open import Level module OD where open import zf open import ordinal open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open import Relation.Binary.PropositionalEquality open import Data.Nat.Properties open import Data.Empty open import Relation.Nullary open import Relation.Binary open import Relation.Binary.Core open import logic open import nat -- Ordinal Definable Set record OD {n : Level} : Set (suc n) where field def : (x : Ordinal {n} ) → Set n open OD open Ordinal open _∧_ open _∨_ open Bool record _==_ {n : Level} ( a b : OD {n} ) : Set n where field eq→ : ∀ { x : Ordinal {n} } → def a x → def b x eq← : ∀ { x : Ordinal {n} } → def b x → def a x id : {n : Level} {A : Set n} → A → A id x = x eq-refl : {n : Level} { x : OD {n} } → x == x eq-refl {n} {x} = record { eq→ = id ; eq← = id } open _==_ eq-sym : {n : Level} { x y : OD {n} } → x == y → y == x eq-sym eq = record { eq→ = eq← eq ; eq← = eq→ eq } eq-trans : {n : Level} { x y z : OD {n} } → x == y → y == z → x == z eq-trans x=y y=z = record { eq→ = λ t → eq→ y=z ( eq→ x=y t) ; eq← = λ t → eq← x=y ( eq← y=z t) } ⇔→== : {n : Level} { x y : OD {suc n} } → ( {z : Ordinal {suc n}} → def x z ⇔ def y z) → x == y eq→ ( ⇔→== {n} {x} {y} eq ) {z} m = proj1 eq m eq← ( ⇔→== {n} {x} {y} eq ) {z} m = proj2 eq m -- Ordinal in OD ( and ZFSet ) Transitive Set Ord : { n : Level } → ( a : Ordinal {n} ) → OD {n} Ord {n} a = record { def = λ y → y o< a } od∅ : {n : Level} → OD {n} od∅ {n} = Ord o∅ postulate -- OD can be iso to a subset of Ordinal ( by means of Godel Set ) od→ord : {n : Level} → OD {n} → Ordinal {n} ord→od : {n : Level} → Ordinal {n} → OD {n} c<→o< : {n : Level} {x y : OD {n} } → def y ( od→ord x ) → od→ord x o< od→ord y oiso : {n : Level} {x : OD {n}} → ord→od ( od→ord x ) ≡ x diso : {n : Level} {x : Ordinal {n}} → od→ord ( ord→od x ) ≡ x -- we should prove this in agda, but simply put here ==→o≡ : {n : Level} → { x y : OD {suc n} } → (x == y) → x ≡ y -- next assumption causes ∀ x ∋ ∅ . It menas only an ordinal becomes a set -- o<→c< : {n : Level} {x y : Ordinal {n} } → x o< y → def (ord→od y) x -- ord→od x ≡ Ord x results the same -- supermum as Replacement Axiom sup-o : {n : Level } → ( Ordinal {n} → Ordinal {n}) → Ordinal {n} sup-o< : {n : Level } → { ψ : Ordinal {n} → Ordinal {n}} → ∀ {x : Ordinal {n}} → ψ x o< sup-o ψ -- contra-position of mimimulity of supermum required in Power Set Axiom -- sup-x : {n : Level } → ( Ordinal {n} → Ordinal {n}) → Ordinal {n} -- sup-lb : {n : Level } → { ψ : Ordinal {n} → Ordinal {n}} → {z : Ordinal {n}} → z o< sup-o ψ → z o< osuc (ψ (sup-x ψ)) -- mimimul and x∋minimul is an Axiom of choice minimul : {n : Level } → (x : OD {suc n} ) → ¬ (x == od∅ )→ OD {suc n} -- this should be ¬ (x == od∅ )→ ∃ ox → x ∋ Ord ox ( minimum of x ) x∋minimul : {n : Level } → (x : OD {suc n} ) → ( ne : ¬ (x == od∅ ) ) → def x ( od→ord ( minimul x ne ) ) -- minimulity (may proved by ε-induction ) minimul-1 : {n : Level } → (x : OD {suc n} ) → ( ne : ¬ (x == od∅ ) ) → (y : OD {suc n}) → ¬ ( def (minimul x ne) (od→ord y)) ∧ (def x (od→ord y) ) _∋_ : { n : Level } → ( a x : OD {n} ) → Set n _∋_ {n} a x = def a ( od→ord x ) _c<_ : { n : Level } → ( x a : OD {n} ) → Set n x c< a = a ∋ x _c≤_ : {n : Level} → OD {n} → OD {n} → Set (suc n) a c≤ b = (a ≡ b) ∨ ( b ∋ a ) cseq : {n : Level} → OD {n} → OD {n} cseq x = record { def = λ y → def x (osuc y) } where def-subst : {n : Level } {Z : OD {n}} {X : Ordinal {n} }{z : OD {n}} {x : Ordinal {n} }→ def Z X → Z ≡ z → X ≡ x → def z x def-subst df refl refl = df sup-od : {n : Level } → ( OD {n} → OD {n}) → OD {n} sup-od ψ = Ord ( sup-o ( λ x → od→ord (ψ (ord→od x ))) ) sup-c< : {n : Level } → ( ψ : OD {n} → OD {n}) → ∀ {x : OD {n}} → def ( sup-od ψ ) (od→ord ( ψ x )) sup-c< {n} ψ {x} = def-subst {n} {_} {_} {Ord ( sup-o ( λ x → od→ord (ψ (ord→od x ))) )} {od→ord ( ψ x )} lemma refl (cong ( λ k → od→ord (ψ k) ) oiso) where lemma : od→ord (ψ (ord→od (od→ord x))) o< sup-o (λ x → od→ord (ψ (ord→od x))) lemma = subst₂ (λ j k → j o< k ) refl diso (o<-subst sup-o< refl (sym diso) ) otrans : {n : Level} {a x y : Ordinal {n} } → def (Ord a) x → def (Ord x) y → def (Ord a) y otrans x ¬a ¬b c = yes c -- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) -- postulate f-extensionality : { n : Level} → Relation.Binary.PropositionalEquality.Extensionality (suc n) (suc (suc n)) in-codomain : {n : Level} → (X : OD {suc n} ) → ( ψ : OD {suc n} → OD {suc n} ) → OD {suc n} in-codomain {n} X ψ = record { def = λ x → ¬ ( (y : Ordinal {suc n}) → ¬ ( def X y ∧ ( x ≡ od→ord (ψ (ord→od y ))))) } -- Power Set of X ( or constructible by λ y → def X (od→ord y ) ZFSubset : {n : Level} → (A x : OD {suc n} ) → OD {suc n} ZFSubset A x = record { def = λ y → def A y ∧ def x y } -- roughly x = A → Set Def : {n : Level} → (A : OD {suc n}) → OD {suc n} Def {n} A = Ord ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )) ) ) _⊆_ : {n : Level} ( A B : OD {suc n} ) → ∀{ x : OD {suc n} } → Set (suc n) _⊆_ A B {x} = A ∋ x → B ∋ x infixr 220 _⊆_ subset-lemma : {n : Level} → {A x y : OD {suc n} } → ( x ∋ y → ZFSubset A x ∋ y ) ⇔ ( _⊆_ x A {y} ) subset-lemma {n} {A} {x} {y} = record { proj1 = λ z lt → proj1 (z lt) ; proj2 = λ x⊆A lt → record { proj1 = x⊆A lt ; proj2 = lt } } -- Constructible Set on α -- Def X = record { def = λ y → ∀ (x : OD ) → y < X ∧ y < od→ord x } -- L (Φ 0) = Φ -- L (OSuc lv n) = { Def ( L n ) } -- L (Φ (Suc n)) = Union (L α) (α < Φ (Suc n) ) L : {n : Level} → (α : Ordinal {suc n}) → OD {suc n} L {n} record { lv = Zero ; ord = (Φ .0) } = od∅ L {n} record { lv = lx ; ord = (OSuc lv ox) } = Def ( L {n} ( record { lv = lx ; ord = ox } ) ) L {n} record { lv = (Suc lx) ; ord = (Φ (Suc lx)) } = -- Union ( L α ) cseq ( Ord (od→ord (L {n} (record { lv = lx ; ord = Φ lx })))) -- L0 : {n : Level} → (α : Ordinal {suc n}) → L (osuc α) ∋ L α -- L1 : {n : Level} → (α β : Ordinal {suc n}) → α o< β → ∀ (x : OD {suc n}) → L α ∋ x → L β ∋ x OD→ZF : {n : Level} → ZF {suc (suc n)} {suc n} OD→ZF {n} = record { ZFSet = OD {suc n} ; _∋_ = _∋_ ; _≈_ = _==_ ; ∅ = od∅ ; _,_ = _,_ ; Union = Union ; Power = Power ; Select = Select ; Replace = Replace ; infinite = infinite ; isZF = isZF } where ZFSet = OD {suc n} Select : (X : OD {suc n} ) → ((x : OD {suc n} ) → Set (suc n) ) → OD {suc n} Select X ψ = record { def = λ x → ( def X x ∧ ψ ( ord→od x )) } Replace : OD {suc n} → (OD {suc n} → OD {suc n} ) → OD {suc n} Replace X ψ = record { def = λ x → (x o< sup-o ( λ x → od→ord (ψ (ord→od x )))) ∧ def (in-codomain X ψ) x } _,_ : OD {suc n} → OD {suc n} → OD {suc n} x , y = Ord (omax (od→ord x) (od→ord y)) _∩_ : ( A B : ZFSet ) → ZFSet A ∩ B = record { def = λ x → def A x ∧ def B x } Union : OD {suc n} → OD {suc n} Union U = record { def = λ x → ¬ (∀ (u : Ordinal ) → ¬ ((def U u) ∧ (def (ord→od u) x))) } _∈_ : ( A B : ZFSet ) → Set (suc n) A ∈ B = B ∋ A Power : OD {suc n} → OD {suc n} Power A = Replace (Def (Ord (od→ord A))) ( λ x → A ∩ x ) {_} : ZFSet → ZFSet { x } = ( x , x ) data infinite-d : ( x : Ordinal {suc n} ) → Set (suc n) where iφ : infinite-d o∅ isuc : {x : Ordinal {suc n} } → infinite-d x → infinite-d (od→ord ( Union (ord→od x , (ord→od x , ord→od x ) ) )) infinite : OD {suc n} infinite = record { def = λ x → infinite-d x } infixr 200 _∈_ -- infixr 230 _∩_ _∪_ isZF : IsZF (OD {suc n}) _∋_ _==_ od∅ _,_ Union Power Select Replace infinite isZF = record { isEquivalence = record { refl = eq-refl ; sym = eq-sym; trans = eq-trans } ; pair = pair ; union→ = union→ ; union← = union← ; empty = empty ; power→ = power→ ; power← = power← ; extensionality = λ {A} {B} {w} → extensionality {A} {B} {w} ; ε-induction = ε-induction ; infinity∅ = infinity∅ ; infinity = infinity ; selection = λ {X} {ψ} {y} → selection {X} {ψ} {y} ; replacement← = replacement← ; replacement→ = replacement→ ; choice-func = choice-func ; choice = choice } where pair : (A B : OD {suc n} ) → ((A , B) ∋ A) ∧ ((A , B) ∋ B) proj1 (pair A B ) = omax-x {n} (od→ord A) (od→ord B) proj2 (pair A B ) = omax-y {n} (od→ord A) (od→ord B) empty : {n : Level } (x : OD {suc n} ) → ¬ (od∅ ∋ x) empty x (case1 ()) empty x (case2 ()) o<→c< : {x y : Ordinal {suc n}} {z : OD {suc n}}→ x o< y → _⊆_ (Ord x) (Ord y) {z} o<→c< lt lt1 = ordtrans lt1 lt ⊆→o< : {x y : Ordinal {suc n}} → (∀ (z : OD) → _⊆_ (Ord x) (Ord y) {z} ) → x o< osuc y ⊆→o< {x} {y} lt with trio< x y ⊆→o< {x} {y} lt | tri< a ¬b ¬c = ordtrans a <-osuc ⊆→o< {x} {y} lt | tri≈ ¬a b ¬c = subst ( λ k → k o< osuc y) (sym b) <-osuc ⊆→o< {x} {y} lt | tri> ¬a ¬b c with lt (ord→od y) (o<-subst c (sym diso) refl ) ... | ttt = ⊥-elim ( o<¬≡ refl (o<-subst ttt diso refl )) union→ : (X z u : OD) → (X ∋ u) ∧ (u ∋ z) → Union X ∋ z union→ X z u xx not = ⊥-elim ( not (od→ord u) ( record { proj1 = proj1 xx ; proj2 = subst ( λ k → def k (od→ord z)) (sym oiso) (proj2 xx) } )) union← : (X z : OD) (X∋z : Union X ∋ z) → ¬ ( (u : OD ) → ¬ ((X ∋ u) ∧ (u ∋ z ))) union← X z UX∋z = TransFiniteExists _ lemma UX∋z where lemma : {y : Ordinal} → def X y ∧ def (ord→od y) (od→ord z) → ¬ ((u : OD) → ¬ (X ∋ u) ∧ (u ∋ z)) lemma {y} xx not = not (ord→od y) record { proj1 = subst ( λ k → def X k ) (sym diso) (proj1 xx ) ; proj2 = proj2 xx } ψiso : {ψ : OD {suc n} → Set (suc n)} {x y : OD {suc n}} → ψ x → x ≡ y → ψ y ψiso {ψ} t refl = t selection : {ψ : OD → Set (suc n)} {X y : OD} → ((X ∋ y) ∧ ψ y) ⇔ (Select X ψ ∋ y) selection {ψ} {X} {y} = record { proj1 = λ cond → record { proj1 = proj1 cond ; proj2 = ψiso {ψ} (proj2 cond) (sym oiso) } ; proj2 = λ select → record { proj1 = proj1 select ; proj2 = ψiso {ψ} (proj2 select) oiso } } replacement← : {ψ : OD → OD} (X x : OD) → X ∋ x → Replace X ψ ∋ ψ x replacement← {ψ} X x lt = record { proj1 = sup-c< ψ {x} ; proj2 = lemma } where lemma : def (in-codomain X ψ) (od→ord (ψ x)) lemma not = ⊥-elim ( not ( od→ord x ) (record { proj1 = lt ; proj2 = cong (λ k → od→ord (ψ k)) (sym oiso)} )) replacement→ : {ψ : OD → OD} (X x : OD) → (lt : Replace X ψ ∋ x) → ¬ ( (y : OD) → ¬ (x == ψ y)) replacement→ {ψ} X x lt = contra-position lemma (lemma2 (proj2 lt)) where lemma2 : ¬ ((y : Ordinal) → ¬ def X y ∧ ((od→ord x) ≡ od→ord (ψ (ord→od y)))) → ¬ ((y : Ordinal) → ¬ def X y ∧ (ord→od (od→ord x) == ψ (ord→od y))) lemma2 not not2 = not ( λ y d → not2 y (record { proj1 = proj1 d ; proj2 = lemma3 (proj2 d)})) where lemma3 : {y : Ordinal } → (od→ord x ≡ od→ord (ψ (ord→od y))) → (ord→od (od→ord x) == ψ (ord→od y)) lemma3 {y} eq = subst (λ k → ord→od (od→ord x) == k ) oiso (o≡→== eq ) lemma : ( (y : OD) → ¬ (x == ψ y)) → ( (y : Ordinal) → ¬ def X y ∧ (ord→od (od→ord x) == ψ (ord→od y)) ) lemma not y not2 = not (ord→od y) (subst (λ k → k == ψ (ord→od y)) oiso ( proj2 not2 )) --- --- Power Set --- --- First consider ordinals in OD --- --- ZFSubset A x = record { def = λ y → def A y ∧ def x y } subset of A --- Power X = ord→od ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )) ) ) Power X is a sup of all subset of A -- -- ∩-≡ : { a b : OD {suc n} } → ({x : OD {suc n} } → (a ∋ x → b ∋ x)) → a == ( b ∩ a ) ∩-≡ {a} {b} inc = record { eq→ = λ {x} x ¬a ¬b c = -- lz(a) subst (λ k → ψ k ) oiso (ε-induction-ord lx (Φ lx) {_} {ord (od→ord z)} (case1 (<-trans lz ¬a ¬b c with d<→lv lz=ly -- lz(b) ... | eq = subst (λ k → ψ k ) oiso (ε-induction-ord lx (Φ lx) {_} {ord (od→ord z)} (case1 (subst (λ k → k < lx ) (trans (sym lemma1)(sym eq) ) c ))) lemma z lt | case2 lz=ly | tri≈ ¬a lx=ly ¬c with d<→lv lz=ly -- lz(c) ... | eq = lemma6 {ly} {Φ lx} {oy} lx=ly (sym (subst (λ k → lv (od→ord z) ≡ k) lemma1 eq)) where lemma5 : (ox : OrdinalD lx) → (lv (od→ord z) < lx) ∨ (ord (od→ord z) d< ox) → ψ z lemma5 ox lt = subst (λ k → ψ k ) oiso (ε-induction-ord lx ox lt ) lemma6 : { ly : Nat } { ox : OrdinalD {suc n} lx } { oy : OrdinalD {suc n} ly } → lx ≡ ly → ly ≡ lv (od→ord z) → ψ z lemma6 {ly} {ox} {oy} refl refl = lemma5 (OSuc lx (ord (od→ord z)) ) (case2 s axiom of choice --- record choiced {n : Level} ( X : OD {suc n}) : Set (suc (suc n)) where field a-choice : OD {suc n} is-in : X ∋ a-choice choice-func' : (X : OD {suc n} ) → (p∨¬p : { n : Level } → ( p : Set (suc n) ) → p ∨ ( ¬ p )) → ¬ ( X == od∅ ) → choiced X choice-func' X p∨¬p not = have_to_find where ψ : ( ox : Ordinal {suc n}) → Set (suc (suc n)) ψ ox = (( x : Ordinal {suc n}) → x o< ox → ( ¬ def X x )) ∨ choiced X lemma-ord : ( ox : Ordinal {suc n} ) → ψ ox lemma-ord ox = TransFinite {n} {suc (suc n)} {ψ} caseΦ caseOSuc ox where ∋-p' : (A x : OD {suc n} ) → Dec ( A ∋ x ) ∋-p' A x with p∨¬p ( A ∋ x ) ∋-p' A x | case1 t = yes t ∋-p' A x | case2 t = no t ∀-imply-or : {n : Level} {A : Ordinal {suc n} → Set (suc n) } {B : Set (suc (suc n)) } → ((x : Ordinal {suc n}) → A x ∨ B) → ((x : Ordinal {suc n}) → A x) ∨ B ∀-imply-or {n} {A} {B} ∀AB with p∨¬p ((x : Ordinal {suc n}) → A x) ∀-imply-or {n} {A} {B} ∀AB | case1 t = case1 t ∀-imply-or {n} {A} {B} ∀AB | case2 x = case2 (lemma x) where lemma : ¬ ((x : Ordinal {suc n}) → A x) → B lemma not with p∨¬p B lemma not | case1 b = b lemma not | case2 ¬b = ⊥-elim (not (λ x → dont-orb (∀AB x) ¬b )) caseΦ : (lx : Nat) → ( (x : Ordinal {suc n} ) → x o< ordinal lx (Φ lx) → ψ x) → ψ (ordinal lx (Φ lx) ) caseΦ lx prev with ∋-p' X ( ord→od (ordinal lx (Φ lx) )) caseΦ lx prev | yes p = case2 ( record { a-choice = ord→od (ordinal lx (Φ lx)) ; is-in = p } ) caseΦ lx prev | no ¬p = lemma where lemma1 : (x : Ordinal) → (((Suc (lv x) ≤ lx) ∨ (ord x d< Φ lx) → def X x → ⊥) ∨ choiced X) lemma1 x with trio< x (ordinal lx (Φ lx)) lemma1 x | tri< a ¬b ¬c with prev (osuc x) (lemma2 a) where lemma2 : x o< (ordinal lx (Φ lx)) → osuc x o< ordinal lx (Φ lx) lemma2 (case1 lt) = case1 lt lemma1 x | tri< a ¬b ¬c | case2 found = case2 found lemma1 x | tri< a ¬b ¬c | case1 not_found = case1 ( λ lt df → not_found x <-osuc df ) lemma1 x | tri≈ ¬a refl ¬c = case1 ( λ lt → ⊥-elim (o<¬≡ refl lt )) lemma1 x | tri> ¬a ¬b c = case1 ( λ lt → ⊥-elim (o<> lt c )) lemma : ((x : Ordinal) → (Suc (lv x) ≤ lx) ∨ (ord x d< Φ lx) → def X x → ⊥) ∨ choiced X lemma = ∀-imply-or lemma1 caseOSuc : (lx : Nat) (x : OrdinalD lx) → ψ ( ordinal lx x ) → ψ ( ordinal lx (OSuc lx x) ) caseOSuc lx x prev with ∋-p' X (ord→od record { lv = lx ; ord = x } ) caseOSuc lx x prev | yes p = case2 (record { a-choice = ord→od record { lv = lx ; ord = x } ; is-in = p }) caseOSuc lx x (case1 not_found) | no ¬p = case1 lemma where lemma : (y : Ordinal) → (Suc (lv y) ≤ lx) ∨ (ord y d< OSuc lx x) → def X y → ⊥ lemma y lt with trio< y (ordinal lx x ) lemma y lt | tri< a ¬b ¬c = not_found y a lemma y lt | tri≈ ¬a refl ¬c = subst (λ k → def X k → ⊥ ) diso ¬p lemma y lt | tri> ¬a ¬b c with osuc-≡< lt lemma y lt | tri> ¬a ¬b c | case1 refl = ⊥-elim ( ¬b refl ) lemma y lt | tri> ¬a ¬b c | case2 lt1 = ⊥-elim (o<> c lt1 ) caseOSuc lx x (case2 found) | no ¬p = case2 found have_to_find : choiced X have_to_find with lemma-ord (od→ord X ) have_to_find | t = dont-or t ¬¬X∋x where ¬¬X∋x : ¬ ((x : Ordinal) → (Suc (lv x) ≤ lv (od→ord X)) ∨ (ord x d< ord (od→ord X)) → def X x → ⊥) ¬¬X∋x nn = not record { eq→ = λ {x} lt → ⊥-elim (nn x (def→o< lt) lt) ; eq← = λ {x} lt → ⊥-elim ( ¬x<0 lt ) }