open import Level module cardinal where open import zf open import ordinal open import logic open import OD open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open import Relation.Binary.PropositionalEquality open import Data.Nat.Properties open import Data.Empty open import Relation.Nullary open import Relation.Binary open import Relation.Binary.Core open OD.OD open Ordinal open _∧_ open _∨_ open Bool ------------ -- -- Onto map -- def X x -> xmap -- X ---------------------------> Y -- ymap <- def Y y -- record Onto {n : Level } (X Y : OD {n}) : Set (suc n) where field xmap : (x : Ordinal {n}) → def X x → Ordinal {n} ymap : (y : Ordinal {n}) → def Y y → Ordinal {n} ymap-on-X : {y : Ordinal {n} } → (lty : def Y y ) → def X (ymap y lty) onto-iso : {y : Ordinal {n} } → (lty : def Y y ) → xmap ( ymap y lty ) (ymap-on-X lty ) ≡ y record Cardinal {n : Level } (X : OD {n}) : Set (suc n) where field cardinal : Ordinal {n} conto : Onto (Ord cardinal) X cmax : ( y : Ordinal {n} ) → cardinal o< y → ¬ Onto (Ord y) X cardinal : {n : Level } (X : OD {suc n}) → Cardinal X cardinal {n} X = record { cardinal = sup-o ( λ x → proj1 ( cardinal-p x) ) ; conto = onto ; cmax = cmax } where cardinal-p : (x : Ordinal {suc n}) → ( Ordinal {suc n} ∧ Dec (Onto (Ord x) X) ) cardinal-p x with p∨¬p ( Onto (Ord x) X ) cardinal-p x | case1 True = record { proj1 = x ; proj2 = yes True } cardinal-p x | case2 False = record { proj1 = o∅ ; proj2 = no False } onto-set : OD {suc n} onto-set = record { def = λ x → {!!} } -- Onto (Ord (sup-o (λ x → proj1 (cardinal-p x)))) X } onto : Onto (Ord (sup-o (λ x → proj1 (cardinal-p x)))) X onto = record { xmap = xmap ; ymap = ymap ; ymap-on-X = ymap-on-X ; onto-iso = onto-iso } where -- -- Ord cardinal itself has no onto map, but if we have x o< cardinal, there is one -- od→ord X o< cardinal, so if we have def Y y or def X y, there is an Onto (Ord y) X Y = (Ord (sup-o (λ x → proj1 (cardinal-p x)))) lemma1 : (y : Ordinal {suc n}) → def Y y → Onto (Ord y) X lemma1 y y lt (o<-subst {suc n} {_} {_} {y} {sup-o (λ x → proj1 (cardinal-p x))} (sup-o< {suc n} {λ x → proj1 ( cardinal-p x)}{y} ) lemma refl ) where lemma : proj1 (cardinal-p y) ≡ y lemma with p∨¬p ( Onto (Ord y) X ) lemma | case1 x = refl lemma | case2 not = ⊥-elim ( not ontoy ) func : {n : Level} → (f : Ordinal {suc n} → Ordinal {suc n}) → OD {suc n} func {n} f = record { def = λ y → (x : Ordinal {suc n}) → y ≡ f x } Func : {n : Level} → OD {suc n} Func {n} = record { def = λ x → (f : Ordinal {suc n} → Ordinal {suc n}) → x ≡ od→ord (func f) } odmap : {n : Level} → { x : OD {suc n} } → Func ∋ x → Ordinal {suc n} → OD {suc n} odmap {n} {f} lt x = record { def = λ y → def f y } lemma1 : {n : Level} → { x : OD {suc n} } → Func ∋ x → {!!} -- ¬ ( (f : Ordinal {suc n} → Ordinal {suc n}) → ¬ ( x ≡ od→ord (func f) )) lemma1 = {!!} ----- -- All cardinal is ℵ0, since we are working on Countable Ordinal, -- Power ω is larger than ℵ0, so it has no cardinal.