open import Level module constructible-set (n : Level) where open import zf open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ) open import Relation.Binary.PropositionalEquality data OrdinalD : (lv : Nat) → Set n where Φ : {lv : Nat} → OrdinalD lv OSuc : {lv : Nat} → OrdinalD lv → OrdinalD lv ℵ_ : (lv : Nat) → OrdinalD (Suc lv) record Ordinal : Set n where field lv : Nat ord : OrdinalD lv data _d<_ : {lx ly : Nat} → OrdinalD lx → OrdinalD ly → Set n where Φ< : {lx : Nat} → {x : OrdinalD lx} → Φ {lx} d< OSuc {lx} x s< : {lx : Nat} → {x y : OrdinalD lx} → x d< y → OSuc {lx} x d< OSuc {lx} y ℵΦ< : {lx : Nat} → {x : OrdinalD (Suc lx) } → Φ {Suc lx} d< (ℵ lx) ℵ< : {lx : Nat} → {x : OrdinalD (Suc lx) } → OSuc {Suc lx} x d< (ℵ lx) open Ordinal _o<_ : ( x y : Ordinal ) → Set n _o<_ x y = (lv x < lv y ) ∨ ( ord x d< ord y ) open import Data.Nat.Properties open import Data.Empty open import Relation.Nullary open import Relation.Binary open import Relation.Binary.Core ≡→¬d< : {lv : Nat} → {x : OrdinalD lv } → x d< x → ⊥ ≡→¬d< {lx} {OSuc y} (s< t) = ≡→¬d< t trio<> : {lx : Nat} {x : OrdinalD lx } { y : OrdinalD lx } → y d< x → x d< y → ⊥ trio<> {lx} {.(OSuc _)} {.(OSuc _)} (s< s) (s< t) = trio<> s t trio<≡ : {lx : Nat} {x : OrdinalD lx } { y : OrdinalD lx } → x ≡ y → x d< y → ⊥ trio<≡ refl = ≡→¬d< trio>≡ : {lx : Nat} {x : OrdinalD lx } { y : OrdinalD lx } → x ≡ y → y d< x → ⊥ trio>≡ refl = ≡→¬d< triO : {lx ly : Nat} → OrdinalD lx → OrdinalD ly → Tri (lx < ly) ( lx ≡ ly ) ( lx > ly ) triO {lx} {ly} x y = <-cmp lx ly triOrdd : {lx : Nat} → Trichotomous _≡_ ( _d<_ {lx} {lx} ) triOrdd {lv} Φ Φ = tri≈ ≡→¬d< refl ≡→¬d< triOrdd {Suc lv} (ℵ lv) (ℵ lv) = tri≈ ≡→¬d< refl ≡→¬d< triOrdd {lv} Φ (OSuc y) = tri< Φ< (λ ()) ( λ lt → trio<> lt Φ< ) triOrdd {.(Suc lv)} Φ (ℵ lv) = tri< (ℵΦ< {lv} {Φ} ) (λ ()) ( λ lt → trio<> lt ((ℵΦ< {lv} {Φ} )) ) triOrdd {Suc lv} (ℵ lv) Φ = tri> ( λ lt → trio<> lt (ℵΦ< {lv} {Φ} ) ) (λ ()) (ℵΦ< {lv} {Φ} ) triOrdd {Suc lv} (ℵ lv) (OSuc y) = tri> ( λ lt → trio<> lt (ℵ< {lv} {y} ) ) (λ ()) (ℵ< {lv} {y} ) triOrdd {lv} (OSuc x) Φ = tri> (λ lt → trio<> lt Φ<) (λ ()) Φ< triOrdd {.(Suc lv)} (OSuc x) (ℵ lv) = tri< ℵ< (λ ()) (λ lt → trio<> lt ℵ< ) triOrdd {lv} (OSuc x) (OSuc y) with triOrdd x y triOrdd {lv} (OSuc x) (OSuc y) | tri< a ¬b ¬c = tri< (s< a) (λ tx=ty → trio<≡ tx=ty (s< a) ) ( λ lt → trio<> lt (s< a) ) triOrdd {lv} (OSuc x) (OSuc x) | tri≈ ¬a refl ¬c = tri≈ ≡→¬d< refl ≡→¬d< triOrdd {lv} (OSuc x) (OSuc y) | tri> ¬a ¬b c = tri> ( λ lt → trio<> lt (s< c) ) (λ tx=ty → trio>≡ tx=ty (s< c) ) (s< c) d<→lv : {x y : Ordinal } → ord x d< ord y → lv x ≡ lv y d<→lv Φ< = refl d<→lv (s< lt) = refl d<→lv ℵΦ< = refl d<→lv ℵ< = refl orddtrans : {lx : Nat} {x y z : OrdinalD lx } → x d< y → y d< z → x d< z orddtrans {lx} {.Φ} {.(OSuc _)} {.(OSuc _)} Φ< (s< y ¬a ¬b c = x maxα : Ordinal → Ordinal → Ordinal maxα x y with <-cmp (lv x) (lv y) maxα x y | tri< a ¬b ¬c = x maxα x y | tri> ¬a ¬b c = y maxα x y | tri≈ ¬a refl ¬c = record { lv = lv x ; ord = maxαd (ord x) (ord y) } OrdTrans : Transitive (λ ( a b : Ordinal ) → (a ≡ b) ∨ (Ordinal.lv a < Ordinal.lv b) ∨ (Ordinal.ord a d< Ordinal.ord b) ) OrdTrans (case1 refl) (case1 refl) = case1 refl OrdTrans (case1 refl) (case2 lt2) = case2 lt2 OrdTrans (case2 lt1) (case1 refl) = case2 lt1 OrdTrans (case2 (case1 x)) (case2 (case1 y)) = case2 (case1 ( <-trans x y ) ) OrdTrans (case2 (case1 x)) (case2 (case2 y)) with d<→lv y OrdTrans (case2 (case1 x)) (case2 (case2 y)) | refl = case2 (case1 x ) OrdTrans (case2 (case2 x)) (case2 (case1 y)) with d<→lv x OrdTrans (case2 (case2 x)) (case2 (case1 y)) | refl = case2 (case1 y) OrdTrans (case2 (case2 x)) (case2 (case2 y)) with d<→lv x | d<→lv y OrdTrans (case2 (case2 x)) (case2 (case2 y)) | refl | refl = case2 (case2 (orddtrans x y )) OrdPreorder : Preorder n n n OrdPreorder = record { Carrier = Ordinal ; _≈_ = _≡_ ; _∼_ = λ a b → (a ≡ b) ∨ ( a o< b ) ; isPreorder = record { isEquivalence = record { refl = refl ; sym = sym ; trans = trans } ; reflexive = case1 ; trans = OrdTrans } } -- X' = { x ∈ X | ψ x } ∪ X , Mα = ( ∪ (β < α) Mβ ) ' data Constructible ( α : Ordinal ) : Set (suc n) where fsub : ( ψ : Ordinal → Set n ) → Constructible α xself : Ordinal → Constructible α record ConstructibleSet : Set (suc n) where field α : Ordinal constructible : Constructible α open ConstructibleSet data _c∋_ : {α α' : Ordinal } → Constructible α → Constructible α' → Set n where c> : {α α' : Ordinal } (ta : Constructible α ) ( tx : Constructible α' ) → α' o< α → ta c∋ tx xself-fsub : {α : Ordinal } (ta : Ordinal ) ( ψ : Ordinal → Set n ) → _c∋_ {α} {α} (xself ta ) ( fsub ψ) fsub-fsub : {α : Ordinal } ( ψ : Ordinal → Set n ) ( ψ₁ : Ordinal → Set n ) → ( ∀ ( x : Ordinal ) → ψ x → ψ₁ x ) → _c∋_ {α} {α} ( fsub ψ ) ( fsub ψ₁) _∋_ : (ConstructibleSet ) → (ConstructibleSet ) → Set n a ∋ x = constructible a c∋ constructible x -- transitiveness : (a b c : ConstructibleSet ) → a ∋ b → b ∋ c → a ∋ c -- transitiveness a b c a∋b b∋c with constructible a c∋ constructible b | constructible b c∋ constructible c -- ... | t1 | t2 = {!!} data _c≈_ : {α α' : Ordinal} → Constructible α → Constructible α' → Set n where crefl : {α : Ordinal } → _c≈_ {α} {α} (xself α ) (xself α ) feq : {lv : Nat} {α : Ordinal } → ( ψ : Ordinal → Set n ) ( ψ₁ : Ordinal → Set n ) → (∀ ( x : Ordinal ) → ψ x ⇔ ψ₁ x ) → _c≈_ {α} {α} ( fsub ψ ) ( fsub ψ₁) _≈_ : (ConstructibleSet ) → (ConstructibleSet ) → Set n a ≈ x = constructible a c≈ constructible x ConstructibleSet→ZF : ZF {suc n} ConstructibleSet→ZF = record { ZFSet = ConstructibleSet ; _∋_ = _∋_ ; _≈_ = _≈_ ; ∅ = record { α = record {lv = Zero ; ord = Φ } ; constructible = xself ( record {lv = Zero ; ord = Φ }) } ; _×_ = {!!} ; Union = {!!} ; Power = {!!} ; Select = {!!} ; Replace = {!!} ; infinite = {!!} ; isZF = {!!} }