open import Level open import Ordinals module cardinal {n : Level } (O : Ordinals {n}) where open import zf open import logic import OD open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open import Relation.Binary.PropositionalEquality open import Data.Nat.Properties open import Data.Empty open import Relation.Nullary open import Relation.Binary open import Relation.Binary.Core open inOrdinal O open OD O open OD.OD open _∧_ open _∨_ open Bool -- we have to work on Ordinal to keep OD Level n -- since we use p∨¬p which works only on Level n func→od : (f : Ordinal → Ordinal ) → ( dom : OD ) → OD func→od f dom = Replace dom ( λ x → x , (ord→od (f (od→ord x) ))) record _⊗_ (A B : Ordinal) : Set n where field π1 : Ordinal π2 : Ordinal A∋π1 : def (ord→od A) π1 B∋π2 : def (ord→od B) π2 -- Clearly wrong. We need ordered pair Func : ( A B : OD ) → OD Func A B = record { def = λ x → (od→ord A) ⊗ (od→ord B) } open _⊗_ func←od : { dom cod : OD } → (f : OD ) → Func dom cod ∋ f → (Ordinal → Ordinal ) func←od {dom} {cod} f lt x = sup-o ( λ y → lemma y ) where lemma : Ordinal → Ordinal lemma y with p∨¬p ( _⊗_.π1 lt ≡ x ) lemma y | case1 refl = _⊗_.π2 lt lemma y | case2 not = o∅ -- contra position of sup-o< -- postulate -- contra-position of mimimulity of supermum required in Cardinal sup-x : ( Ordinal → Ordinal ) → Ordinal sup-lb : { ψ : Ordinal → Ordinal } → {z : Ordinal } → z o< sup-o ψ → z o< osuc (ψ (sup-x ψ)) ------------ -- -- Onto map -- def X x -> xmap -- X ---------------------------> Y -- ymap <- def Y y -- record Onto (X Y : OD ) : Set n where field xmap : Ordinal ymap : Ordinal xfunc : def (Func X Y) xmap yfunc : def (Func Y X) ymap onto-iso : {y : Ordinal } → (lty : def Y y ) → func←od (ord→od xmap) xfunc ( func←od (ord→od ymap) yfunc y ) ≡ y open Onto onto-restrict : {X Y Z : OD} → Onto X Y → ({x : OD} → _⊆_ Z Y {x}) → Onto X Z onto-restrict {X} {Y} {Z} onto Z⊆Y = record { xmap = xmap1 ; ymap = zmap ; xfunc = xfunc1 ; yfunc = zfunc ; onto-iso = onto-iso1 } where xmap1 : Ordinal xmap1 = od→ord (Select (ord→od (xmap onto)) {!!} ) zmap : Ordinal zmap = {!!} xfunc1 : def (Func X Z) xmap1 xfunc1 = {!!} zfunc : def (Func Z X) zmap zfunc = {!!} onto-iso1 : {z : Ordinal } → (ltz : def Z z ) → func←od (ord→od xmap1) xfunc1 ( func←od (ord→od zmap) zfunc z ) ≡ z onto-iso1 = {!!} record Cardinal (X : OD ) : Set n where field cardinal : Ordinal conto : Onto X (Ord cardinal) cmax : ( y : Ordinal ) → cardinal o< y → ¬ Onto X (Ord y) cardinal : (X : OD ) → Cardinal X cardinal X = record { cardinal = sup-o ( λ x → proj1 ( cardinal-p x) ) ; conto = onto ; cmax = cmax } where cardinal-p : (x : Ordinal ) → ( Ordinal ∧ Dec (Onto X (Ord x) ) ) cardinal-p x with p∨¬p ( Onto X (Ord x) ) cardinal-p x | case1 True = record { proj1 = x ; proj2 = yes True } cardinal-p x | case2 False = record { proj1 = o∅ ; proj2 = no False } S = sup-o (λ x → proj1 (cardinal-p x)) lemma1 : (x : Ordinal) → ((y : Ordinal) → y o< x → Lift (suc n) (y o< (osuc S) → Onto X (Ord y))) → Lift (suc n) (x o< (osuc S) → Onto X (Ord x) ) lemma1 x prev with trio< x (osuc S) lemma1 x prev | tri< a ¬b ¬c with osuc-≡< a lemma1 x prev | tri< a ¬b ¬c | case1 x=S = lift ( λ lt → {!!} ) lemma1 x prev | tri< a ¬b ¬c | case2 x ¬a ¬b c = lift ( λ lt → ⊥-elim ( o<> c lt )) onto : Onto X (Ord S) onto with TransFinite {λ x → Lift (suc n) ( x o< osuc S → Onto X (Ord x) ) } lemma1 S ... | lift t = t <-osuc cmax : (y : Ordinal) → S o< y → ¬ Onto X (Ord y) cmax y lt ontoy = o<> lt (o<-subst {_} {_} {y} {S} (sup-o< {λ x → proj1 ( cardinal-p x)}{y} ) lemma refl ) where lemma : proj1 (cardinal-p y) ≡ y lemma with p∨¬p ( Onto X (Ord y) ) lemma | case1 x = refl lemma | case2 not = ⊥-elim ( not ontoy ) ----- -- All cardinal is ℵ0, since we are working on Countable Ordinal, -- Power ω is larger than ℵ0, so it has no cardinal.