open import Level open import Ordinals module VL {n : Level } (O : Ordinals {n}) where open import zf open import logic import OD open import Relation.Nullary open import Relation.Binary open import Data.Empty open import Relation.Binary open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) import BAlgbra open BAlgbra O open inOrdinal O open OD O open OD.OD open ODAxiom odAxiom -- import ODC open _∧_ open _∨_ open Bool open HOD -- The cumulative hierarchy -- V 0 := ∅ -- V α + 1 := P ( V α ) -- V α := ⋃ { V β | β < α } V : ( β : Ordinal ) → HOD V β = TransFinite1 Vβ₁ β where Vβ₁ : (x : Ordinal ) → ( ( y : Ordinal) → y o< x → HOD ) → HOD Vβ₁ x Vβ₀ with trio< x o∅ Vβ₁ x Vβ₀ | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a) Vβ₁ x Vβ₀ | tri≈ ¬a refl ¬c = Ord o∅ Vβ₁ x Vβ₀ | tri> ¬a ¬b c with Oprev-p x Vβ₁ x Vβ₀ | tri> ¬a ¬b c | yes p = Power ( Vβ₀ (Oprev.oprev p ) (subst (λ k → _ o< k) (Oprev.oprev=x p) <-osuc )) Vβ₁ x Vβ₀ | tri> ¬a ¬b c | no ¬p = record { od = record { def = λ y → (y o< x ) ∧ ((lt : y o< x ) → odef (Vβ₀ y lt) x ) } ; odmax = x; ¬a ¬b c with Oprev-p x Lβ₁ x Lβ₀ | tri> ¬a ¬b c | yes p = Df D ( Lβ₀ (Oprev.oprev p ) (subst (λ k → _ o< k) (Oprev.oprev=x p) <-osuc )) Lβ₁ x Lβ₀ | tri> ¬a ¬b c | no ¬p = record { od = record { def = λ y → (y o< x ) ∧ ((lt : y o< x ) → odef (Lβ₀ y lt) x ) } ; odmax = x;