open import Level module HOD where open import zf open import ordinal open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open import Relation.Binary.PropositionalEquality open import Data.Nat.Properties open import Data.Empty open import Relation.Nullary open import Relation.Binary open import Relation.Binary.Core -- Ordinal Definable Set record HOD {n : Level} : Set (suc n) where field def : (x : Ordinal {n} ) → Set n open HOD open import Data.Unit open Ordinal open _∧_ record _==_ {n : Level} ( a b : HOD {n} ) : Set n where field eq→ : ∀ { x : Ordinal {n} } → def a x → def b x eq← : ∀ { x : Ordinal {n} } → def b x → def a x id : {n : Level} {A : Set n} → A → A id x = x eq-refl : {n : Level} { x : HOD {n} } → x == x eq-refl {n} {x} = record { eq→ = id ; eq← = id } open _==_ eq-sym : {n : Level} { x y : HOD {n} } → x == y → y == x eq-sym eq = record { eq→ = eq← eq ; eq← = eq→ eq } eq-trans : {n : Level} { x y z : HOD {n} } → x == y → y == z → x == z eq-trans x=y y=z = record { eq→ = λ t → eq→ y=z ( eq→ x=y t) ; eq← = λ t → eq← x=y ( eq← y=z t) } ⇔→== : {n : Level} { x y : HOD {suc n} } → ( {z : Ordinal {suc n}} → def x z ⇔ def y z) → x == y eq→ ( ⇔→== {n} {x} {y} eq ) {z} m = proj1 eq m eq← ( ⇔→== {n} {x} {y} eq ) {z} m = proj2 eq m -- Ordinal in HOD ( and ZFSet ) Ord : { n : Level } → ( a : Ordinal {n} ) → HOD {n} Ord {n} a = record { def = λ y → y o< a } od∅ : {n : Level} → HOD {n} od∅ {n} = Ord o∅ postulate -- HOD can be iso to a subset of Ordinal ( by means of Godel Set ) od→ord : {n : Level} → HOD {n} → Ordinal {n} ord→od : {n : Level} → Ordinal {n} → HOD {n} c<→o< : {n : Level} {x y : HOD {n} } → def y ( od→ord x ) → od→ord x o< od→ord y oiso : {n : Level} {x : HOD {n}} → ord→od ( od→ord x ) ≡ x diso : {n : Level} {x : Ordinal {n}} → od→ord ( ord→od x ) ≡ x ord-Ord :{n : Level} {x : Ordinal {n}} → x ≡ od→ord (Ord x) ==→o≡ : {n : Level} → { x y : HOD {suc n} } → (x == y) → x ≡ y -- next assumption causes ∀ x ∋ ∅ . It menas only an ordinal becomes a set -- o<→c< : {n : Level} {x y : Ordinal {n} } → x o< y → def (ord→od y) x -- supermum as Replacement Axiom sup-o : {n : Level } → ( Ordinal {n} → Ordinal {n}) → Ordinal {n} sup-o< : {n : Level } → { ψ : Ordinal {n} → Ordinal {n}} → ∀ {x : Ordinal {n}} → ψ x o< sup-o ψ -- contra-position of mimimulity of supermum required in Power Set Axiom sup-x : {n : Level } → ( Ordinal {n} → Ordinal {n}) → Ordinal {n} sup-lb : {n : Level } → { ψ : Ordinal {n} → Ordinal {n}} → {z : Ordinal {n}} → z o< sup-o ψ → z o< osuc (ψ (sup-x ψ)) -- sup-lb : {n : Level } → ( ψ : Ordinal {n} → Ordinal {n}) → ( ∀ {x : Ordinal {n}} → ψx o< z ) → z o< osuc ( sup-o ψ ) minimul : {n : Level } → (x : HOD {suc n} ) → ¬ (x == od∅ )→ HOD {suc n} -- this should be ¬ (x == od∅ )→ ∃ ox → x ∋ Ord ox ( minimum of x ) x∋minimul : {n : Level } → (x : HOD {suc n} ) → ( ne : ¬ (x == od∅ ) ) → def x ( od→ord ( minimul x ne ) ) minimul-1 : {n : Level } → (x : HOD {suc n} ) → ( ne : ¬ (x == od∅ ) ) → (y : HOD {suc n}) → ¬ ( def (minimul x ne) (od→ord y)) ∧ (def x (od→ord y) ) -- we should prove this in agda, but simply put here ===-≡ : {n : Level} { x y : HOD {suc n}} → x == y → x ≡ y Ord-ord : {n : Level } {ox : Ordinal {suc n}} → Ord ox ≡ ord→od ox Ord-ord {n} {px} = trans (sym oiso) (cong ( λ k → ord→od k ) (sym ord-Ord)) _∋_ : { n : Level } → ( a x : HOD {n} ) → Set n _∋_ {n} a x = def a ( od→ord x ) _c<_ : { n : Level } → ( x a : HOD {n} ) → Set n x c< a = a ∋ x _c≤_ : {n : Level} → HOD {n} → HOD {n} → Set (suc n) a c≤ b = (a ≡ b) ∨ ( b ∋ a ) cseq : {n : Level} → HOD {n} → HOD {n} cseq x = record { def = λ y → def x (osuc y) } where def-subst : {n : Level } {Z : HOD {n}} {X : Ordinal {n} }{z : HOD {n}} {x : Ordinal {n} }→ def Z X → Z ≡ z → X ≡ x → def z x def-subst df refl refl = df o<→c< : {n : Level} {x y : Ordinal {n} } → x o< y → Ord y ∋ Ord x o<→c< {n} {x} {y} lt = subst ( λ k → k o< y ) ord-Ord lt sup-od : {n : Level } → ( HOD {n} → HOD {n}) → HOD {n} sup-od ψ = Ord ( sup-o ( λ x → od→ord (ψ (ord→od x ))) ) sup-c< : {n : Level } → ( ψ : HOD {n} → HOD {n}) → ∀ {x : HOD {n}} → def ( sup-od ψ ) (od→ord ( ψ x )) sup-c< {n} ψ {x} = def-subst {n} {_} {_} {Ord ( sup-o ( λ x → od→ord (ψ (ord→od x ))) )} {od→ord ( ψ x )} lemma refl (cong ( λ k → od→ord (ψ k) ) oiso) where lemma : od→ord (ψ (ord→od (od→ord x))) o< sup-o (λ x → od→ord (ψ (ord→od x))) lemma = subst₂ (λ j k → j o< k ) refl diso (o<-subst sup-o< refl (sym diso) ) o<→o> : {n : Level} → { x y : Ordinal {n} } → (Ord x == Ord y) → x o< y → ⊥ o<→o> {n} {x} {y} record { eq→ = xy ; eq← = yx } (case1 lt) with o<-subst (yx (case1 lt)) ord-Ord refl ... | oyx with o<¬≡ refl (c<→o< {n} {Ord x} oyx ) ... | () o<→o> {n} {x} {y} record { eq→ = xy ; eq← = yx } (case2 lt) with o<-subst (yx (case2 lt)) ord-Ord refl ... | oyx with o<¬≡ refl (c<→o< {n} {Ord x} oyx ) ... | () Ord==→≡ : {n : Level} { x y : Ordinal {suc n}} → Ord x == Ord y → x ≡ y Ord==→≡ {n} {x} {y} eq with trio< x y Ord==→≡ {n} {x} {y} eq | tri< a ¬b ¬c = ⊥-elim ( o<→o> eq a ) Ord==→≡ {n} {x} {y} eq | tri≈ ¬a b ¬c = b Ord==→≡ {n} {x} {y} eq | tri> ¬a ¬b c = ⊥-elim ( o<→o> (eq-sym eq) c ) ∅3 : {n : Level} → { x : Ordinal {n}} → ( ∀(y : Ordinal {n}) → ¬ (y o< x ) ) → x ≡ o∅ {n} ∅3 {n} {x} = TransFinite {n} c2 c3 x where c0 : Nat → Ordinal {n} → Set n c0 lx x = (∀(y : Ordinal {n}) → ¬ (y o< x)) → x ≡ o∅ {n} c2 : (lx : Nat) → c0 lx (record { lv = lx ; ord = Φ lx } ) c2 Zero not = refl c2 (Suc lx) not with not ( record { lv = lx ; ord = Φ lx } ) ... | t with t (case1 ≤-refl ) c2 (Suc lx) not | t | () c3 : (lx : Nat) (x₁ : OrdinalD lx) → c0 lx (record { lv = lx ; ord = x₁ }) → c0 lx (record { lv = lx ; ord = OSuc lx x₁ }) c3 lx (Φ .lx) d not with not ( record { lv = lx ; ord = Φ lx } ) ... | t with t (case2 Φ< ) c3 lx (Φ .lx) d not | t | () c3 lx (OSuc .lx x₁) d not with not ( record { lv = lx ; ord = OSuc lx x₁ } ) ... | t with t (case2 (s< s→¬< : {x y : Nat } → (x < y ) → ¬ ( y < x ) >→¬< (s≤s x→¬< x ¬a ¬b c = ⊥-elim (¬x<0 c) o<→¬c> : {n : Level} → { x y : HOD {n} } → (od→ord x ) o< ( od→ord y) → ¬ (y c< x ) o<→¬c> {n} {x} {y} olt clt = o<> olt (c<→o< clt ) where o≡→¬c< : {n : Level} → { x y : HOD {n} } → (od→ord x ) ≡ ( od→ord y) → ¬ x c< y o≡→¬c< {n} {x} {y} oeq lt = o<¬≡ (orefl oeq ) (c<→o< lt) ∅0 : {n : Level} → record { def = λ x → Lift n ⊥ } == od∅ {n} eq→ ∅0 {w} (lift ()) eq← ∅0 {w} (case1 ()) eq← ∅0 {w} (case2 ()) ∅< : {n : Level} → { x y : HOD {n} } → def x (od→ord y ) → ¬ ( x == od∅ {n} ) ∅< {n} {x} {y} d eq with eq→ (eq-trans eq (eq-sym ∅0) ) d ∅< {n} {x} {y} d eq | lift () ∅6 : {n : Level} → { x : HOD {suc n} } → ¬ ( x ∋ x ) -- no Russel paradox ∅6 {n} {x} x∋x = o<¬≡ refl ( c<→o< {suc n} {x} {x} x∋x ) def-iso : {n : Level} {A B : HOD {n}} {x y : Ordinal {n}} → x ≡ y → (def A y → def B y) → def A x → def B x def-iso refl t = t is-o∅ : {n : Level} → ( x : Ordinal {suc n} ) → Dec ( x ≡ o∅ {suc n} ) is-o∅ {n} record { lv = Zero ; ord = (Φ .0) } = yes refl is-o∅ {n} record { lv = Zero ; ord = (OSuc .0 ord₁) } = no ( λ () ) is-o∅ {n} record { lv = (Suc lv₁) ; ord = ord } = no (λ()) -- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) -- postulate f-extensionality : { n : Level} → Relation.Binary.PropositionalEquality.Extensionality (suc n) (suc (suc n)) csuc : {n : Level} → HOD {suc n} → HOD {suc n} csuc x = Ord ( osuc ( od→ord x )) -- Power Set of X ( or constructible by λ y → def X (od→ord y ) ZFSubset : {n : Level} → (A x : HOD {suc n} ) → HOD {suc n} ZFSubset A x = record { def = λ y → def A y ∧ def x y } where Def : {n : Level} → (A : HOD {suc n}) → HOD {suc n} Def {n} A = Ord ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )) ) ) OrdSubset : {n : Level} → (A x : Ordinal {suc n} ) → ZFSubset (Ord A) (Ord x) ≡ Ord ( minα A x ) OrdSubset {n} A x = ===-≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where lemma1 : {y : Ordinal} → def (ZFSubset (Ord A) (Ord x)) y → def (Ord (minα A x)) y lemma1 {y} s with trio< A x lemma1 {y} s | tri< a ¬b ¬c = proj1 s lemma1 {y} s | tri≈ ¬a refl ¬c = proj1 s lemma1 {y} s | tri> ¬a ¬b c = proj2 s lemma2 : {y : Ordinal} → def (Ord (minα A x)) y → def (ZFSubset (Ord A) (Ord x)) y lemma2 {y} lt with trio< A x lemma2 {y} lt | tri< a ¬b ¬c = record { proj1 = lt ; proj2 = ordtrans lt a } lemma2 {y} lt | tri≈ ¬a refl ¬c = record { proj1 = lt ; proj2 = lt } lemma2 {y} lt | tri> ¬a ¬b c = record { proj1 = ordtrans lt c ; proj2 = lt } -- Constructible Set on α -- Def X = record { def = λ y → ∀ (x : OD ) → y < X ∧ y < od→ord x } -- L (Φ 0) = Φ -- L (OSuc lv n) = { Def ( L n ) } -- L (Φ (Suc n)) = Union (L α) (α < Φ (Suc n) ) L : {n : Level} → (α : Ordinal {suc n}) → HOD {suc n} L {n} record { lv = Zero ; ord = (Φ .0) } = od∅ L {n} record { lv = lx ; ord = (OSuc lv ox) } = Def ( L {n} ( record { lv = lx ; ord = ox } ) ) L {n} record { lv = (Suc lx) ; ord = (Φ (Suc lx)) } = -- Union ( L α ) cseq ( Ord (od→ord (L {n} (record { lv = lx ; ord = Φ lx })))) L00 : {n : Level} → (ox : Ordinal {suc n}) → ox o< sup-o ( λ x → od→ord ( ZFSubset (Ord ox) (ord→od x ))) L00 {n} ox = o<-subst {suc n} {_} {_} {ox} {sup-o ( λ x → od→ord ( ZFSubset (Ord ox) (ord→od x )))} (sup-o< {suc n} {λ x → od→ord ( ZFSubset (Ord ox) (ord→od x ))} {ox} ) (lemma0 ox) refl where lemma1 : {n : Level } {ox z : Ordinal {suc n}} → ( def (Ord ox) z ∧ def (ord→od ox) z ) ⇔ def ( Ord ox ) z lemma1 {n} {ox} {z} = record { proj1 = proj1 ; proj2 = λ t → record { proj1 = t ; proj2 = subst (λ k → def k z ) Ord-ord t }} lemma0 : {n : Level} → (ox : Ordinal {suc n}) → od→ord (ZFSubset (Ord ox) (ord→od ox)) ≡ ox lemma0 {n} ox = trans (cong (λ k → od→ord k) (===-≡ (⇔→== lemma1) )) (sym ord-Ord) -- L0 : {n : Level} → (α : Ordinal {suc n}) → α o< β → L (osuc α) ∋ L α -- L1 : {n : Level} → (α β : Ordinal {suc n}) → α o< β → ∀ (x : HOD {suc n}) → L α ∋ x → L β ∋ x omega : { n : Level } → Ordinal {n} omega = record { lv = Suc Zero ; ord = Φ 1 } HOD→ZF : {n : Level} → ZF {suc (suc n)} {suc n} HOD→ZF {n} = record { ZFSet = HOD {suc n} ; _∋_ = _∋_ ; _≈_ = _==_ ; ∅ = od∅ ; _,_ = _,_ ; Union = Union ; Power = Power ; Select = Select ; Replace = Replace ; infinite = Ord omega ; isZF = isZF } where Select : (X : HOD {suc n} ) → ((x : HOD {suc n} ) → Set (suc n) ) → HOD {suc n} Select X ψ = record { def = λ x → ( def X x ∧ ψ ( ord→od x )) } Replace : HOD {suc n} → (HOD {suc n} → HOD {suc n} ) → HOD {suc n} Replace X ψ = Select ( Ord (sup-o ( λ x → od→ord (ψ (ord→od x ))))) ( λ x → ¬ (∀ (y : Ordinal ) → ¬ ( def X y ∧ ( x == ψ (Ord y) )))) _,_ : HOD {suc n} → HOD {suc n} → HOD {suc n} x , y = Ord (omax (od→ord x) (od→ord y)) Union : HOD {suc n} → HOD {suc n} Union U = cseq U -- power : ∀ X ∃ A ∀ t ( t ∈ A ↔ ( ∀ {x} → t ∋ x → X ∋ x ) ZFSet = HOD {suc n} _∈_ : ( A B : ZFSet ) → Set (suc n) A ∈ B = B ∋ A _⊆_ : ( A B : ZFSet ) → ∀{ x : ZFSet } → Set (suc n) _⊆_ A B {x} = A ∋ x → B ∋ x _∩_ : ( A B : ZFSet ) → ZFSet A ∩ B = Select (A , B) ( λ x → ( A ∋ x ) ∧ (B ∋ x) ) Power : HOD {suc n} → HOD {suc n} Power A = Replace (Def (Ord (od→ord A))) ( λ x → A ∩ x ) -- _∪_ : ( A B : ZFSet ) → ZFSet -- A ∪ B = Select (A , B) ( λ x → (A ∋ x) ∨ ( B ∋ x ) ) {_} : ZFSet → ZFSet { x } = ( x , x ) infixr 200 _∈_ -- infixr 230 _∩_ _∪_ infixr 220 _⊆_ isZF : IsZF (HOD {suc n}) _∋_ _==_ od∅ _,_ Union Power Select Replace (Ord omega) isZF = record { isEquivalence = record { refl = eq-refl ; sym = eq-sym; trans = eq-trans } ; pair = pair ; union-u = λ X z UX∋z → union-u {X} {z} UX∋z ; union→ = union→ ; union← = union← ; empty = empty ; power→ = power→ ; power← = power← ; extensionality = extensionality ; minimul = minimul ; regularity = regularity ; infinity∅ = infinity∅ ; infinity = λ _ → infinity ; selection = λ {X} {ψ} {y} → selection {X} {ψ} {y} ; replacement← = replacement← ; replacement→ = replacement→ } where pair : (A B : HOD {suc n} ) → ((A , B) ∋ A) ∧ ((A , B) ∋ B) proj1 (pair A B ) = omax-x {n} (od→ord A) (od→ord B) proj2 (pair A B ) = omax-y {n} (od→ord A) (od→ord B) empty : (x : HOD {suc n} ) → ¬ (od∅ ∋ x) empty x (case1 ()) empty x (case2 ()) --- --- ZFSubset A x = record { def = λ y → def A y ∧ def x y } subset of A --- Power X = ord→od ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )) ) ) Power X is a sup of all subset of A -- -- if Power A ∋ t, from a propertiy of minimum sup there is osuc ZFSubset A ∋ t -- then ZFSubset A ≡ t or ZFSubset A ∋ t. In the former case ZFSubset A ∋ x implies A ∋ x -- In case of later, ZFSubset A ∋ t and t ∋ x implies A ∋ x by transitivity -- POrd : {a : Ordinal } {t : HOD} → Def (Ord a) ∋ t → Def (Ord a) ∋ Ord (od→ord t) POrd {a} {t} P∋t = o<→c< P∋t ord-power→ : (a : Ordinal ) ( t : HOD) → Def (Ord a) ∋ t → {x : HOD} → t ∋ x → Ord a ∋ x ord-power→ a t P∋t {x} t∋x with osuc-≡< (sup-lb (POrd P∋t)) ... | case1 eq = proj1 (def-subst (Ltx t∋x) (sym (subst₂ (λ j k → j ≡ k ) oiso oiso ( cong (λ k → ord→od k) (sym eq) ))) refl ) where Ltx : {n : Level} → {x t : HOD {suc n}} → t ∋ x → Ord (od→ord t) ∋ x Ltx {n} {x} {t} lt = c<→o< lt ... | case2 lt = {!!} where sp = sup-x (λ x → od→ord ( ZFSubset (Ord a) (ord→od x))) minsup : HOD minsup = ZFSubset (Ord a) ( ord→od ( sup-x (λ x → od→ord ( ZFSubset (Ord a) (ord→od x))))) Ltx : {n : Level} → {x t : HOD {suc n}} → t ∋ x → Ord (od→ord t) ∋ x Ltx {n} {x} {t} lt = c<→o< lt -- lemma1 hold because minsup is Ord (minα a sp) lemma1 : od→ord (Ord (od→ord t)) o< od→ord minsup → minsup ∋ Ord (od→ord t) lemma1 lt with OrdSubset a ( sup-x (λ x → od→ord ( ZFSubset (Ord a) (ord→od x)))) ... | eq with subst ( λ k → ZFSubset (Ord a) k ≡ Ord (minα a sp)) Ord-ord eq ... | eq1 = def-subst {suc n} {_} {_} {minsup} {od→ord (Ord (od→ord t))} (o<→c< lt) lemma2 (sym ord-Ord) where lemma2 : Ord (od→ord (ZFSubset (Ord a) (ord→od sp))) ≡ minsup lemma2 = let open ≡-Reasoning in begin Ord (od→ord (ZFSubset (Ord a) (ord→od sp))) ≡⟨ cong (λ k → Ord (od→ord k)) eq1 ⟩ Ord (od→ord (Ord (minα a sp))) ≡⟨ cong (λ k → Ord (od→ord k)) Ord-ord ⟩ Ord (od→ord (ord→od (minα a sp))) ≡⟨ cong (λ k → Ord k) diso ⟩ Ord (minα a sp) ≡⟨ sym eq1 ⟩ minsup ∎ -- -- we have t ∋ x → A ∋ x means t is a subset of A, that is ZFSubset A t == t -- Power A is a sup of ZFSubset A t, so Power A ∋ t -- ord-power← : (a : Ordinal ) (t : HOD) → ({x : HOD} → (t ∋ x → (Ord a) ∋ x)) → Def (Ord a) ∋ t ord-power← a t t→A = def-subst {suc n} {_} {_} {Def (Ord a)} {od→ord t} lemma refl (lemma1 lemma-eq )where lemma-eq : ZFSubset (Ord a) t == t eq→ lemma-eq {z} w = proj2 w eq← lemma-eq {z} w = record { proj2 = w ; proj1 = def-subst {suc n} {_} {_} {(Ord a)} {z} ( t→A (def-subst {suc n} {_} {_} {t} {od→ord (ord→od z)} w refl (sym diso) )) refl diso } lemma1 : {n : Level } {a : Ordinal {suc n}} { t : HOD {suc n}} → (eq : ZFSubset (Ord a) t == t) → od→ord (ZFSubset (Ord a) (ord→od (od→ord t))) ≡ od→ord t lemma1 {n} {a} {t} eq = subst (λ k → od→ord (ZFSubset (Ord a) k) ≡ od→ord t ) (sym oiso) (cong (λ k → od→ord k ) (===-≡ eq )) lemma : od→ord (ZFSubset (Ord a) (ord→od (od→ord t)) ) o< sup-o (λ x → od→ord (ZFSubset (Ord a) (ord→od x))) lemma = sup-o< -- Power A = Replace (Def (Ord (od→ord A))) ( λ x → A ∩ x ) power→ : ( A t : HOD) → Power A ∋ t → {x : HOD} → t ∋ x → A ∋ x power→ = {!!} power← : (A t : HOD) → ({x : HOD} → (t ∋ x → A ∋ x)) → Power A ∋ t power← A t t→A = {!!} where a = od→ord A ψ : HOD → HOD ψ y = Def (Ord a) ∩ y union-u : {X z : HOD {suc n}} → (U>z : Union X ∋ z ) → HOD {suc n} union-u {X} {z} U>z = Ord ( osuc ( od→ord z ) ) union→ : (X z u : HOD) → (X ∋ u) ∧ (u ∋ z) → Union X ∋ z union→ X z u xx with trio< ( od→ord u ) ( osuc ( od→ord z )) union→ X z u xx | tri< a ¬b ¬c with osuc-< a (c<→o< (proj2 xx)) union→ X z u xx | tri< a ¬b ¬c | () union→ X z u xx | tri≈ ¬a b ¬c = def-subst {suc n} {_} {_} {X} {osuc (od→ord z)} (proj1 xx) refl b union→ X z u xx | tri> ¬a ¬b c = {!!} union← : (X z : HOD) (X∋z : Union X ∋ z) → (X ∋ union-u {X} {z} X∋z ) ∧ (union-u {X} {z} X∋z ∋ z ) union← X z X∋z = record { proj1 = lemma ; proj2 = <-osuc } where lemma : X ∋ union-u {X} {z} X∋z lemma = def-subst {suc n} {_} {_} {X} {od→ord (Ord (osuc ( od→ord z )))} X∋z refl ord-Ord -- ψiso : {ψ : HOD {suc n} → Set (suc n)} {x y : HOD {suc n}} → ψ x → x ≡ y → ψ y -- ψiso {ψ} t refl = t selection : {ψ : HOD → Set (suc n)} {X y : HOD} → ((X ∋ y) ∧ ψ y) ⇔ (Select X ψ ∋ y) selection {X} {ψ} {y} = {!!} replacement← : {ψ : HOD → HOD} (X x : HOD) → X ∋ x → Replace X ψ ∋ ψ x replacement← {ψ} X x lt = {!!} replacement→ : {ψ : HOD → HOD} (X x : HOD) → (lt : Replace X ψ ∋ x) → ¬ ( (y : HOD) → ¬ (x == ψ y)) replacement→ {ψ} X x lt = contra-position lemma {!!} where lemma : ( (y : HOD) → ¬ (x == ψ y)) → ( (y : Ordinal) → ¬ def X y ∧ (ord→od (od→ord x) == ψ (Ord y)) ) lemma not y not2 = not (ord→od y) (subst₂ ( λ k j → k == j ) oiso (cong (λ k → ψ k ) Ord-ord ) (proj2 not2 )) ∅-iso : {x : HOD} → ¬ (x == od∅) → ¬ ((ord→od (od→ord x)) == od∅) ∅-iso {x} neq = subst (λ k → ¬ k) (=-iso {n} ) neq regularity : (x : HOD) (not : ¬ (x == od∅)) → (x ∋ minimul x not) ∧ (Select (minimul x not) (λ x₁ → (minimul x not ∋ x₁) ∧ (x ∋ x₁)) == od∅) proj1 (regularity x not ) = x∋minimul x not proj2 (regularity x not ) = record { eq→ = lemma1 ; eq← = λ {y} d → lemma2 {y} d } where lemma1 : {x₁ : Ordinal} → def (Select (minimul x not) (λ x₂ → (minimul x not ∋ x₂) ∧ (x ∋ x₂))) x₁ → def od∅ x₁ lemma1 {x₁} s = ⊥-elim ( minimul-1 x not (ord→od x₁) lemma3 ) where lemma3 : def (minimul x not) (od→ord (ord→od x₁)) ∧ def x (od→ord (ord→od x₁)) lemma3 = {!!} lemma2 : {x₁ : Ordinal} → def od∅ x₁ → def (Select (minimul x not) (λ x₂ → (minimul x not ∋ x₂) ∧ (x ∋ x₂))) x₁ lemma2 {y} d = ⊥-elim (empty (ord→od y) (def-subst {suc n} {_} {_} {od∅} {od→ord (ord→od y)} d refl (sym diso) )) extensionality : {A B : HOD {suc n}} → ((z : HOD) → (A ∋ z) ⇔ (B ∋ z)) → A == B eq→ (extensionality {A} {B} eq ) {x} d = def-iso {suc n} {A} {B} (sym diso) (proj1 (eq (ord→od x))) d eq← (extensionality {A} {B} eq ) {x} d = def-iso {suc n} {B} {A} (sym diso) (proj2 (eq (ord→od x))) d open import Relation.Binary.PropositionalEquality uxxx-ord : {x : HOD {suc n}} → {y : Ordinal {suc n}} → def (Union (x , (x , x))) y ⇔ ( y o< osuc (od→ord x) ) uxxx-ord {x} {y} = subst (λ k → k ⇔ ( y o< osuc (od→ord x) )) (sym lemma) ( osuc2 y (od→ord x)) where lemma : {y : Ordinal {suc n}} → def (Union (x , (x , x))) y ≡ osuc y o< osuc (osuc (od→ord x)) lemma {y} = let open ≡-Reasoning in begin def (Union (x , (x , x))) y ≡⟨⟩ def ( Ord ( omax (od→ord x) (od→ord (Ord (omax (od→ord x) (od→ord x) )) ))) ( osuc y ) ≡⟨⟩ osuc y o< omax (od→ord x) (od→ord (Ord (omax (od→ord x) (od→ord x) )) ) ≡⟨ cong (λ k → osuc y o< omax (od→ord x) k ) (sym ord-Ord) ⟩ osuc y o< omax (od→ord x) (omax (od→ord x) (od→ord x) ) ≡⟨ cong (λ k → osuc y o< k ) (omxxx (od→ord x) ) ⟩ osuc y o< osuc (osuc (od→ord x)) ∎ infinite : HOD {suc n} infinite = Ord omega infinity∅ : Ord omega ∋ od∅ {suc n} infinity∅ = o<-subst (case1 (s≤s z≤n) ) ord-Ord refl infinity : (x : HOD) → infinite ∋ x → infinite ∋ Union (x , (x , x )) infinity x lt = o<-subst ( lemma (od→ord x) lt ) eq refl where eq : osuc (od→ord x) ≡ od→ord (Union (x , (x , x))) eq = let open ≡-Reasoning in begin osuc (od→ord x) ≡⟨ ord-Ord ⟩ od→ord (Ord (osuc (od→ord x))) ≡⟨ cong ( λ k → od→ord k ) ( sym (==→o≡ ( ⇔→== uxxx-ord ))) ⟩ od→ord (Union (x , (x , x))) ∎ lemma : (ox : Ordinal {suc n} ) → ox o< omega → osuc ox o< omega lemma record { lv = Zero ; ord = (Φ .0) } (case1 (s≤s x)) = case1 (s≤s z≤n) lemma record { lv = Zero ; ord = (OSuc .0 ord₁) } (case1 (s≤s x)) = case1 (s≤s z≤n) lemma record { lv = (Suc lv₁) ; ord = (Φ .(Suc lv₁)) } (case1 (s≤s ())) lemma record { lv = (Suc lv₁) ; ord = (OSuc .(Suc lv₁) ord₁) } (case1 (s≤s ())) lemma record { lv = 1 ; ord = (Φ 1) } (case2 c2) with d<→lv c2 lemma record { lv = (Suc Zero) ; ord = (Φ .1) } (case2 ()) | refl -- ∀ X [ ∅ ∉ X → (∃ f : X → ⋃ X ) → ∀ A ∈ X ( f ( A ) ∈ A ) ] -- this form is no good since X is a transitive set -- ∀ z [ ∀ x ( x ∈ z → ¬ ( x ≈ ∅ ) ) ∧ ∀ x ∀ y ( x , y ∈ z ∧ ¬ ( x ≈ y ) → x ∩ y ≈ ∅ ) → ∃ u ∀ x ( x ∈ z → ∃ t ( u ∩ x) ≈ { t }) ] record Choice (z : HOD {suc n}) : Set (suc (suc n)) where field u : {x : HOD {suc n}} ( x∈z : x ∈ z ) → HOD {suc n} t : {x : HOD {suc n}} ( x∈z : x ∈ z ) → (x : HOD {suc n} ) → HOD {suc n} choice : { x : HOD {suc n} } → ( x∈z : x ∈ z ) → ( u x∈z ∩ x) == { t x∈z x } -- choice : {x : HOD {suc n}} ( x ∈ z → ¬ ( x ≈ ∅ ) ) → -- axiom-of-choice : { X : HOD } → ( ¬x∅ : ¬ ( X == od∅ ) ) → { A : HOD } → (A∈X : A ∈ X ) → choice ¬x∅ A∈X ∈ A -- axiom-of-choice {X} nx {A} lt = ¬∅=→∅∈ {!!}