## Mercurial > hg > Members > kono > Proof > ZF-in-agda

### view Todo @ 432:7476a22edf7e default tip

Find changesets by keywords (author, files, the commit message), revision
number or hash, or revset expression.

Added tag current for changeset a5f8084b8368

author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|

date | Mon, 21 Dec 2020 10:24:10 +0900 |

parents | 9984cdd88da3 |

children |

line wrap: on

line source

Sat Aug 1 13:16:53 JST 2020 P Generic Filter as a ZF model define Definition for L Tue Jul 23 11:02:50 JST 2019 define cardinals ... done prove CH in OD→ZF define Ultra filter ... done define L M : ZF ZFSet = M is an OD define L N : ZF ZFSet = N = G M (G is a generic fitler on M ) prove ¬ CH on L N prove no choice function on L N Mon Jul 8 19:43:37 JST 2019 ordinal-definable.agda assumes all ZF Set are ordinals, that it too restrictive ... fixed remove ord-Ord and prove with some assuption in HOD.agda union, power set, replace, inifinite