view OPair.agda @ 411:6eaab908130e

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Wed, 29 Jul 2020 21:51:00 +0900
parents 6dcea4c7cba1
children f464e48e18cc
line wrap: on
line source

{-# OPTIONS --allow-unsolved-metas #-}

open import Level
open import Ordinals
module OPair {n : Level } (O : Ordinals {n})   where

open import zf
open import logic
import OD 

open import Relation.Nullary
open import Relation.Binary
open import Data.Empty
open import Relation.Binary
open import Relation.Binary.Core
open import  Relation.Binary.PropositionalEquality
open import Data.Nat renaming ( zero to Zero ; suc to Suc ;  ℕ to Nat ; _⊔_ to _n⊔_ ) 

open inOrdinal O
open OD O
open OD.OD
open OD.HOD
open ODAxiom odAxiom

open _∧_
open _∨_
open Bool

open _==_

<_,_> : (x y : HOD) → HOD
< x , y > = (x , x ) , (x , y )

exg-pair : { x y : HOD } → (x , y ) =h= ( y , x )
exg-pair {x} {y} = record { eq→ = left ; eq← = right } where
    left : {z : Ordinal} → odef (x , y) z → odef (y , x) z 
    left (case1 t) = case2 t
    left (case2 t) = case1 t
    right : {z : Ordinal} → odef (y , x) z → odef (x , y) z 
    right (case1 t) = case2 t
    right (case2 t) = case1 t

ord≡→≡ : { x y : HOD } → od→ord x ≡ od→ord y → x ≡ y
ord≡→≡ eq = subst₂ (λ j k → j ≡ k ) oiso oiso ( cong ( λ k → ord→od k ) eq )

od≡→≡ : { x y : Ordinal } → ord→od x ≡ ord→od y → x ≡ y
od≡→≡ eq = subst₂ (λ j k → j ≡ k ) diso diso ( cong ( λ k → od→ord k ) eq )

eq-prod : { x x' y y' : HOD } → x ≡ x' → y ≡ y' → < x , y > ≡ < x' , y' >
eq-prod refl refl = refl

xx=zy→x=y : {x y z : HOD } → ( x , x ) =h= ( z , y ) → x ≡ y
xx=zy→x=y {x} {y} eq with trio< (od→ord x) (od→ord y) 
xx=zy→x=y {x} {y} eq | tri< a ¬b ¬c with eq← eq {od→ord y} (case2 refl) 
xx=zy→x=y {x} {y} eq | tri< a ¬b ¬c | case1 s = ⊥-elim ( o<¬≡ (sym s) a )
xx=zy→x=y {x} {y} eq | tri< a ¬b ¬c | case2 s = ⊥-elim ( o<¬≡ (sym s) a )
xx=zy→x=y {x} {y} eq | tri≈ ¬a b ¬c = ord≡→≡ b
xx=zy→x=y {x} {y} eq | tri> ¬a ¬b c  with eq← eq {od→ord y} (case2 refl) 
xx=zy→x=y {x} {y} eq | tri> ¬a ¬b c | case1 s = ⊥-elim ( o<¬≡ s c )
xx=zy→x=y {x} {y} eq | tri> ¬a ¬b c | case2 s = ⊥-elim ( o<¬≡ s c )

prod-eq : { x x' y y' : HOD } → < x , y > =h= < x' , y' > → (x ≡ x' ) ∧ ( y ≡ y' )
prod-eq {x} {x'} {y} {y'} eq = record { proj1 = lemmax ; proj2 = lemmay } where
    lemma2 : {x y z : HOD } → ( x , x ) =h= ( z , y ) → z ≡ y
    lemma2 {x} {y} {z} eq = trans (sym (xx=zy→x=y lemma3 )) ( xx=zy→x=y eq )  where
        lemma3 : ( x , x ) =h= ( y , z )
        lemma3 = ==-trans eq exg-pair
    lemma1 : {x y : HOD } → ( x , x ) =h= ( y , y ) → x ≡ y
    lemma1 {x} {y} eq with eq← eq {od→ord y} (case2 refl)
    lemma1 {x} {y} eq | case1 s = ord≡→≡ (sym s)
    lemma1 {x} {y} eq | case2 s = ord≡→≡ (sym s)
    lemma4 : {x y z : HOD } → ( x , y ) =h= ( x , z ) → y ≡ z
    lemma4 {x} {y} {z} eq with eq← eq {od→ord z} (case2 refl)
    lemma4 {x} {y} {z} eq | case1 s with ord≡→≡ s -- x ≡ z
    ... | refl with lemma2 (==-sym eq )
    ... | refl = refl
    lemma4 {x} {y} {z} eq | case2 s = ord≡→≡ (sym s) -- y ≡ z
    lemmax : x ≡ x'
    lemmax with eq→ eq {od→ord (x , x)} (case1 refl) 
    lemmax | case1 s = lemma1 (ord→== s )  -- (x,x)≡(x',x')
    lemmax | case2 s with lemma2 (ord→== s ) -- (x,x)≡(x',y') with x'≡y'
    ... | refl = lemma1 (ord→== s )
    lemmay : y ≡ y'
    lemmay with lemmax
    ... | refl with lemma4 eq -- with (x,y)≡(x,y')
    ... | eq1 = lemma4 (ord→== (cong (λ  k → od→ord k )  eq1 ))

--
-- unlike ordered pair, ZFProduct is not a HOD

data ord-pair : (p : Ordinal) → Set n where
   pair : (x y : Ordinal ) → ord-pair ( od→ord ( < ord→od x , ord→od y > ) )

ZFProduct : OD
ZFProduct = record { def = λ x → ord-pair x }

-- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) 
-- eq-pair : { x x' y y' : Ordinal } → x ≡ x' → y ≡ y' → pair x y ≅ pair x' y'
-- eq-pair refl refl = HE.refl

pi1 : { p : Ordinal } →   ord-pair p →  Ordinal
pi1 ( pair x y) = x

π1 : { p : HOD } → def ZFProduct (od→ord p) → HOD
π1 lt = ord→od (pi1 lt )

pi2 : { p : Ordinal } →   ord-pair p →  Ordinal
pi2 ( pair x y ) = y

π2 : { p : HOD } → def ZFProduct (od→ord p) → HOD
π2 lt = ord→od (pi2 lt )

op-cons :  { ox oy  : Ordinal } → def ZFProduct (od→ord ( < ord→od ox , ord→od oy >   ))
op-cons {ox} {oy} = pair ox oy

def-subst :  {Z : OD } {X : Ordinal  }{z : OD } {x : Ordinal  }→ def Z X → Z ≡ z  →  X ≡ x  →  def z x
def-subst df refl refl = df

p-cons :  ( x y  : HOD ) → def ZFProduct (od→ord ( < x , y >))
p-cons x y = def-subst {_} {_} {ZFProduct} {od→ord (< x , y >)} (pair (od→ord x) ( od→ord y )) refl (
   let open ≡-Reasoning in begin
       od→ord < ord→od (od→ord x) , ord→od (od→ord y) >
   ≡⟨ cong₂ (λ j k → od→ord < j , k >) oiso oiso ⟩
       od→ord < x , y >
   ∎ ) 

op-iso :  { op : Ordinal } → (q : ord-pair op ) → od→ord < ord→od (pi1 q) , ord→od (pi2 q) > ≡ op
op-iso (pair ox oy) = refl

p-iso :  { x  : HOD } → (p : def ZFProduct (od→ord  x) ) → < π1 p , π2 p > ≡ x
p-iso {x} p = ord≡→≡ (op-iso p) 

p-pi1 :  { x y : HOD } → (p : def ZFProduct (od→ord  < x , y >) ) →  π1 p ≡ x
p-pi1 {x} {y} p = proj1 ( prod-eq ( ord→== (op-iso p) ))

p-pi2 :  { x y : HOD } → (p : def ZFProduct (od→ord  < x , y >) ) →  π2 p ≡ y
p-pi2 {x} {y} p = proj2 ( prod-eq ( ord→== (op-iso p)))

ω-pair : {x y : HOD} → infinite ∋ x → infinite ∋ y → od→ord < x , y > o< next o∅
ω-pair {x} {y} lx ly = lemma0 where
    lemma3 : od→ord (x , y) o< next o∅
    lemma3 = next< (omax<nx (<odmax infinite lx) (<odmax infinite ly)) ho<
    lemma0 : od→ord < x , y > o< next o∅
    lemma0 = osucprev (begin
         osuc (od→ord < x , y >)
       <⟨ osuc<nx ho< ⟩
         next (omax (od→ord (x , x)) (od→ord (x , y)))
       ≡⟨ cong (λ k → next k) (sym ( omax≤ _ _ pair-xx<xy )) ⟩
         next (osuc (od→ord (x , y)))
       ≡⟨ sym (nexto≡) ⟩
         next (od→ord (x , y))
       ≤⟨ x<ny→≤next lemma3 ⟩
         next o∅
       ∎ ) where
          open o≤-Reasoning O

_⊗_ : (A B : HOD) → HOD
A ⊗ B  = Union ( Replace B (λ b → Replace A (λ a → < a , b > ) ))

-- product→ : {A B a b : HOD} → A ∋ a → B ∋ b  → ( A ⊗ B ) ∋ < a , b >
-- product→ {A} {B} {a} {b} A∋a B∋b = λ t → t (od→ord (Select (A ⊗ B) (λ x → x =h= < a , b >))) record { proj1 = {!!} ; proj2 = {!!} }

record IsProduct (A B p : HOD) (A⊗B∋p : (A ⊗ B ) ∋ p )  : Set (suc n) where
  field
    is-pair : def ZFProduct (od→ord p)
    π1A : A ∋ π1 is-pair 
    π2B : B ∋ π2 is-pair 

-- product← : {A B a b p : HOD} → (lt : (A ⊗ B ) ∋ p )  → IsProduct A B p lt
-- product← {_} {_} {a} {b} lt = record { is-pair = {!!} ; π1A = {!!} ; π2B = {!!} }

 
-- ZFP  : (A B : HOD) → HOD
-- ZFP  A B = record { od = record { def = λ x → ord-pair x ∧ ((p : ord-pair x ) → odef A (pi1 p) ∧ odef B (pi2 p) )} ;
--         odmax = omax (odmax A) (odmax B) ; <odmax = λ {y} px → {!!}  } -- (<odmax A (proj2 px (proj1 px) ))