open import Level module HOD where open import zf open import ordinal open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open import Relation.Binary.PropositionalEquality open import Data.Nat.Properties open import Data.Empty open import Relation.Nullary open import Relation.Binary open import Relation.Binary.Core -- Ordinal Definable Set record HOD {n : Level} : Set (suc n) where field def : (x : Ordinal {n} ) → Set n otrans : {x : Ordinal {n} } → def x → { y : Ordinal {n} } → y o< x → def y open HOD open import Data.Unit open Ordinal record _==_ {n : Level} ( a b : HOD {n} ) : Set n where field eq→ : ∀ { x : Ordinal {n} } → def a x → def b x eq← : ∀ { x : Ordinal {n} } → def b x → def a x id : {n : Level} {A : Set n} → A → A id x = x eq-refl : {n : Level} { x : HOD {n} } → x == x eq-refl {n} {x} = record { eq→ = id ; eq← = id } open _==_ eq-sym : {n : Level} { x y : HOD {n} } → x == y → y == x eq-sym eq = record { eq→ = eq← eq ; eq← = eq→ eq } eq-trans : {n : Level} { x y z : HOD {n} } → x == y → y == z → x == z eq-trans x=y y=z = record { eq→ = λ t → eq→ y=z ( eq→ x=y t) ; eq← = λ t → eq← x=y ( eq← y=z t) } -- Ordinal in HOD ( and ZFSet ) Ord : { n : Level } → ( a : Ordinal {n} ) → HOD {n} Ord {n} a = record { def = λ y → y o< a ; otrans = lemma } where lemma : {x : Ordinal} → x o< a → {y : Ordinal} → y o< x → y o< a lemma {x} x→¬< : {x y : Nat } → (x < y ) → ¬ ( y < x ) >→¬< (s≤s x→¬< x ¬a ¬b c = ⊥-elim (¬x<0 c) o<→¬c> : {n : Level} → { x y : HOD {n} } → (od→ord x ) o< ( od→ord y) → ¬ (y c< x ) o<→¬c> {n} {x} {y} olt clt = o<> olt (c<→o< clt ) where o≡→¬c< : {n : Level} → { x y : HOD {n} } → (od→ord x ) ≡ ( od→ord y) → ¬ x c< y o≡→¬c< {n} {x} {y} oeq lt = o<¬≡ (orefl oeq ) (c<→o< lt) ∅0 : {n : Level} → record { def = λ x → Lift n ⊥ ; otrans = λ () } == od∅ {n} eq→ ∅0 {w} (lift ()) eq← ∅0 {w} (case1 ()) eq← ∅0 {w} (case2 ()) ∅< : {n : Level} → { x y : HOD {n} } → def x (od→ord y ) → ¬ ( x == od∅ {n} ) ∅< {n} {x} {y} d eq with eq→ (eq-trans eq (eq-sym ∅0) ) d ∅< {n} {x} {y} d eq | lift () -- ∅6 : {n : Level} → { x : HOD {suc n} } → ¬ ( x ∋ x ) -- no Russel paradox -- ∅6 {n} {x} x∋x = c<> {n} {x} {x} x∋x x∋x def-iso : {n : Level} {A B : HOD {n}} {x y : Ordinal {n}} → x ≡ y → (def A y → def B y) → def A x → def B x def-iso refl t = t is-o∅ : {n : Level} → ( x : Ordinal {suc n} ) → Dec ( x ≡ o∅ {suc n} ) is-o∅ {n} record { lv = Zero ; ord = (Φ .0) } = yes refl is-o∅ {n} record { lv = Zero ; ord = (OSuc .0 ord₁) } = no ( λ () ) is-o∅ {n} record { lv = (Suc lv₁) ; ord = ord } = no (λ()) open _∧_ ord⇔ : {n : Level} → ( x y : HOD {suc n} ) → ( {z : Ordinal {suc n} } → def x z ⇔ def y z ) → od→ord x ≡ od→ord y ord⇔ = {!!} -- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) -- postulate f-extensionality : { n : Level} → Relation.Binary.PropositionalEquality.Extensionality (suc n) (suc (suc n)) csuc : {n : Level} → HOD {suc n} → HOD {suc n} csuc x = ord→od ( osuc ( od→ord x )) -- Power Set of X ( or constructible by λ y → def X (od→ord y ) ZFSubset : {n : Level} → (A x : HOD {suc n} ) → HOD {suc n} ZFSubset A x = record { def = λ y → def A y ∧ def x y ; otrans = {!!} } Def : {n : Level} → (A : HOD {suc n}) → HOD {suc n} Def {n} A = ord→od ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )) ) ) -- Constructible Set on α L : {n : Level} → (α : Ordinal {suc n}) → HOD {suc n} L {n} record { lv = Zero ; ord = (Φ .0) } = od∅ L {n} record { lv = lx ; ord = (OSuc lv ox) } = Def ( L {n} ( record { lv = lx ; ord = ox } ) ) L {n} record { lv = (Suc lx) ; ord = (Φ (Suc lx)) } = -- Union ( L α ) record { def = λ y → osuc y o< (od→ord (L {n} (record { lv = lx ; ord = Φ lx }) )) ; otrans = {!!} } omega : { n : Level } → Ordinal {n} omega = record { lv = Suc Zero ; ord = Φ 1 } HOD→ZF : {n : Level} → ZF {suc (suc n)} {suc n} HOD→ZF {n} = record { ZFSet = HOD {suc n} ; _∋_ = _∋_ ; _≈_ = _==_ ; ∅ = od∅ ; _,_ = _,_ ; Union = Union ; Power = Power ; Select = Select ; Replace = Replace ; infinite = Ord omega ; isZF = isZF } where Replace : HOD {suc n} → (HOD {suc n} → HOD {suc n} ) → HOD {suc n} Replace X ψ = sup-od ψ Select : (X : HOD {suc n} ) → ((x : HOD {suc n} ) → Set (suc n) ) → HOD {suc n} Select X ψ = record { def = λ x → ((y : Ordinal {suc n} ) → X ∋ ord→od y → ψ (ord→od y)) ∧ (X ∋ ord→od x ) ; otrans = lemma } where lemma : {x : Ordinal} → ((y : Ordinal) → X ∋ ord→od y → ψ (ord→od y)) ∧ (X ∋ ord→od x) → {y : Ordinal} → y o< x → ((y₁ : Ordinal) → X ∋ ord→od y₁ → ψ (ord→od y₁)) ∧ (X ∋ ord→od y) lemma {x} select {y} yz : Union X ∋ z ) → HOD {suc n} union-u {X} {z} U>z = Ord ( osuc ( od→ord z ) ) union→ : (X z u : HOD) → (X ∋ u) ∧ (u ∋ z) → Union X ∋ z union→ X z u xx with trio< ( od→ord u ) ( osuc ( od→ord z )) union→ X z u xx | tri< a ¬b ¬c with osuc-< a (c<→o< (proj2 xx)) union→ X z u xx | tri< a ¬b ¬c | () union→ X z u xx | tri≈ ¬a b ¬c = def-subst {suc n} {_} {_} {X} {osuc (od→ord z)} (proj1 xx) refl b where union→ X z u xx | tri> ¬a ¬b c = otrans X (proj1 xx) c union← : (X z : HOD) (X∋z : Union X ∋ z) → (X ∋ union-u {X} {z} X∋z ) ∧ (union-u {X} {z} X∋z ∋ z ) union← X z X∋z = record { proj1 = lemma ; proj2 = <-osuc } where lemma : X ∋ union-u {X} {z} X∋z lemma = def-subst {suc n} {_} {_} {X} {od→ord (Ord (osuc ( od→ord z )))} X∋z refl ord-Ord ψiso : {ψ : HOD {suc n} → Set (suc n)} {x y : HOD {suc n}} → ψ x → x ≡ y → ψ y ψiso {ψ} t refl = t selection : {X : HOD } {ψ : (x : HOD ) → Set (suc n)} {y : HOD} → (((y₁ : HOD) → X ∋ y₁ → ψ y₁) ∧ (X ∋ y)) ⇔ (Select X ψ ∋ y) selection {X} {ψ} {y} = record { proj1 = λ s → record { proj1 = λ y1 y1