view cardinal.agda @ 224:afc864169325

recover ε-induction
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sat, 10 Aug 2019 12:31:25 +0900
parents 43021d2b8756
children 5f48299929ac
line wrap: on
line source

open import Level
open import Ordinals
module cardinal {n : Level } (O : Ordinals {n}) where

open import zf
open import logic
import OD 
open import Data.Nat renaming ( zero to Zero ; suc to Suc ;  ℕ to Nat ; _⊔_ to _n⊔_ ) 
open import Relation.Binary.PropositionalEquality
open import Data.Nat.Properties 
open import Data.Empty
open import Relation.Nullary
open import Relation.Binary
open import Relation.Binary.Core

open inOrdinal O
open OD O
open OD.OD

open _∧_
open _∨_
open Bool

------------
--
-- Onto map
--          def X x ->  xmap
--     X ---------------------------> Y
--          ymap   <-  def Y y
--
record Onto  (X Y : OD )  : Set n where
   field
       xmap : (x : Ordinal ) → def X x → Ordinal  
       ymap : (y : Ordinal ) → def Y y → Ordinal  
       ymap-on-X  : {y :  Ordinal  } → (lty : def Y y ) → def X (ymap y lty)  
       onto-iso   : {y :  Ordinal  } → (lty : def Y y ) → xmap  ( ymap y lty ) (ymap-on-X lty ) ≡ y

record Cardinal  (X  : OD ) : Set n where
   field
       cardinal : Ordinal 
       conto : Onto (Ord cardinal) X 
       cmax : ( y : Ordinal  ) → cardinal o< y → ¬ Onto (Ord y) X 

cardinal :  (X  : OD ) → Cardinal X
cardinal  X = record {
       cardinal = sup-o ( λ x → proj1 ( cardinal-p x) )
     ; conto = onto
     ; cmax = cmax
   } where
    cardinal-p : (x  : Ordinal ) →  ( Ordinal  ∧ Dec (Onto (Ord x) X) )
    cardinal-p x with p∨¬p ( Onto (Ord x) X ) 
    cardinal-p x | case1 True = record { proj1 = x ; proj2 = yes True }
    cardinal-p x | case2 False = record { proj1 = o∅ ; proj2 = no False }
    onto-set : OD 
    onto-set = record { def = λ x →  {!!} } -- Onto (Ord (sup-o (λ x → proj1 (cardinal-p x)))) X }
    onto : Onto (Ord (sup-o (λ x → proj1 (cardinal-p x)))) X
    onto = record {
               xmap = xmap
            ;  ymap = ymap
            ;  ymap-on-X  = ymap-on-X
            ;  onto-iso = onto-iso
      } where
       --
       -- Ord cardinal itself has no onto map, but if we have x o< cardinal, there is one
       --    od→ord X o< cardinal, so if we have def Y y or def X y, there is an Onto (Ord y) X
       Y = (Ord (sup-o (λ x → proj1 (cardinal-p x))))
       lemma1 : (y : Ordinal ) → def Y y  →  Onto (Ord y) X
       lemma1 y y<Y with sup-o<  {λ x → proj1 ( cardinal-p x)} {y} 
       ... | t = {!!}
       lemma2 :  def Y (od→ord X)
       lemma2 = {!!}
       xmap : (x : Ordinal ) → def Y x → Ordinal 
       xmap = {!!}
       ymap : (y : Ordinal ) → def X y → Ordinal 
       ymap = {!!}
       ymap-on-X  : {y :  Ordinal  } → (lty : def X y ) → def Y (ymap y lty)  
       ymap-on-X  = {!!}
       onto-iso   : {y :  Ordinal  } → (lty : def X y ) → xmap  (ymap y lty) (ymap-on-X lty ) ≡ y
       onto-iso = {!!}
    cmax : (y : Ordinal) → sup-o (λ x → proj1 (cardinal-p x)) o< y → ¬ Onto (Ord y) X
    cmax y lt ontoy = o<> lt (o<-subst  {_} {_} {y} {sup-o (λ x → proj1 (cardinal-p x))}
       (sup-o<  {λ x → proj1 ( cardinal-p x)}{y}  ) lemma refl ) where
          lemma : proj1 (cardinal-p y) ≡ y
          lemma with  p∨¬p ( Onto (Ord y) X )
          lemma | case1 x = refl
          lemma | case2 not = ⊥-elim ( not ontoy )

func : (f : Ordinal  → Ordinal ) → OD 
func  f = record { def = λ y → (x : Ordinal ) → y ≡ f x }

Func : OD 
Func  = record { def = λ x →  (f : Ordinal  → Ordinal ) → x ≡ od→ord (func f) }

odmap : { x : OD  } → Func ∋ x → Ordinal  → OD 
odmap  {f} lt x = record { def = λ y → def f y } 

lemma1 :  { x : OD  } → Func ∋ x → {!!} -- ¬ ( (f : Ordinal  → Ordinal ) →  ¬ ( x ≡ od→ord (func f)  ))
lemma1 = {!!}


-----
--  All cardinal is ℵ0,  since we are working on Countable Ordinal, 
--  Power ω is larger than ℵ0, so it has no cardinal.