## Mercurial > hg > Members > kono > Proof > ZF-in-agda

### view Todo @ 338:bca043423554

Find changesets by keywords (author, files, the commit message), revision
number or hash, or revset expression.

...

author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|

date | Sun, 12 Jul 2020 12:32:42 +0900 |

parents | ac872f6b8692 |

children | 9984cdd88da3 |

line wrap: on

line source

Tue Jul 23 11:02:50 JST 2019 define cardinals prove CH in OD→ZF define Ultra filter ... done define L M : ZF ZFSet = M is an OD define L N : ZF ZFSet = N = G M (G is a generic fitler on M ) prove ¬ CH on L N prove no choice function on L N Mon Jul 8 19:43:37 JST 2019 ordinal-definable.agda assumes all ZF Set are ordinals, that it too restrictive ... fixed remove ord-Ord and prove with some assuption in HOD.agda union, power set, replace, inifinite