open import Level open import Ordinals module cardinal {n : Level } (O : Ordinals {n}) where open import zf open import logic import OD open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open import Relation.Binary.PropositionalEquality open import Data.Nat.Properties open import Data.Empty open import Relation.Nullary open import Relation.Binary open import Relation.Binary.Core open inOrdinal O open OD O open OD.OD open _∧_ open _∨_ open Bool func : (f : Ordinal → Ordinal ) → ( dom cod : OD ) → OD func f dom cod = record { def = λ z → {x y : Ordinal} → (z ≡ omax x y ) ∧ def dom x ∧ def cod (f x ) } -- Func : ( dom cod : OD ) → OD -- Func dom cod = record { def = λ x → x o< sup-o ( λ y → (f : Ordinal → Ordinal ) → y ≡ od→ord (func f dom cod) ) } ------------ -- -- Onto map -- def X x -> xmap -- X ---------------------------> Y -- ymap <- def Y y -- record Onto (X Y : OD ) : Set n where field xmap : (x : Ordinal ) → def X x → Ordinal ymap : (y : Ordinal ) → def Y y → Ordinal ymap-on-X : {y : Ordinal } → (lty : def Y y ) → def X (ymap y lty) onto-iso : {y : Ordinal } → (lty : def Y y ) → xmap ( ymap y lty ) (ymap-on-X lty ) ≡ y record Cardinal (X : OD ) : Set n where field cardinal : Ordinal conto : Onto (Ord cardinal) X cmax : ( y : Ordinal ) → cardinal o< y → ¬ Onto (Ord y) X cardinal : (X : OD ) → Cardinal X cardinal X = record { cardinal = sup-o ( λ x → proj1 ( cardinal-p x) ) ; conto = x∋minimul onto-set ∃-onto-set ; cmax = cmax } where cardinal-p : (x : Ordinal ) → ( Ordinal ∧ Dec (Onto (Ord x) X) ) cardinal-p x with p∨¬p ( Onto (Ord x) X ) cardinal-p x | case1 True = record { proj1 = x ; proj2 = yes True } cardinal-p x | case2 False = record { proj1 = o∅ ; proj2 = no False } onto-set : OD onto-set = record { def = λ x → Onto (Ord (sup-o (λ x → proj1 (cardinal-p x)))) X } ∃-onto-set : ¬ ( onto-set == od∅ ) ∃-onto-set record { eq→ = eq→ ; eq← = eq← } = ¬x<0 {_} ( eq→ lemma ) where lemma : Onto (Ord (sup-o (λ x → proj1 (cardinal-p x)))) X lemma = {!!} cmax : (y : Ordinal) → sup-o (λ x → proj1 (cardinal-p x)) o< y → ¬ Onto (Ord y) X cmax y lt ontoy = o<> lt (o<-subst {_} {_} {y} {sup-o (λ x → proj1 (cardinal-p x))} (sup-o< {λ x → proj1 ( cardinal-p x)}{y} ) lemma refl ) where lemma : proj1 (cardinal-p y) ≡ y lemma with p∨¬p ( Onto (Ord y) X ) lemma | case1 x = refl lemma | case2 not = ⊥-elim ( not ontoy ) -- All cardinal is ℵ0, since we are working on Countable Ordinal, -- Power ω is larger than ℵ0, so it has no cardinal.