open import Level open import Ordinals module filter {n : Level } (O : Ordinals {n}) where open import zf open import logic import OD open import Relation.Nullary open import Relation.Binary open import Data.Empty open import Relation.Binary open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) import BAlgbra open BAlgbra O open inOrdinal O open OD O open OD.OD open ODAxiom odAxiom import ODC open _∧_ open _∨_ open Bool -- Kunen p.76 and p.53, we use ⊆ record Filter ( L : OD ) : Set (suc n) where field filter : OD f⊆PL : filter ⊆ Power L filter1 : { p q : OD } → q ⊆ L → filter ∋ p → p ⊆ q → filter ∋ q filter2 : { p q : OD } → filter ∋ p → filter ∋ q → filter ∋ (p ∩ q) open Filter record prime-filter { L : OD } (P : Filter L) : Set (suc (suc n)) where field proper : ¬ (filter P ∋ od∅) prime : {p q : OD } → filter P ∋ (p ∪ q) → ( filter P ∋ p ) ∨ ( filter P ∋ q ) record ultra-filter { L : OD } (P : Filter L) : Set (suc (suc n)) where field proper : ¬ (filter P ∋ od∅) ultra : {p : OD } → p ⊆ L → ( filter P ∋ p ) ∨ ( filter P ∋ ( L \ p) ) open _⊆_ trans-⊆ : { A B C : OD} → A ⊆ B → B ⊆ C → A ⊆ C trans-⊆ A⊆B B⊆C = record { incl = λ x → incl B⊆C (incl A⊆B x) } power→⊆ : ( A t : OD) → Power A ∋ t → t ⊆ A power→⊆ A t PA∋t = record { incl = λ {x} t∋x → ODC.double-neg-eilm O (t1 t∋x) } where t1 : {x : OD } → t ∋ x → ¬ ¬ (A ∋ x) t1 = zf.IsZF.power→ isZF A t PA∋t ∈-filter : {L p : OD} → (P : Filter L ) → filter P ∋ p → p ⊆ L ∈-filter {L} {p} P lt = power→⊆ L p ( incl (f⊆PL P) lt ) ∪-lemma1 : {L p q : OD } → (p ∪ q) ⊆ L → p ⊆ L ∪-lemma1 {L} {p} {q} lt = record { incl = λ {x} p∋x → incl lt (case1 p∋x) } ∪-lemma2 : {L p q : OD } → (p ∪ q) ⊆ L → q ⊆ L ∪-lemma2 {L} {p} {q} lt = record { incl = λ {x} p∋x → incl lt (case2 p∋x) } q∩q⊆q : {p q : OD } → (q ∩ p) ⊆ q q∩q⊆q = record { incl = λ lt → proj1 lt } ----- -- -- ultra filter is prime -- filter-lemma1 : {L : OD} → (P : Filter L) → ∀ {p q : OD } → ultra-filter P → prime-filter P filter-lemma1 {L} P u = record { proper = ultra-filter.proper u ; prime = lemma3 } where lemma3 : {p q : OD} → filter P ∋ (p ∪ q) → ( filter P ∋ p ) ∨ ( filter P ∋ q ) lemma3 {p} {q} lt with ultra-filter.ultra u (∪-lemma1 (∈-filter P lt) ) ... | case1 p∈P = case1 p∈P ... | case2 ¬p∈P = case2 (filter1 P {q ∩ (L \ p)} (∪-lemma2 (∈-filter P lt)) lemma7 lemma8) where lemma5 : ((p ∪ q ) ∩ (L \ p)) == (q ∩ (L \ p)) lemma5 = record { eq→ = λ {x} lt → record { proj1 = lemma4 x lt ; proj2 = proj2 lt } ; eq← = λ {x} lt → record { proj1 = case2 (proj1 lt) ; proj2 = proj2 lt } } where lemma4 : (x : Ordinal ) → def ((p ∪ q) ∩ (L \ p)) x → def q x lemma4 x lt with proj1 lt lemma4 x lt | case1 px = ⊥-elim ( proj2 (proj2 lt) px ) lemma4 x lt | case2 qx = qx lemma6 : filter P ∋ ((p ∪ q ) ∩ (L \ p)) lemma6 = filter2 P lt ¬p∈P lemma7 : filter P ∋ (q ∩ (L \ p)) lemma7 = subst (λ k → filter P ∋ k ) (==→o≡ lemma5 ) lemma6 lemma8 : (q ∩ (L \ p)) ⊆ q lemma8 = q∩q⊆q ----- -- -- if Filter contains L, prime filter is ultra -- filter-lemma2 : {L : OD} → (P : Filter L) → prime-filter P → ultra-filter P filter-lemma2 {L} P prime = {!!} generated-filter : {L : OD} → Filter L → (p : OD ) → Filter ( record { def = λ x → def L x ∨ (x ≡ od→ord p) } ) generated-filter {L} P p = {!!} record Dense (P : OD ) : Set (suc n) where field dense : OD incl : dense ⊆ P dense-f : OD → OD dense-p : { p : OD} → P ∋ p → p ⊆ (dense-f p) -- H(ω,2) = Power ( Power ω ) = Def ( Def ω)) infinite = ZF.infinite OD→ZF module in-countable-ordinal {n : Level} where import ordinal -- open ordinal.C-Ordinal-with-choice Hω2 : Filter (Power (Power infinite)) Hω2 = {!!} record Ideal ( L : OD ) : Set (suc n) where field ideal : OD i⊆PL : ideal ⊆ Power L ideal1 : { p q : OD } → q ⊆ L → ideal ∋ p → q ⊆ p → ideal ∋ q ideal2 : { p q : OD } → ideal ∋ p → ideal ∋ q → ideal ∋ (p ∪ q) open Ideal proper-ideal : {L : OD} → (P : Ideal L ) → {p : OD} → Set n proper-ideal {L} P {p} = ideal P ∋ od∅ prime-ideal : {L : OD} → Ideal L → ∀ {p q : OD } → Set n prime-ideal {L} P {p} {q} = ideal P ∋ ( p ∩ q) → ( ideal P ∋ p ) ∨ ( ideal P ∋ q )