open import Level open import Ordinals module cardinal {n : Level } (O : Ordinals {n}) where open import zf open import logic import OD import ODC import OPair open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open import Relation.Binary.PropositionalEquality open import Data.Nat.Properties open import Data.Empty open import Relation.Nullary open import Relation.Binary open import Relation.Binary.Core open inOrdinal O open OD O open OD.OD open OPair O open ODAxiom odAxiom open _∧_ open _∨_ open Bool open _==_ open HOD -- _⊗_ : (A B : HOD) → HOD -- A ⊗ B = Union ( Replace B (λ b → Replace A (λ a → < a , b > ) )) Func : OD Func = record { def = λ x → def ZFProduct x ∧ ( (a b c : Ordinal) → odef (ord→od x) (od→ord < ord→od a , ord→od b >) ∧ odef (ord→od x) (od→ord < ord→od a , ord→od c >) → b ≡ c ) } FuncP : ( A B : HOD ) → HOD FuncP A B = record { od = record { def = λ x → odef (ZFP A B) x ∧ ( (x : Ordinal ) (p q : odef (ZFP A B ) x ) → pi1 (proj1 p) ≡ pi1 (proj1 q) → pi2 (proj1 p) ≡ pi2 (proj1 q) ) } ; odmax = odmax (ZFP A B) ; ))) Func∋f = {!!} FuncP∋f : {A B x : HOD} → ( f : HOD → HOD ) → ( (x : HOD ) → A ∋ x → B ∋ f x ) → odef (FuncP A B) (od→ord (Replace A (λ x → < x , f x > ))) FuncP∋f = {!!} Func→f : {A B f x : HOD} → def Func (od→ord f) → (x : HOD ) → A ∋ x → ( HOD ∧ ((y : HOD ) → B ∋ y )) Func→f = {!!} Func₁ : {A B f : HOD} → def Func (od→ord f) → {!!} Func₁ = {!!} Cod : {A B f : HOD} → def Func (od→ord f) → {!!} Cod = {!!} 1-1 : {A B f : HOD} → def Func (od→ord f) → {!!} 1-1 = {!!} onto : {A B f : HOD} → def Func (od→ord f) → {!!} onto = {!!} record Bijection (A B : Ordinal ) : Set n where field fun→ : Ordinal → Ordinal fun← : Ordinal → Ordinal fun→inA : (x : Ordinal) → odef (ord→od A) ( fun→ x ) fun←inB : (x : Ordinal) → odef (ord→od B) ( fun← x ) fiso→ : (x : Ordinal ) → odef (ord→od A) x → fun→ ( fun← x ) ≡ x fiso← : (x : Ordinal ) → odef (ord→od B) x → fun← ( fun→ x ) ≡ x Card : OD Card = record { def = λ x → (a : Ordinal) → a o< x → ¬ Bijection a x }