view ordinal.agda @ 29:fce60b99dc55

posturate OD is isomorphic to Ordinal
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Mon, 20 May 2019 18:18:43 +0900
parents constructible-set.agda@f36e40d5d2c3
children 3b0fdb95618e
line wrap: on
line source

open import Level
module ordinal where

open import zf

open import Data.Nat renaming ( zero to Zero ; suc to Suc ;  ℕ to Nat ; _⊔_ to _n⊔_ ) 

open import  Relation.Binary.PropositionalEquality

data OrdinalD {n : Level} :  (lv : Nat) → Set n where
   Φ : (lv : Nat) → OrdinalD  lv
   OSuc : (lv : Nat) → OrdinalD {n} lv → OrdinalD lv
   ℵ_ :  (lv : Nat) → OrdinalD (Suc lv)

record Ordinal {n : Level} : Set n where
   field
     lv : Nat
     ord : OrdinalD {n} lv

data _d<_ {n : Level} :   {lx ly : Nat} → OrdinalD {n} lx  →  OrdinalD {n} ly  → Set n where
   Φ<  : {lx : Nat} → {x : OrdinalD {n} lx}  →  Φ lx d< OSuc lx x
   s<  : {lx : Nat} → {x y : OrdinalD {n} lx}  →  x d< y  → OSuc  lx x d< OSuc  lx y
   ℵΦ< : {lx : Nat} → {x : OrdinalD {n} (Suc lx) } →  Φ  (Suc lx) d< (ℵ lx) 
   ℵ<  : {lx : Nat} → {x : OrdinalD {n} (Suc lx) } →  OSuc  (Suc lx) x d< (ℵ lx) 

open Ordinal

_o<_ : {n : Level} ( x y : Ordinal ) → Set n
_o<_ x y =  (lv x < lv y )  ∨ ( ord x d< ord y )

open import Data.Nat.Properties 
open import Data.Empty
open import Relation.Nullary

open import Relation.Binary
open import Relation.Binary.Core

o∅ : {n : Level} → Ordinal {n}
o∅  = record { lv = Zero ; ord = Φ Zero }


≡→¬d< : {n : Level} →  {lv : Nat} → {x  : OrdinalD {n}  lv }  → x d< x → ⊥
≡→¬d<  {n} {lx} {OSuc lx y} (s< t) = ≡→¬d< t

trio<> : {n : Level} →  {lx : Nat} {x  : OrdinalD {n} lx } { y : OrdinalD  lx }  →  y d< x → x d< y → ⊥
trio<>  {n} {lx} {.(OSuc lx _)} {.(OSuc lx _)} (s< s) (s< t) = 
    trio<> s t

trio<≡ : {n : Level} →  {lx : Nat} {x  : OrdinalD {n} lx } { y : OrdinalD  lx }  → x ≡ y  → x d< y → ⊥
trio<≡ refl = ≡→¬d<

trio>≡ : {n : Level} →  {lx : Nat} {x  : OrdinalD {n} lx } { y : OrdinalD  lx }  → x ≡ y  → y d< x → ⊥
trio>≡ refl = ≡→¬d<

triO : {n : Level} →  {lx ly : Nat} → OrdinalD {n} lx  →  OrdinalD {n} ly  → Tri (lx < ly) ( lx ≡ ly ) ( lx > ly )
triO  {n} {lx} {ly} x y = <-cmp lx ly

triOrdd : {n : Level} →  {lx : Nat}   → Trichotomous  _≡_ ( _d<_  {n} {lx} {lx} )
triOrdd  {_} {lv} (Φ lv) (Φ lv) = tri≈ ≡→¬d< refl ≡→¬d<
triOrdd  {_} {Suc lv} (ℵ lv) (ℵ lv) = tri≈ ≡→¬d< refl ≡→¬d<
triOrdd  {_} {lv} (Φ lv) (OSuc lv y) = tri< Φ< (λ ()) ( λ lt → trio<> lt Φ< )
triOrdd  {_} {.(Suc lv)} (Φ (Suc lv)) (ℵ lv) = tri<  (ℵΦ<  {_} {lv} {Φ (Suc lv)} ) (λ ()) ( λ lt → trio<> lt ((ℵΦ< {_} {lv} {Φ (Suc lv)} )) )
triOrdd  {_} {Suc lv} (ℵ lv) (Φ (Suc lv)) = tri> ( λ lt → trio<> lt (ℵΦ< {_} {lv} {Φ (Suc lv)} ) ) (λ ()) (ℵΦ<  {_} {lv} {Φ (Suc lv)} )
triOrdd  {_} {Suc lv} (ℵ lv) (OSuc (Suc lv) y) = tri> ( λ lt → trio<> lt (ℵ< {_} {lv} {y} )  ) (λ ()) (ℵ< {_} {lv} {y} )
triOrdd  {_} {lv} (OSuc lv x) (Φ lv) = tri> (λ lt → trio<> lt Φ<) (λ ()) Φ<
triOrdd  {_} {.(Suc lv)} (OSuc (Suc lv) x) (ℵ lv) = tri< ℵ< (λ ()) (λ lt → trio<> lt ℵ< )
triOrdd  {_} {lv} (OSuc lv x) (OSuc lv y) with triOrdd x y
triOrdd  {_} {lv} (OSuc lv x) (OSuc lv y) | tri< a ¬b ¬c = tri< (s< a) (λ tx=ty → trio<≡ tx=ty (s< a) )  (  λ lt → trio<> lt (s< a) )
triOrdd  {_} {lv} (OSuc lv x) (OSuc lv x) | tri≈ ¬a refl ¬c = tri≈ ≡→¬d< refl ≡→¬d<
triOrdd  {_} {lv} (OSuc lv x) (OSuc lv y) | tri> ¬a ¬b c = tri> (  λ lt → trio<> lt (s< c) ) (λ tx=ty → trio>≡ tx=ty (s< c) ) (s< c)

d<→lv : {n : Level} {x y  : Ordinal {n}}   → ord x d< ord y → lv x ≡ lv y
d<→lv Φ< = refl
d<→lv (s< lt) = refl
d<→lv ℵΦ< = refl
d<→lv ℵ< = refl

orddtrans : {n : Level} {lx : Nat} {x y z : OrdinalD {n}  lx }   → x d< y → y d< z → x d< z
orddtrans {_} {lx} {.(Φ lx)} {.(OSuc lx _)} {.(OSuc lx _)} Φ< (s< y<z) = Φ< 
orddtrans {_} {Suc lx} {Φ (Suc lx)} {OSuc (Suc lx) y} {ℵ lx} Φ< ℵ< = ℵΦ< {_} {lx} {y}
orddtrans {_} {lx} {.(OSuc lx _)} {.(OSuc lx _)} {.(OSuc lx _)} (s< x<y) (s< y<z) = s< ( orddtrans x<y y<z )
orddtrans {_} {Suc lx} {.(OSuc (Suc lx) _)} {.(OSuc (Suc lx) _)} {.(ℵ _)} (s< x<y) ℵ< = ℵ<
orddtrans {_} {Suc lx} {Φ (Suc lx)} {.(ℵ _)} {z} ℵΦ< ()
orddtrans {_} {Suc lx} {OSuc (Suc lx) _} {.(ℵ _)} {z} ℵ< ()

max : (x y : Nat) → Nat
max Zero Zero = Zero
max Zero (Suc x) = (Suc x)
max (Suc x) Zero = (Suc x)
max (Suc x) (Suc y) = Suc ( max x y )

maxαd : {n : Level} → { lx : Nat } → OrdinalD {n} lx  →  OrdinalD  lx  →  OrdinalD  lx
maxαd x y with triOrdd x y
maxαd x y | tri< a ¬b ¬c = y
maxαd x y | tri≈ ¬a b ¬c = x
maxαd x y | tri> ¬a ¬b c = x

maxα : {n : Level} →  Ordinal {n} →  Ordinal  → Ordinal
maxα x y with <-cmp (lv x) (lv y)
maxα x y | tri< a ¬b ¬c = x
maxα x y | tri> ¬a ¬b c = y
maxα x y | tri≈ ¬a refl ¬c = record { lv = lv x ; ord = maxαd (ord x) (ord y) }

_o≤_ : {n : Level} → Ordinal → Ordinal → Set (suc n)
a o≤ b  = (a ≡ b)  ∨ ( a o< b )

ordtrans : {n : Level} {x y z : Ordinal {n} }   → x o< y → y o< z → x o< z
ordtrans {n} {x} {y} {z} (case1 x₁) (case1 x₂) = case1 ( <-trans x₁ x₂ )
ordtrans {n} {x} {y} {z} (case1 x₁) (case2 x₂) with d<→lv x₂
... | refl = case1 x₁
ordtrans {n} {x} {y} {z} (case2 x₁) (case1 x₂) with d<→lv x₁
... | refl = case1 x₂
ordtrans {n} {x} {y} {z} (case2 x₁) (case2 x₂) with d<→lv x₁ | d<→lv x₂
... | refl | refl = case2 ( orddtrans x₁ x₂ )


trio< : {n : Level } → Trichotomous {suc n} _≡_  _o<_ 
trio< a b with <-cmp (lv a) (lv b)
trio< a b | tri< a₁ ¬b ¬c = tri< (case1  a₁) (λ refl → ¬b (cong ( λ x → lv x ) refl ) ) lemma1 where
   lemma1 : ¬ (Suc (lv b) ≤ lv a) ∨ (ord b d< ord a)
   lemma1 (case1 x) = ¬c x
   lemma1 (case2 x) with d<→lv x
   lemma1 (case2 x) | refl = ¬b refl
trio< a b | tri> ¬a ¬b c = tri> lemma1 (λ refl → ¬b (cong ( λ x → lv x ) refl ) ) (case1 c) where
   lemma1 : ¬ (Suc (lv a) ≤ lv b) ∨ (ord a d< ord b)
   lemma1 (case1 x) = ¬a x
   lemma1 (case2 x) with d<→lv x
   lemma1 (case2 x) | refl = ¬b refl
trio< a b | tri≈ ¬a refl ¬c with triOrdd ( ord a ) ( ord b )
trio< record { lv = .(lv b) ; ord = x } b | tri≈ ¬a refl ¬c | tri< a ¬b ¬c₁ = tri< (case2 a) (λ refl → ¬b (lemma1 refl )) lemma2 where
   lemma1 :  (record { lv = _ ; ord = x }) ≡ b →  x ≡ ord b
   lemma1 refl = refl
   lemma2 : ¬ (Suc (lv b) ≤ lv b) ∨ (ord b d< x)
   lemma2 (case1 x) = ¬a x
   lemma2 (case2 x) = trio<> x a
trio< record { lv = .(lv b) ; ord = x } b | tri≈ ¬a refl ¬c | tri> ¬a₁ ¬b c = tri> lemma2 (λ refl → ¬b (lemma1 refl )) (case2 c) where
   lemma1 :  (record { lv = _ ; ord = x }) ≡ b →  x ≡ ord b
   lemma1 refl = refl
   lemma2 : ¬ (Suc (lv b) ≤ lv b) ∨ (x d< ord b)
   lemma2 (case1 x) = ¬a x
   lemma2 (case2 x) = trio<> x c
trio< record { lv = .(lv b) ; ord = x } b | tri≈ ¬a refl ¬c | tri≈ ¬a₁ refl ¬c₁ = tri≈ lemma1 refl lemma1 where
   lemma1 : ¬ (Suc (lv b) ≤ lv b) ∨ (ord b d< ord b)
   lemma1 (case1 x) = ¬a x
   lemma1 (case2 x) = ≡→¬d< x

OrdTrans : {n : Level} → Transitive {suc n} _o≤_
OrdTrans (case1 refl) (case1 refl) = case1 refl
OrdTrans (case1 refl) (case2 lt2) = case2 lt2
OrdTrans (case2 lt1) (case1 refl) = case2 lt1
OrdTrans (case2 (case1 x)) (case2 (case1 y)) = case2 (case1 ( <-trans x y ) )
OrdTrans (case2 (case1 x)) (case2 (case2 y)) with d<→lv y
OrdTrans (case2 (case1 x)) (case2 (case2 y)) | refl = case2 (case1 x )
OrdTrans (case2 (case2 x)) (case2 (case1 y)) with d<→lv x
OrdTrans (case2 (case2 x)) (case2 (case1 y)) | refl = case2 (case1 y)
OrdTrans (case2 (case2 x)) (case2 (case2 y)) with d<→lv x | d<→lv y
OrdTrans (case2 (case2 x)) (case2 (case2 y)) | refl | refl = case2 (case2 (orddtrans x y ))

OrdPreorder : {n : Level} → Preorder (suc n) (suc n) (suc n)
OrdPreorder {n} = record { Carrier = Ordinal
   ; _≈_  = _≡_ 
   ; _∼_   = _o≤_
   ; isPreorder   = record {
        isEquivalence = record { refl = refl  ; sym = sym ; trans = trans }
        ; reflexive     = case1 
        ; trans         = OrdTrans 
     }
 }

TransFinite : {n : Level} → ( ψ : Ordinal {n} → Set n ) 
  → ( ∀ (lx : Nat ) → ψ ( record { lv = Suc lx ; ord = ℵ lx } )) 
  → ( ∀ (lx : Nat ) → ψ ( record { lv = lx ; ord = Φ lx } ) )
  → ( ∀ (lx : Nat ) → (x : OrdinalD lx )  → ψ ( record { lv = lx ; ord = x } ) → ψ ( record { lv = lx ; ord = OSuc lx x } ) )
  →  ∀ (x : Ordinal)  → ψ x
TransFinite ψ caseℵ caseΦ caseOSuc record { lv = lv ; ord = Φ lv } = caseΦ lv
TransFinite ψ caseℵ caseΦ caseOSuc record { lv = lv ; ord = OSuc lv ord₁ } = caseOSuc lv ord₁
    ( TransFinite ψ caseℵ caseΦ caseOSuc (record { lv = lv ; ord = ord₁ } ))
TransFinite ψ caseℵ caseΦ caseOSuc record { lv = Suc lv₁ ; ord = ℵ lv₁ } = caseℵ lv₁