open import Level module constructible-set (n : Level) where open import zf open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open import Relation.Binary.PropositionalEquality data OrdinalD : (lv : Nat) → Set n where Φ : {lv : Nat} → OrdinalD lv OSuc : {lv : Nat} → OrdinalD lv → OrdinalD lv ℵ_ : (lv : Nat) → OrdinalD (Suc lv) record Ordinal : Set n where field lv : Nat ord : OrdinalD lv data _d<_ : {lx ly : Nat} → OrdinalD lx → OrdinalD ly → Set n where Φ< : {lx : Nat} → {x : OrdinalD lx} → Φ {lx} d< OSuc {lx} x s< : {lx : Nat} → {x y : OrdinalD lx} → x d< y → OSuc {lx} x d< OSuc {lx} y ℵΦ< : {lx : Nat} → {x : OrdinalD (Suc lx) } → Φ {Suc lx} d< (ℵ lx) ℵ< : {lx : Nat} → {x : OrdinalD (Suc lx) } → OSuc {Suc lx} x d< (ℵ lx) open Ordinal _o<_ : ( x y : Ordinal ) → Set n _o<_ x y = (lv x < lv y ) ∨ ( ord x d< ord y ) open import Data.Nat.Properties open import Data.Empty open import Relation.Nullary open import Relation.Binary open import Relation.Binary.Core o∅ : Ordinal o∅ = record { lv = Zero ; ord = Φ } ≡→¬d< : {lv : Nat} → {x : OrdinalD lv } → x d< x → ⊥ ≡→¬d< {lx} {OSuc y} (s< t) = ≡→¬d< t trio<> : {lx : Nat} {x : OrdinalD lx } { y : OrdinalD lx } → y d< x → x d< y → ⊥ trio<> {lx} {.(OSuc _)} {.(OSuc _)} (s< s) (s< t) = trio<> s t trio<≡ : {lx : Nat} {x : OrdinalD lx } { y : OrdinalD lx } → x ≡ y → x d< y → ⊥ trio<≡ refl = ≡→¬d< trio>≡ : {lx : Nat} {x : OrdinalD lx } { y : OrdinalD lx } → x ≡ y → y d< x → ⊥ trio>≡ refl = ≡→¬d< triO : {lx ly : Nat} → OrdinalD lx → OrdinalD ly → Tri (lx < ly) ( lx ≡ ly ) ( lx > ly ) triO {lx} {ly} x y = <-cmp lx ly triOrdd : {lx : Nat} → Trichotomous _≡_ ( _d<_ {lx} {lx} ) triOrdd {lv} Φ Φ = tri≈ ≡→¬d< refl ≡→¬d< triOrdd {Suc lv} (ℵ lv) (ℵ lv) = tri≈ ≡→¬d< refl ≡→¬d< triOrdd {lv} Φ (OSuc y) = tri< Φ< (λ ()) ( λ lt → trio<> lt Φ< ) triOrdd {.(Suc lv)} Φ (ℵ lv) = tri< (ℵΦ< {lv} {Φ} ) (λ ()) ( λ lt → trio<> lt ((ℵΦ< {lv} {Φ} )) ) triOrdd {Suc lv} (ℵ lv) Φ = tri> ( λ lt → trio<> lt (ℵΦ< {lv} {Φ} ) ) (λ ()) (ℵΦ< {lv} {Φ} ) triOrdd {Suc lv} (ℵ lv) (OSuc y) = tri> ( λ lt → trio<> lt (ℵ< {lv} {y} ) ) (λ ()) (ℵ< {lv} {y} ) triOrdd {lv} (OSuc x) Φ = tri> (λ lt → trio<> lt Φ<) (λ ()) Φ< triOrdd {.(Suc lv)} (OSuc x) (ℵ lv) = tri< ℵ< (λ ()) (λ lt → trio<> lt ℵ< ) triOrdd {lv} (OSuc x) (OSuc y) with triOrdd x y triOrdd {lv} (OSuc x) (OSuc y) | tri< a ¬b ¬c = tri< (s< a) (λ tx=ty → trio<≡ tx=ty (s< a) ) ( λ lt → trio<> lt (s< a) ) triOrdd {lv} (OSuc x) (OSuc x) | tri≈ ¬a refl ¬c = tri≈ ≡→¬d< refl ≡→¬d< triOrdd {lv} (OSuc x) (OSuc y) | tri> ¬a ¬b c = tri> ( λ lt → trio<> lt (s< c) ) (λ tx=ty → trio>≡ tx=ty (s< c) ) (s< c) d<→lv : {x y : Ordinal } → ord x d< ord y → lv x ≡ lv y d<→lv Φ< = refl d<→lv (s< lt) = refl d<→lv ℵΦ< = refl d<→lv ℵ< = refl orddtrans : {lx : Nat} {x y z : OrdinalD lx } → x d< y → y d< z → x d< z orddtrans {lx} {.Φ} {.(OSuc _)} {.(OSuc _)} Φ< (s< y ¬a ¬b c = x maxα : Ordinal → Ordinal → Ordinal maxα x y with <-cmp (lv x) (lv y) maxα x y | tri< a ¬b ¬c = x maxα x y | tri> ¬a ¬b c = y maxα x y | tri≈ ¬a refl ¬c = record { lv = lv x ; ord = maxαd (ord x) (ord y) } _o≤_ : Ordinal → Ordinal → Set n a o≤ b = (a ≡ b) ∨ ( a o< b ) trio< : Trichotomous _≡_ _o<_ trio< a b with <-cmp (lv a) (lv b) trio< a b | tri< a₁ ¬b ¬c = tri< (case1 a₁) (λ refl → ¬b (cong ( λ x → lv x ) refl ) ) {!!} trio< a b | tri> ¬a ¬b c = tri> {!!} (λ refl → ¬b (cong ( λ x → lv x ) refl ) ) (case1 c) trio< a b | tri≈ ¬a refl ¬c with triOrdd ( ord a ) ( ord b ) trio< record { lv = .(lv b) ; ord = x } b | tri≈ ¬a refl ¬c | tri< a ¬b ¬c₁ = tri< (case2 a) (λ refl → ¬b {!!} ) {!!} trio< record { lv = .(lv b) ; ord = x } b | tri≈ ¬a refl ¬c | tri≈ ¬a₁ refl ¬c₁ = tri≈ {!!} refl {!!} trio< record { lv = .(lv b) ; ord = x } b | tri≈ ¬a refl ¬c | tri> ¬a₁ ¬b c = tri> {!!} {!!} (case2 c) OrdTrans : Transitive _o≤_ OrdTrans (case1 refl) (case1 refl) = case1 refl OrdTrans (case1 refl) (case2 lt2) = case2 lt2 OrdTrans (case2 lt1) (case1 refl) = case2 lt1 OrdTrans (case2 (case1 x)) (case2 (case1 y)) = case2 (case1 ( <-trans x y ) ) OrdTrans (case2 (case1 x)) (case2 (case2 y)) with d<→lv y OrdTrans (case2 (case1 x)) (case2 (case2 y)) | refl = case2 (case1 x ) OrdTrans (case2 (case2 x)) (case2 (case1 y)) with d<→lv x OrdTrans (case2 (case2 x)) (case2 (case1 y)) | refl = case2 (case1 y) OrdTrans (case2 (case2 x)) (case2 (case2 y)) with d<→lv x | d<→lv y OrdTrans (case2 (case2 x)) (case2 (case2 y)) | refl | refl = case2 (case2 (orddtrans x y )) OrdPreorder : Preorder n n n OrdPreorder = record { Carrier = Ordinal ; _≈_ = _≡_ ; _∼_ = _o≤_ ; isPreorder = record { isEquivalence = record { refl = refl ; sym = sym ; trans = trans } ; reflexive = case1 ; trans = OrdTrans } } TransFinite : ( ψ : Ordinal → Set n ) → ( ∀ (lx : Nat ) → ψ ( record { lv = Suc lx ; ord = ℵ lx } )) → ( ∀ (lx : Nat ) → ψ ( record { lv = lx ; ord = Φ } ) ) → ( ∀ (lx : Nat ) → (x : OrdinalD lx ) → ψ ( record { lv = lx ; ord = x } ) → ψ ( record { lv = lx ; ord = OSuc x } ) ) → ∀ (x : Ordinal) → ψ x TransFinite ψ caseℵ caseΦ caseOSuc record { lv = lv ; ord = Φ } = caseΦ lv TransFinite ψ caseℵ caseΦ caseOSuc record { lv = lv ; ord = OSuc ord₁ } = caseOSuc lv ord₁ ( TransFinite ψ caseℵ caseΦ caseOSuc (record { lv = lv ; ord = ord₁ } )) TransFinite ψ caseℵ caseΦ caseOSuc record { lv = Suc lv₁ ; ord = ℵ lv₁ } = caseℵ lv₁ -- X' = { x ∈ X | ψ x } ∪ X , Mα = ( ∪ (β < α) Mβ ) ' record ConstructibleSet : Set (suc (suc n)) where field α : Ordinal constructible : Ordinal → Set (suc n) open ConstructibleSet _∋_ : (ConstructibleSet ) → (ConstructibleSet ) → Set (suc n) a ∋ x = ( α x o< α a ) ∧ constructible a ( α x ) c∅ : ConstructibleSet c∅ = record {α = o∅ ; constructible = λ x → Lift (suc n) ⊥ } record SupR {n m : Level} {S : Set n} ( _≤_ : S → S → Set m ) (ψ : S → S ) (X : S) : Set (n ⊔ m) where field sup : S smax : ∀ { x : S } → x ≤ X → ψ x ≤ sup suniq : {max : S} → ( ∀ { x : S } → x ≤ X → ψ x ≤ max ) → max ≤ sup open SupR _⊆_ : ( A B : ConstructibleSet ) → ∀{ x : ConstructibleSet } → Set (suc n) _⊆_ A B {x} = A ∋ x → B ∋ x suptraverse : (X : ConstructibleSet ) ( max : ConstructibleSet) ( ψ : ConstructibleSet → ConstructibleSet ) → ConstructibleSet suptraverse X max ψ = {!!} Sup : (ψ : ConstructibleSet → ConstructibleSet ) → (X : ConstructibleSet) → SupR (λ x a → (α a ≡ α x) ∨ (a ∋ x)) ψ X sup (Sup ψ X ) = suptraverse X c∅ ψ smax (Sup ψ X ) = {!!} -- TransFinite {!!} {!!} {!!} {!!} {!!} suniq (Sup ψ X ) = {!!} -- transitiveness : (a b c : ConstructibleSet ) → a ∋ b → b ∋ c → a ∋ c -- transitiveness a b c a∋b b∋c with constructible a c∋ constructible b | constructible b c∋ constructible c -- ... | t1 | t2 = {!!} open import Data.Unit open SupR ConstructibleSet→ZF : ZF {suc (suc n)} {suc (suc n)} ConstructibleSet→ZF = record { ZFSet = ConstructibleSet ; _∋_ = λ a b → Lift (suc (suc n)) ( a ∋ b ) ; _≈_ = _≡_ ; ∅ = c∅ ; _,_ = _,_ ; Union = Union ; Power = {!!} ; Select = Select ; Replace = Replace ; infinite = {!!} ; isZF = {!!} } where conv : (ConstructibleSet → Set (suc (suc n))) → ConstructibleSet → Set (suc n) conv ψ x with ψ x ... | t = Lift ( suc n ) ⊤ Select : (X : ConstructibleSet) → (ConstructibleSet → Set (suc (suc n))) → ConstructibleSet Select X ψ = record { α = α X ; constructible = λ x → (conv ψ) (record { α = x ; constructible = λ x → constructible X x } ) } Replace : (X : ConstructibleSet) → (ConstructibleSet → ConstructibleSet) → ConstructibleSet Replace X ψ = record { α = α (sup (Sup ψ X)) ; constructible = λ x → {!!} } _,_ : ConstructibleSet → ConstructibleSet → ConstructibleSet a , b = record { α = maxα (α a) (α b) ; constructible = λ x → {!!} } Union : ConstructibleSet → ConstructibleSet Union a = {!!}