tri> (λ lt → trio<> lt Φ<) (λ ()) Φ<
triOrdd  {_} {lv} (OSuc lv x) (OSuc lv y) with triOrdd x y
triOrdd  {_} {lv} (OSuc lv x) (OSuc lv y) | tri< a ¬b ¬c = tri< (s< a) (λ tx=ty → trio<≡ tx=ty (s< a) )  (  λ lt → trio<> lt (s< a) )
triOrdd  {_} {lv} (OSuc lv x) (OSuc lv x) | tri≈ ¬a refl ¬c = tri≈ ≡→¬d< refl ≡→¬d<
triOrdd  {_} {lv} (OSuc lv x) (OSuc lv y) | tri> ¬a ¬b c = tri> (  λ lt → trio<> lt (s< c) ) (λ tx=ty → trio>≡ tx=ty (s< c) ) (s< c)

osuc : {n : Level} ( x : Ordinal {n} ) → Ordinal {n}
osuc record { lv = lx ; ord = ox } = record { lv = lx ; ord = OSuc lx ox }

<-osuc : {n : Level} { x : Ordinal {n} } → x o< osuc x
<-osuc {n} {record { lv = lx ; ord = Φ .lx }} =  case2 Φ<
<-osuc {n} {record { lv = lx ; ord = OSuc .lx ox }} = case2 ( s< s<refl )

o<¬≡ : {n : Level } { ox oy : Ordinal {suc n}} → ox ≡ oy  → ox o< oy  → ⊥
o<¬≡ {_} {ox} {ox} refl (case1 lt) =  =→¬< lt
o<¬≡ {_} {ox} {ox} refl (case2 (s< lt)) = trio<≡ refl lt

¬x<0 : {n : Level} →  { x  : Ordinal {suc n} } → ¬ ( x o< o∅ {suc n} )
¬x<0 {n} {x} (case1 ())
¬x<0 {n} {x} (case2 ())

o<> : {n : Level} →  {x y : Ordinal {n}  }  →  y o< x → x o< y → ⊥
o<> {n} {x} {y} (case1 x₁) (case1 x₂) = nat-<>  x₁ x₂
o<> {n} {x} {y} (case1 x₁) (case2 x₂) = nat-≡< (sym (d<→lv x₂)) x₁
o<> {n} {x} {y} (case2 x₁) (case1 x₂) = nat-≡< (sym (d<→lv x₁)) x₂
o<> {n} {record { lv = lv₁ ; ord = .(OSuc lv₁ _) }} {record { lv = .lv₁ ; ord = .(Φ lv₁) }} (case2 Φ<) (case2 ())
o<> {n} {record { lv = lv₁ ; ord = .(OSuc lv₁ _) }} {record { lv = .lv₁ ; ord = .(OSuc lv₁ _) }} (case2 (s< y<x)) (case2 (s< x<y)) = 
   o<> (case2 y<x) (case2 x<y)

orddtrans : {n : Level} {lx : Nat} {x y z : OrdinalD {n}  lx }   → x d< y → y d< z → x d< z
orddtrans {_} {lx} {.(Φ lx)} {.(OSuc lx _)} {.(OSuc lx _)} Φ< (s< y<z) = Φ< 
orddtrans {_} {lx} {.(OSuc lx _)} {.(OSuc lx _)} {.(OSuc lx _)} (s< x<y) (s< y<z) = s< ( orddtrans x<y y<z )

osuc-≡< : {n : Level} { a x : Ordinal {n} } → x o< osuc a  →  (x ≡ a ) ∨ (x o< a)  
osuc-≡< {n} {a} {x} (case1 lt) = case2 (case1 lt)
osuc-≡< {n} {record { lv = lv₁ ; ord = Φ .lv₁ }} {record { lv = .lv₁ ; ord = .(Φ lv₁) }} (case2 Φ<) = case1 refl
osuc-≡< {n} {record { lv = lv₁ ; ord = OSuc .lv₁ ord₁ }} {record { lv = .lv₁ ; ord = .(Φ lv₁) }} (case2 Φ<) = case2 (case2 Φ<)
osuc-≡< {n} {record { lv = lv₁ ; ord = Φ .lv₁ }} {record { lv = .lv₁ ; ord = .(OSuc lv₁ _) }} (case2 (s< ()))
osuc-≡< {n} {record { lv = la ; ord = OSuc la oa }} {record { lv = la ; ord = (OSuc la ox) }} (case2 (s< lt)) with
      osuc-≡< {n} {record { lv = la ; ord = oa }} {record { lv = la ; ord = ox }} (case2 lt )
... | case1 refl = case1 refl
... | case2 (case2 x) = case2 (case2( s< x) )
... | case2 (case1 x) = ⊥-elim (¬a≤a  x) where

osuc-< : {n : Level} { x y : Ordinal {n} } → y o< osuc x  → x o< y → ⊥
osuc-< {n} {x} {y} y<ox x<y with osuc-≡< y<ox
osuc-< {n} {x} {x} y<ox (case1 x₁) | case1 refl = ⊥-elim (¬a≤a x₁)
osuc-< {n} {x} {x} (case1 x₂) (case2 x₁) | case1 refl = ⊥-elim (¬a≤a x₂)
osuc-< {n} {x} {x} (case2 x₂) (case2 x₁) | case1 refl = ≡→¬d<  x₁
osuc-< {n} {x} {y} y<ox (case1 x₂) | case2 (case1 x₁) = nat-<> x₂ x₁
osuc-< {n} {x} {y} y<ox (case1 x₂) | case2 (case2 x₁) = nat-≡< (sym (d<→lv x₁)) x₂
osuc-< {n} {x} {y} y<ox (case2 x<y) | case2 y<x = o<> (case2 x<y) y<x


ordtrans : {n : Level} {x y z : Ordinal {n} }   → x o< y → y o< z → x o< z
ordtrans {n} {x} {y} {z} (case1 x₁) (case1 x₂) = case1 ( <-trans x₁ x₂ )
ordtrans {n} {x} {y} {z} (case1 x₁) (case2 x₂) with  d<→lv x₂
... | refl = case1 x₁
ordtrans {n} {x} {y} {z} (case2 x₁) (case1 x₂)  with  d<→lv x₁
... | refl = case1 x₂
ordtrans {n} {x} {y} {z} (case2 x₁) (case2 x₂) with d<→lv x₁ | d<→lv x₂
... | refl | refl = case2 ( orddtrans x₁ x₂ )

trio< : {n : Level } → Trichotomous {suc n} _≡_  _o<_ 
trio< a b with <-cmp (lv a) (lv b)
trio< a b | tri< a₁ ¬b ¬c = tri< (case1  a₁) (λ refl → ¬b (cong ( λ x → lv x ) refl ) ) lemma1 where
   lemma1 : ¬ (Suc (lv b) ≤ lv a) ∨ (ord b d< ord a)
   lemma1 (case1 x) = ¬c x
   lemma1 (case2 x) = ⊥-elim (nat-≡< (sym ( d<→lv x )) a₁  )
trio< a b | tri> ¬a ¬b c = tri> lemma1 (λ refl → ¬b (cong ( λ x → lv x ) refl ) ) (case1 c) where
   lemma1 : ¬ (Suc (lv a) ≤ lv b) ∨ (ord a d< ord b)
   lemma1 (case1 x) = ¬a x
   lemma1 (case2 x) = ⊥-elim (nat-≡< (sym ( d<→lv x )) c  )
trio< a b | tri≈ ¬a refl ¬c with triOrdd ( ord a ) ( ord b )
trio< record { lv = .(lv b) ; ord = x } b | tri≈ ¬a refl ¬c | tri< a ¬b ¬c₁ = tri< (case2 a) (λ refl → ¬b (lemma1 refl )) lemma2 where
   lemma1 :  (record { lv = _ ; ord = x }) ≡ b →  x ≡ ord b
   lemma1 refl = refl
   lemma2 : ¬ (Suc (lv b) ≤ lv b) ∨ (ord b d< x)
   lemma2 (case1 x) = ¬a x
   lemma2 (case2 x) = trio<> x a
trio< record { lv = .(lv b) ; ord = x } b | tri≈ ¬a refl ¬c | tri> ¬a₁ ¬b c = tri> lemma2 (λ refl → ¬b (lemma1 refl )) (case2 c) where
   lemma1 :  (record { lv = _ ; ord = x }) ≡ b →  x ≡ ord b
   lemma1 refl = refl
   lemma2 : ¬ (Suc (lv b) ≤ lv b) ∨ (x d< ord b)
   lemma2 (case1 x) = ¬a x
   lemma2 (case2 x) = trio<> x c
trio< record { lv = .(lv b) ; ord = x } b | tri≈ ¬a refl ¬c | tri≈ ¬a₁ refl ¬c₁ = tri≈ lemma1 refl lemma1 where
   lemma1 : ¬ (Suc (lv b) ≤ lv b) ∨ (ord b d< ord b)
   lemma1 (case1 x) = ¬a x
   lemma1 (case2 x) = ≡→¬d< x


open _∧_

TransFinite : {n m : Level} → { ψ : Ordinal {suc n} → Set m }
  → ( ∀ (lx : Nat ) → ( (x : Ordinal {suc n} ) → x o< ordinal lx (Φ lx)  → ψ x ) → ψ ( record { lv = lx ; ord = Φ lx } ) )
  → ( ∀ (lx : Nat ) → (x : OrdinalD lx ) → ( (y : Ordinal {suc n} ) → y o< ordinal lx (OSuc lx x)  → ψ y )   → ψ ( record { lv = lx ; ord = OSuc lx x } ) )
  →  ∀ (x : Ordinal)  → ψ x
TransFinite {n} {m} {ψ} caseΦ caseOSuc x = proj1 (TransFinite1 (lv x) (ord x) ) where
  TransFinite1 : (lx : Nat) (ox : OrdinalD lx ) → ψ (ordinal lx ox) ∧ ( ( (x : Ordinal {suc n} ) → x o< ordinal lx ox  → ψ x ) )
  TransFinite1 Zero (Φ 0) = record { proj1 = caseΦ Zero lemma ; proj2 = lemma1 } where
      lemma : (x : Ordinal) → x o< ordinal Zero (Φ Zero) → ψ x
      lemma x (case1 ())
      lemma x (case2 ())
      lemma1 : (x : Ordinal) → x o< ordinal Zero (Φ Zero) → ψ x
      lemma1 x (case1 ())
      lemma1 x (case2 ())
  TransFinite1 (Suc lx) (Φ (Suc lx)) = record { proj1 = caseΦ (Suc lx) (λ x → lemma (lv x) (ord x)) ; proj2 = (λ x → lemma (lv x) (ord x)) } where
      lemma0 : (ly : Nat) (oy : OrdinalD ly ) → ordinal ly oy  o< ordinal lx (Φ lx) → ψ (ordinal ly oy)
      lemma0 ly oy lt = proj2 ( TransFinite1 lx (Φ lx) ) (ordinal ly oy) lt
      lemma : (ly : Nat) (oy : OrdinalD ly ) → ordinal ly oy  o< ordinal (Suc lx) (Φ (Suc lx)) → ψ (ordinal ly oy)
      lemma lx1 ox1            (case1 lt) with <-∨ lt
      lemma lx (Φ lx)          (case1 lt) | case1 refl = proj1 ( TransFinite1 lx (Φ lx) )
      lemma lx (Φ lx)          (case1 lt) | case2 lt1 = lemma0  lx (Φ lx) (case1 lt1)
      lemma lx (OSuc lx ox1)   (case1 lt) | case1 refl = caseOSuc lx ox1 lemma2 where
          lemma2 : (y : Ordinal) → (Suc (lv y) ≤ lx) ∨ (ord y d< OSuc lx ox1) → ψ y
          lemma2 y lt1 with osuc-≡< lt1
          lemma2 y lt1 | case1 refl = lemma lx ox1 (case1 a<sa)
          lemma2 y lt1 | case2 t = proj2 (TransFinite1 lx ox1) y t 
      lemma lx1 (OSuc lx1 ox1) (case1 lt) | case2 lt1 = caseOSuc lx1 ox1 lemma2 where
          lemma2 : (y : Ordinal) → (Suc (lv y) ≤ lx1) ∨ (ord y d< OSuc lx1 ox1) → ψ y
          lemma2 y lt2 with osuc-≡< lt2
          lemma2 y lt2 | case1 refl = lemma lx1 ox1 (ordtrans lt2 (case1 lt))
          lemma2 y lt2 | case2 (case1 lt3) = proj2 (TransFinite1 lx (Φ lx)) y (case1 (<-trans lt3 lt1 ))
          lemma2 y lt2 | case2 (case2 lt3) with d<→lv lt3
          ... | refl = proj2 (TransFinite1 lx (Φ lx)) y (case1 lt1)
  TransFinite1 lx (OSuc lx ox)  = record { proj1 = caseOSuc lx ox lemma ; proj2 = lemma } where
      lemma : (y : Ordinal) → y o< ordinal lx (OSuc lx ox) → ψ y
      lemma y lt with osuc-≡< lt
      lemma y lt | case1 refl = proj1 ( TransFinite1 lx ox ) 
      lemma y lt | case2 lt1 = proj2 ( TransFinite1 lx ox ) y lt1


open import Ordinals 

C-Ordinal : {n : Level} →  Ordinals {suc n} 
C-Ordinal {n} = record {
     ord = Ordinal {suc n}
   ; o∅ = o∅
   ; osuc = osuc
   ; _o<_ = _o<_
   ; isOrdinal = record {
       Otrans = ordtrans
     ; OTri = trio<
     ; ¬x<0 = ¬x<0 
     ; <-osuc = <-osuc
     ; osuc-≡< = osuc-≡<
     ; TransFinite = TransFinite1
   }
  } where
     ord1 : Set (suc n)
     ord1 = Ordinal {suc n}
     TransFinite1 : { ψ : ord1  → Set (suc (suc n)) }
          → ( (x : ord1)  → ( (y : ord1  ) → y o< x → ψ y ) → ψ x )
          →  ∀ (x : ord1)  → ψ x
     TransFinite1 {ψ} lt x = TransFinite {n} {suc (suc n)} {ψ} caseΦ caseOSuc x where
        caseΦ : (lx : Nat) → ((x₁ : Ordinal) → x₁ o< ordinal lx (Φ lx) → ψ x₁) →
            ψ (record { lv = lx ; ord = Φ lx })
        caseΦ lx prev = lt (ordinal lx (Φ lx) ) prev
        caseOSuc :  (lx : Nat) (x₁ : OrdinalD lx) → ((y : Ordinal) → y o< ordinal lx (OSuc lx x₁) → ψ y) →
            ψ (record { lv = lx ; ord = OSuc lx x₁ })
        caseOSuc lx ox prev = lt (ordinal lx (OSuc lx ox)) prev 

module C-Ordinal-with-choice {n : Level} where

  import OD 
  -- open inOrdinal C-Ordinal 
  open OD (C-Ordinal {n})
  open OD.OD
  
  --
  -- another form of regularity 
  --
  ε-induction : {m : Level} { ψ : OD  → Set m}
   → ( {x : OD } → ({ y : OD } →  x ∋ y → ψ y ) → ψ x )
   → (x : OD ) → ψ x
  ε-induction {m} {ψ} ind x = subst (λ k → ψ k ) oiso (ε-induction-ord (lv (osuc (od→ord x))) (ord (osuc (od→ord x)))  <-osuc) where
    ε-induction-ord : (lx : Nat) ( ox : OrdinalD {suc n} lx ) {ly : Nat} {oy : OrdinalD {suc n} ly }
      → (ly < lx) ∨ (oy d< ox  ) → ψ (ord→od (record { lv = ly ; ord = oy } ) )
    ε-induction-ord lx  (OSuc lx ox) {ly} {oy} y<x = 
      ind {ord→od (record { lv = ly ; ord = oy })} ( λ {y} lt → subst (λ k → ψ k ) oiso (ε-induction-ord lx ox (lemma y lt ))) where
          lemma :  (z : OD) → ord→od record { lv = ly ; ord = oy } ∋ z → od→ord z o< record { lv = lx ; ord = ox }
          lemma z lt with osuc-≡< y<x
          lemma z lt | case1 refl = o<-subst (c<→o< lt) refl diso
          lemma z lt | case2 lt1 = ordtrans  (o<-subst (c<→o< lt) refl diso) lt1  
    ε-induction-ord (Suc lx) (Φ (Suc lx)) {ly} {oy} (case1 y<sox ) =                    
      ind {ord→od (record { lv = ly ; ord = oy })} ( λ {y} lt → lemma y lt )  where  
          --
          --     if lv of z if less than x Ok
          --     else lv z = lv x. We can create OSuc of z which is larger than z and less than x in lemma
          --
          --                         lx    Suc lx      (1) lz(a) <lx by case1
          --                 ly(1)   ly(2)             (2) lz(b) <lx by case1
          --           lz(a) lz(b)   lz(c)                 lz(c) <lx by case2 ( ly==lz==lx)
          --
          lemma0 : { lx ly : Nat } → ly < Suc lx  → lx < ly → ⊥
          lemma0 {Suc lx} {Suc ly} (s≤s lt1) (s≤s lt2) = lemma0 lt1 lt2
          lemma1 : {ly : Nat} {oy : OrdinalD {suc n} ly} → lv (od→ord (ord→od (record { lv = ly ; ord = oy }))) ≡ ly
          lemma1  {ly} {oy} = let open ≡-Reasoning in begin
                  lv (od→ord (ord→od (record { lv = ly ; ord = oy })))
               ≡⟨ cong ( λ k → lv k ) diso ⟩
                  lv (record { lv = ly ; ord = oy })
               ≡⟨⟩
                  ly

          lemma :  (z : OD) → ord→od record { lv = ly ; ord = oy } ∋ z → ψ z
          lemma z lt with  c<→o<  {z} {ord→od (record { lv = ly ; ord = oy })} lt
          lemma z lt | case1 lz<ly with <-cmp lx ly
          lemma z lt | case1 lz<ly | tri< a ¬b ¬c = ⊥-elim ( lemma0 y<sox a) -- can't happen
          lemma z lt | case1 lz<ly | tri≈ ¬a refl ¬c =    -- ly(1)
                subst (λ k → ψ k ) oiso (ε-induction-ord lx (Φ lx) {_} {ord (od→ord z)} (case1 (subst (λ k → lv (od→ord z) < k ) lemma1 lz<ly ) ))
          lemma z lt | case1 lz<ly | tri> ¬a ¬b c =       -- lz(a)
                subst (λ k → ψ k ) oiso (ε-induction-ord lx (Φ lx) {_} {ord (od→ord z)} (case1 (<-trans lz<ly (subst (λ k → k < lx ) (sym lemma1) c))))
          lemma z lt | case2 lz=ly with <-cmp lx ly
          lemma z lt | case2 lz=ly | tri< a ¬b ¬c = ⊥-elim ( lemma0 y<sox a) -- can't happen
          lemma z lt | case2 lz=ly | tri> ¬a ¬b c with d<→lv lz=ly        -- lz(b)
          ... | eq = subst (λ k → ψ k ) oiso
               (ε-induction-ord lx (Φ lx) {_} {ord (od→ord z)} (case1 (subst (λ k → k < lx ) (trans (sym lemma1)(sym eq) ) c )))
          lemma z lt | case2 lz=ly | tri≈ ¬a lx=ly ¬c with d<→lv lz=ly    -- lz(c)
          ... | eq =  subst (λ k → ψ k ) oiso ( ε-induction-ord lx (dz oz=lx) {lv (od→ord z)} {ord (od→ord z)} (case2 (dz<dz oz=lx) )) where
              oz=lx : lv (od→ord z) ≡ lx 
              oz=lx = let open ≡-Reasoning in begin
                  lv (od→ord z)
                 ≡⟨ eq ⟩
                  lv (od→ord (ord→od (ordinal ly oy)))
                 ≡⟨ cong ( λ k → lv k ) diso ⟩
                  lv (ordinal ly oy)
                 ≡⟨ sym lx=ly  ⟩
                  lx

              dz : lv (od→ord z) ≡ lx → OrdinalD lx
              dz refl = OSuc lx (ord (od→ord z))
              dz<dz  : (z=x : lv (od→ord z) ≡ lx ) → ord (od→ord z) d< dz z=x
              dz<dz refl = s<refl