open import Level module HOD where open import zf open import ordinal open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open import Relation.Binary.PropositionalEquality open import Data.Nat.Properties open import Data.Empty open import Relation.Nullary open import Relation.Binary open import Relation.Binary.Core -- Ordinal Definable Set record HOD {n : Level} : Set (suc n) where field def : (x : Ordinal {n} ) → Set n otrans : {x : Ordinal {n} } → def x → { y : Ordinal {n} } → y o< x → def y open HOD open import Data.Unit open Ordinal open _∧_ record _==_ {n : Level} ( a b : HOD {n} ) : Set n where field eq→ : ∀ { x : Ordinal {n} } → def a x → def b x eq← : ∀ { x : Ordinal {n} } → def b x → def a x id : {n : Level} {A : Set n} → A → A id x = x eq-refl : {n : Level} { x : HOD {n} } → x == x eq-refl {n} {x} = record { eq→ = id ; eq← = id } open _==_ eq-sym : {n : Level} { x y : HOD {n} } → x == y → y == x eq-sym eq = record { eq→ = eq← eq ; eq← = eq→ eq } eq-trans : {n : Level} { x y z : HOD {n} } → x == y → y == z → x == z eq-trans x=y y=z = record { eq→ = λ t → eq→ y=z ( eq→ x=y t) ; eq← = λ t → eq← x=y ( eq← y=z t) } ⇔→== : {n : Level} { x y : HOD {suc n} } → ( {z : Ordinal {suc n}} → def x z ⇔ def y z) → x == y eq→ ( ⇔→== {n} {x} {y} eq ) {z} m = proj1 eq m eq← ( ⇔→== {n} {x} {y} eq ) {z} m = proj2 eq m -- Ordinal in HOD ( and ZFSet ) Ord : { n : Level } → ( a : Ordinal {n} ) → HOD {n} Ord {n} a = record { def = λ y → y o< a ; otrans = lemma } where lemma : {x : Ordinal} → x o< a → {y : Ordinal} → y o< x → y o< a lemma {x} x→¬< : {x y : Nat } → (x < y ) → ¬ ( y < x ) >→¬< (s≤s x→¬< x ¬a ¬b c = ⊥-elim (¬x<0 c) o<→¬c> : {n : Level} → { x y : HOD {n} } → (od→ord x ) o< ( od→ord y) → ¬ (y c< x ) o<→¬c> {n} {x} {y} olt clt = o<> olt (c<→o< clt ) where o≡→¬c< : {n : Level} → { x y : HOD {n} } → (od→ord x ) ≡ ( od→ord y) → ¬ x c< y o≡→¬c< {n} {x} {y} oeq lt = o<¬≡ (orefl oeq ) (c<→o< lt) ∅0 : {n : Level} → record { def = λ x → Lift n ⊥ ; otrans = λ () } == od∅ {n} eq→ ∅0 {w} (lift ()) eq← ∅0 {w} (case1 ()) eq← ∅0 {w} (case2 ()) ∅< : {n : Level} → { x y : HOD {n} } → def x (od→ord y ) → ¬ ( x == od∅ {n} ) ∅< {n} {x} {y} d eq with eq→ (eq-trans eq (eq-sym ∅0) ) d ∅< {n} {x} {y} d eq | lift () ∅6 : {n : Level} → { x : HOD {suc n} } → ¬ ( x ∋ x ) -- no Russel paradox ∅6 {n} {x} x∋x = o<¬≡ refl ( c<→o< {suc n} {x} {x} x∋x ) def-iso : {n : Level} {A B : HOD {n}} {x y : Ordinal {n}} → x ≡ y → (def A y → def B y) → def A x → def B x def-iso refl t = t is-o∅ : {n : Level} → ( x : Ordinal {suc n} ) → Dec ( x ≡ o∅ {suc n} ) is-o∅ {n} record { lv = Zero ; ord = (Φ .0) } = yes refl is-o∅ {n} record { lv = Zero ; ord = (OSuc .0 ord₁) } = no ( λ () ) is-o∅ {n} record { lv = (Suc lv₁) ; ord = ord } = no (λ()) -- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) -- postulate f-extensionality : { n : Level} → Relation.Binary.PropositionalEquality.Extensionality (suc n) (suc (suc n)) csuc : {n : Level} → HOD {suc n} → HOD {suc n} csuc x = ord→od ( osuc ( od→ord x )) -- Power Set of X ( or constructible by λ y → def X (od→ord y ) ZFSubset : {n : Level} → (A x : HOD {suc n} ) → HOD {suc n} ZFSubset A x = record { def = λ y → def A y ∧ def x y ; otrans = lemma } where lemma : {z : Ordinal} → def A z ∧ def x z → {y : Ordinal} → y o< z → def A y ∧ def x y lemma {z} d {y} yz : Union X ∋ z ) → HOD {suc n} union-u {X} {z} U>z = Ord ( osuc ( od→ord z ) ) union→ : (X z u : HOD) → (X ∋ u) ∧ (u ∋ z) → Union X ∋ z union→ X z u xx with trio< ( od→ord u ) ( osuc ( od→ord z )) union→ X z u xx | tri< a ¬b ¬c with osuc-< a (c<→o< (proj2 xx)) union→ X z u xx | tri< a ¬b ¬c | () union→ X z u xx | tri≈ ¬a b ¬c = def-subst {suc n} {_} {_} {X} {osuc (od→ord z)} (proj1 xx) refl b where union→ X z u xx | tri> ¬a ¬b c = otrans X (proj1 xx) c union← : (X z : HOD) (X∋z : Union X ∋ z) → (X ∋ union-u {X} {z} X∋z ) ∧ (union-u {X} {z} X∋z ∋ z ) union← X z X∋z = record { proj1 = lemma ; proj2 = <-osuc } where lemma : X ∋ union-u {X} {z} X∋z lemma = def-subst {suc n} {_} {_} {X} {od→ord (Ord (osuc ( od→ord z )))} X∋z refl ord-Ord ψiso : {ψ : HOD {suc n} → Set (suc n)} {x y : HOD {suc n}} → ψ x → x ≡ y → ψ y ψiso {ψ} t refl = t selection : {X : HOD } {ψ : (x : HOD ) → Set (suc n)} {y : HOD} → (((y₁ : HOD) → X ∋ y₁ → ψ y₁) ∧ (X ∋ y)) ⇔ (Select X ψ ∋ y) selection {X} {ψ} {y} = record { proj1 = λ s → record { proj1 = λ y1 y1