module constructible-set where open import Level open import zf open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ) open import Relation.Binary.PropositionalEquality data Ordinal {n : Level } : (lv : Nat) → Set n where Φ : {lv : Nat} → Ordinal {n} lv T-suc : {lv : Nat} → Ordinal {n} lv → Ordinal lv ℵ_ : (lv : Nat) → Ordinal (Suc lv) data _o<_ {n : Level } : {lx ly : Nat} → Ordinal {n} lx → Ordinal {n} ly → Set n where l< : {lx ly : Nat } → {x : Ordinal {n} lx } → {y : Ordinal {n} ly } → lx < ly → x o< y Φ< : {lx : Nat} → {x : Ordinal {n} lx} → Φ {n} {lx} o< T-suc {n} {lx} x s< : {lx : Nat} → {x y : Ordinal {n} lx} → x o< y → T-suc {n} {lx} x o< T-suc {n} {lx} y ℵΦ< : {lx : Nat} → {x : Ordinal {n} (Suc lx) } → Φ {n} {Suc lx} o< (ℵ lx) ℵ< : {lx : Nat} → {x : Ordinal {n} (Suc lx) } → T-suc {n} {Suc lx} x o< (ℵ lx) open import Data.Nat.Properties open import Data.Empty open import Relation.Nullary open import Relation.Binary open import Relation.Binary.Core nat< : { x y : Nat } → x ≡ y → x < y → ⊥ nat< {Zero} {Zero} refl () nat< {Suc x} {.(Suc x)} refl (s≤s t) = nat< {x} {x} refl t x≤x : { x : Nat } → x ≤ x x≤x {Zero} = z≤n x≤x {Suc x} = s≤s ( x≤x ) x<>y : { x y : Nat } → x > y → x < y → ⊥ x<>y {.(Suc _)} {.(Suc _)} (s≤s lt) (s≤s lt1) = x<>y lt lt1 triO> : {n : Level } → {lx ly : Nat} {x : Ordinal {n} lx } { y : Ordinal {n} ly } → ly < lx → x o< y → ⊥ triO> {n} {lx} {ly} {x} {y} y {n} {lx} {ly} {x} {y} y {n} {lx} {ly} {x} {y} y {n} {lx} {ly} {x} {y} y ¬a ¬b c = ¬a x₁ triO> {n} {lx} {ly} {Φ} {T-suc _} y ¬a ¬b c = ¬b refl triO> {n} {lx} {ly} {T-suc px} {T-suc py} y ¬a ¬b c = triO> y {n} {lx} {ly} {Φ {u}} {ℵ w} y ¬a ¬b c = ¬b refl triO> {n} {lx} {ly} {(T-suc _)} {ℵ u} y ¬a ¬b c = ¬b refl trio! : {n : Level } → {lv : Nat} → {x : Ordinal {n} lv } → x o< x → ⊥ trio! {n} {lx} {x} (l< y) = nat< refl y trio! {n} {lx} {T-suc y} (s< t) = trio! t trio<> : {n : Level } → {lx : Nat} {x : Ordinal {n} lx } { y : Ordinal {n} lx } → y o< x → x o< y → ⊥ trio<> {n} {lx} {x} {y} (l< lt) _ = nat< refl lt trio<> {n} {lx} {x} {y} _ (l< lt) = nat< refl lt trio<> {n} {lx} {.(T-suc _)} {.(T-suc _)} (s< s) (s< t) = trio<> s t trio<≡ : {n : Level } → {lx : Nat} {x : Ordinal {n} lx } { y : Ordinal {n} lx } → x ≡ y → x o< y → ⊥ trio<≡ refl = trio! trio>≡ : {n : Level } → {lx : Nat} {x : Ordinal {n} lx } { y : Ordinal {n} lx } → x ≡ y → y o< x → ⊥ trio>≡ refl = trio! triO : {n : Level } → {lx ly : Nat} → Ordinal {n} lx → Ordinal {n} ly → Tri (lx < ly) ( lx ≡ ly ) ( lx > ly ) triO {n} {lx} {ly} x y = <-cmp lx ly triOonSameLevel : {n : Level } → {lx : Nat} → Trichotomous _≡_ ( _o<_ {n} {lx} {lx} ) triOonSameLevel {n} {lv} Φ Φ = tri≈ trio! refl trio! triOonSameLevel {n} {Suc lv} (ℵ lv) (ℵ lv) = tri≈ trio! refl trio! triOonSameLevel {n} {lv} Φ (T-suc y) = tri< Φ< (λ ()) ( λ lt → trio<> lt Φ< ) triOonSameLevel {n} {.(Suc lv)} Φ (ℵ lv) = tri< (ℵΦ< {n} {lv} {Φ} ) (λ ()) ( λ lt → trio<> lt ((ℵΦ< {n} {lv} {Φ} )) ) triOonSameLevel {n} {Suc lv} (ℵ lv) Φ = tri> ( λ lt → trio<> lt (ℵΦ< {n} {lv} {Φ} ) ) (λ ()) (ℵΦ< {n} {lv} {Φ} ) triOonSameLevel {n} {Suc lv} (ℵ lv) (T-suc y) = tri> ( λ lt → trio<> lt (ℵ< {n} {lv} {y} ) ) (λ ()) (ℵ< {n} {lv} {y} ) triOonSameLevel {n} {lv} (T-suc x) Φ = tri> (λ lt → trio<> lt Φ<) (λ ()) Φ< triOonSameLevel {n} {.(Suc lv)} (T-suc x) (ℵ lv) = tri< ℵ< (λ ()) (λ lt → trio<> lt ℵ< ) triOonSameLevel {n} {lv} (T-suc x) (T-suc y) with triOonSameLevel x y triOonSameLevel {n} {lv} (T-suc x) (T-suc y) | tri< a ¬b ¬c = tri< (s< a) (λ tx=ty → trio<≡ tx=ty (s< a) ) ( λ lt → trio<> lt (s< a) ) triOonSameLevel {n} {lv} (T-suc x) (T-suc x) | tri≈ ¬a refl ¬c = tri≈ trio! refl trio! triOonSameLevel {n} {lv} (T-suc x) (T-suc y) | tri> ¬a ¬b c = tri> ( λ lt → trio<> lt (s< c) ) (λ tx=ty → trio>≡ tx=ty (s< c) ) (s< c) max : (x y : Nat) → Nat max Zero Zero = Zero max Zero (Suc x) = (Suc x) max (Suc x) Zero = (Suc x) max (Suc x) (Suc y) = Suc ( max x y ) maxα> : {n : Level } → { lx ly : Nat } → Ordinal {n} lx → Ordinal {n} ly → lx > ly → Ordinal {n} lx maxα> x y _ = x maxα= : {n : Level } → { lx : Nat } → Ordinal {n} lx → Ordinal {n} lx → Ordinal {n} lx maxα= x y with triOonSameLevel x y maxα= x y | tri< a ¬b ¬c = y maxα= x y | tri≈ ¬a b ¬c = x maxα= x y | tri> ¬a ¬b c = x -- X' = { x ∈ X | ψ x } ∪ X , Mα = ( ∪ (β < α) Mβ ) ' data Constructible {n : Level } {lv : Nat} ( α : Ordinal {n} lv ) : Set (suc n) where fsub : ( ψ : Ordinal {n} lv → Set n ) → Constructible α xself : Ordinal {n} lv → Constructible α record ConstructibleSet {n : Level } : Set (suc n) where field level : Nat α : Ordinal {n} level constructible : Constructible α open ConstructibleSet data _c∋_ {n : Level } : {lv lv' : Nat} {α : Ordinal {n} lv } {α' : Ordinal {n} lv' } → Constructible {n} {lv} α → Constructible {n} {lv'} α' → Set n where c> : {lv lv' : Nat} {α : Ordinal {n} lv } {α' : Ordinal {n} lv' } (ta : Constructible {n} {lv} α ) ( tx : Constructible {n} {lv'} α' ) → α' o< α → ta c∋ tx xself-fsub : {lv : Nat} {α : Ordinal {n} lv } (ta : Ordinal {n} lv ) ( ψ : Ordinal {n} lv → Set n ) → _c∋_ {n} {_} {_} {α} {α} (xself ta ) ( fsub ψ) fsub-fsub : {lv lv' : Nat} {α : Ordinal {n} lv } ( ψ : Ordinal {n} lv → Set n ) ( ψ₁ : Ordinal {n} lv → Set n ) → ( ∀ ( x : Ordinal {n} lv ) → ψ x → ψ₁ x ) → _c∋_ {n} {_} {_} {α} {α} ( fsub ψ ) ( fsub ψ₁) _∋_ : {n : Level} → (ConstructibleSet {n}) → (ConstructibleSet {n} ) → Set n a ∋ x = constructible a c∋ constructible x transitiveness : {n : Level} → (a b c : ConstructibleSet {n}) → a ∋ b → b ∋ c → a ∋ c transitiveness = {!!} data _c≈_ {n : Level } : {lv lv' : Nat} {α : Ordinal {n} lv } {α' : Ordinal {n} lv' } → Constructible {n} {lv} α → Constructible {n} {lv'} α' → Set n where crefl : {lv : Nat} {α : Ordinal {n} lv } → _c≈_ {n} {_} {_} {α} {α} (xself α ) (xself α ) feq : {lv : Nat} {α : Ordinal {n} lv } → ( ψ : Ordinal {n} lv → Set n ) ( ψ₁ : Ordinal {n} lv → Set n ) → (∀ ( x : Ordinal {n} lv ) → ψ x ⇔ ψ₁ x ) → _c≈_ {n} {_} {_} {α} {α} ( fsub ψ ) ( fsub ψ₁) _≈_ : {n : Level} → (ConstructibleSet {n}) → (ConstructibleSet {n} ) → Set n a ≈ x = constructible a c≈ constructible x ConstructibleSet→ZF : {n : Level } → ZF {suc n} {n} ConstructibleSet→ZF {n} = record { ZFSet = ConstructibleSet ; _∋_ = _∋_ ; _≈_ = _≈_ ; ∅ = record { level = Zero ; α = Φ ; constructible = xself Φ } ; _×_ = {!!} ; Union = {!!} ; Power = {!!} ; Select = {!!} ; Replace = {!!} ; infinite = {!!} ; isZF = {!!} }