open import Level module HOD where open import zf open import ordinal open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open import Relation.Binary.PropositionalEquality open import Data.Nat.Properties open import Data.Empty open import Relation.Nullary open import Relation.Binary open import Relation.Binary.Core -- Ordinal Definable Set record HOD {n : Level} : Set (suc n) where field def : (x : Ordinal {n} ) → Set n otrans : {x : Ordinal {n} } → def x → { y : Ordinal {n} } → y o< x → def y open HOD open import Data.Unit open Ordinal record _==_ {n : Level} ( a b : HOD {n} ) : Set n where field eq→ : ∀ { x : Ordinal {n} } → def a x → def b x eq← : ∀ { x : Ordinal {n} } → def b x → def a x id : {n : Level} {A : Set n} → A → A id x = x eq-refl : {n : Level} { x : HOD {n} } → x == x eq-refl {n} {x} = record { eq→ = id ; eq← = id } open _==_ eq-sym : {n : Level} { x y : HOD {n} } → x == y → y == x eq-sym eq = record { eq→ = eq← eq ; eq← = eq→ eq } eq-trans : {n : Level} { x y z : HOD {n} } → x == y → y == z → x == z eq-trans x=y y=z = record { eq→ = λ t → eq→ y=z ( eq→ x=y t) ; eq← = λ t → eq← x=y ( eq← y=z t) } -- Ordinal in HOD ( and ZFSet ) Ord : { n : Level } → ( a : Ordinal {n} ) → HOD {n} Ord {n} a = record { def = λ y → y o< a ; otrans = lemma } where lemma : {x : Ordinal} → x o< a → {y : Ordinal} → y o< x → y o< a lemma {x} x→¬< : {x y : Nat } → (x < y ) → ¬ ( y < x ) >→¬< (s≤s x→¬< x ¬a ¬b c = ⊥-elim (¬x<0 c) o<→¬c> : {n : Level} → { x y : HOD {n} } → (od→ord x ) o< ( od→ord y) → ¬ (y c< x ) o<→¬c> {n} {x} {y} olt clt = o<> olt (c<→o< clt ) where o≡→¬c< : {n : Level} → { x y : HOD {n} } → (od→ord x ) ≡ ( od→ord y) → ¬ x c< y o≡→¬c< {n} {x} {y} oeq lt = o<¬≡ (orefl oeq ) (c<→o< lt) ∅0 : {n : Level} → record { def = λ x → Lift n ⊥ ; otrans = λ () } == od∅ {n} eq→ ∅0 {w} (lift ()) eq← ∅0 {w} (case1 ()) eq← ∅0 {w} (case2 ()) ∅< : {n : Level} → { x y : HOD {n} } → def x (od→ord y ) → ¬ ( x == od∅ {n} ) ∅< {n} {x} {y} d eq with eq→ (eq-trans eq (eq-sym ∅0) ) d ∅< {n} {x} {y} d eq | lift () -- ∅6 : {n : Level} → { x : HOD {suc n} } → ¬ ( x ∋ x ) -- no Russel paradox -- ∅6 {n} {x} x∋x = c<> {n} {x} {x} x∋x x∋x def-iso : {n : Level} {A B : HOD {n}} {x y : Ordinal {n}} → x ≡ y → (def A y → def B y) → def A x → def B x def-iso refl t = t is-o∅ : {n : Level} → ( x : Ordinal {suc n} ) → Dec ( x ≡ o∅ {suc n} ) is-o∅ {n} record { lv = Zero ; ord = (Φ .0) } = yes refl is-o∅ {n} record { lv = Zero ; ord = (OSuc .0 ord₁) } = no ( λ () ) is-o∅ {n} record { lv = (Suc lv₁) ; ord = ord } = no (λ()) open _∧_ -- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) -- postulate f-extensionality : { n : Level} → Relation.Binary.PropositionalEquality.Extensionality (suc n) (suc (suc n)) csuc : {n : Level} → HOD {suc n} → HOD {suc n} csuc x = ord→od ( osuc ( od→ord x )) -- Power Set of X ( or constructible by λ y → def X (od→ord y ) ZFSubset : {n : Level} → (A x : HOD {suc n} ) → HOD {suc n} ZFSubset A x = record { def = λ y → def A y ∧ def x y ; otrans = {!!} } Def : {n : Level} → (A : HOD {suc n}) → HOD {suc n} Def {n} A = ord→od ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )) ) ) -- Constructible Set on α L : {n : Level} → (α : Ordinal {suc n}) → HOD {suc n} L {n} record { lv = Zero ; ord = (Φ .0) } = od∅ L {n} record { lv = lx ; ord = (OSuc lv ox) } = Def ( L {n} ( record { lv = lx ; ord = ox } ) ) L {n} record { lv = (Suc lx) ; ord = (Φ (Suc lx)) } = -- Union ( L α ) record { def = λ y → osuc y o< (od→ord (L {n} (record { lv = lx ; ord = Φ lx }) )) ; otrans = {!!} } omega : { n : Level } → Ordinal {n} omega = record { lv = Suc Zero ; ord = Φ 1 } HOD→ZF : {n : Level} → ZF {suc (suc n)} {suc n} HOD→ZF {n} = record { ZFSet = HOD {suc n} ; _∋_ = _∋_ ; _≈_ = _==_ ; ∅ = od∅ ; _,_ = _,_ ; Union = Union ; Power = Power ; Select = Select ; Replace = Replace ; infinite = Ord omega ; isZF = isZF } where Replace : HOD {suc n} → (HOD {suc n} → HOD {suc n} ) → HOD {suc n} Replace X ψ = sup-od ψ Select : (X : HOD {suc n} ) → ((x : HOD {suc n} ) → X ∋ x → Set (suc n) ) → HOD {suc n} Select X ψ = record { def = λ x → (d : def X x) → f x d ; otrans = λ {x} g {y} d1 → {!!} } where f : (x : Ordinal {suc n}) → (d : def X x ) → Set (suc n) f x d = ψ (ord→od x) (subst (λ k → def X k ) (sym diso) d) ftrans' : {x : Ordinal} ( g : (x : Ordinal {suc n} ) (d : def X x ) → f x d ) → {y : Ordinal} → y o< x → (d : def X y) → f y d ftrans' {x} g {y} yz : Union X ∋ z ) → csuc z ∋ z union-lemma-u {X} {z} U>z = lemma <-osuc where lemma : {oz ooz : Ordinal {suc n}} → oz o< ooz → def (ord→od ooz) oz lemma {oz} {ooz} lt = def-subst {suc n} {ord→od ooz} {!!} refl refl union→ : (X z u : HOD) → (X ∋ u) ∧ (u ∋ z) → Union X ∋ z union→ X y u xx with trio< ( od→ord u ) ( osuc ( od→ord y )) union→ X y u xx | tri< a ¬b ¬c with osuc-< a (c<→o< (proj2 xx)) union→ X y u xx | tri< a ¬b ¬c | () union→ X y u xx | tri≈ ¬a b ¬c = lemma b (c<→o< (proj1 xx )) where lemma : {oX ou ooy : Ordinal {suc n}} → ou ≡ ooy → ou o< oX → ooy o< oX lemma refl lt = lt union→ X y u xx | tri> ¬a ¬b c = ordtrans {suc n} {osuc ( od→ord y )} {od→ord u} {od→ord X} c ( c<→o< (proj1 xx )) union← : (X z : HOD) (X∋z : Union X ∋ z) → (X ∋ csuc z) ∧ (csuc z ∋ z ) union← X z X∋z = record { proj1 = def-subst {suc n} {_} {_} {X} {od→ord (csuc z )} {!!} oiso (sym diso) ; proj2 = union-lemma-u X∋z } ψiso : {ψ : HOD {suc n} → Set (suc n)} {x y : HOD {suc n}} → ψ x → x ≡ y → ψ y ψiso {ψ} t refl = t selection : {X : HOD } {ψ : (x : HOD ) → x ∈ X → Set (suc n)} {y : HOD} → ((d : X ∋ y ) → ψ y d ) ⇔ (Select X ψ ∋ y) selection {ψ} {X} {y} = {!!} replacement : {ψ : HOD → HOD} (X x : HOD) → Replace X ψ ∋ ψ x replacement {ψ} X x = sup-c< ψ {x} ∅-iso : {x : HOD} → ¬ (x == od∅) → ¬ ((ord→od (od→ord x)) == od∅) ∅-iso {x} neq = subst (λ k → ¬ k) (=-iso {n} ) neq minimul : (x : HOD {suc n} ) → ¬ (x == od∅ )→ HOD {suc n} minimul x not = {!!} regularity : (x : HOD) (not : ¬ (x == od∅)) → (x ∋ minimul x not) ∧ (Select (minimul x not) (λ x₁ d → (minimul x not ∋ x₁) ∧ (x ∋ x₁)) == od∅) proj1 (regularity x not ) = {!!} proj2 (regularity x not ) = record { eq→ = reg ; eq← = {!!} } where reg : {y : Ordinal} → def (Select (minimul x not) (λ x₂ d → (minimul x not ∋ x₂) ∧ (x ∋ x₂))) y → def od∅ y reg {y} t = {!!} extensionality : {A B : HOD {suc n}} → ((z : HOD) → (A ∋ z) ⇔ (B ∋ z)) → A == B eq→ (extensionality {A} {B} eq ) {x} d = def-iso {suc n} {A} {B} (sym diso) (proj1 (eq (ord→od x))) d eq← (extensionality {A} {B} eq ) {x} d = def-iso {suc n} {B} {A} (sym diso) (proj2 (eq (ord→od x))) d xx-union : {x : HOD {suc n}} → (x , x) ≡ record { def = λ z → z o< osuc (od→ord x) } xx-union {x} = cong ( λ k → Ord k ) (omxx (od→ord x)) xxx-union : {x : HOD {suc n}} → (x , (x , x)) ≡ record { def = λ z → z o< osuc (osuc (od→ord x))} xxx-union {x} = cong ( λ k → Ord k ) lemma where lemma1 : {x : HOD {suc n}} → od→ord x o< od→ord (x , x) lemma1 {x} = c<→o< ( proj1 (pair x x ) ) lemma2 : {x : HOD {suc n}} → od→ord (x , x) ≡ osuc (od→ord x) lemma2 = trans ( cong ( λ k → od→ord k ) xx-union ) {!!} lemma : {x : HOD {suc n}} → omax (od→ord x) (od→ord (x , x)) ≡ osuc (osuc (od→ord x)) lemma {x} = trans ( sym ( omax< (od→ord x) (od→ord (x , x)) lemma1 ) ) ( cong ( λ k → osuc k ) lemma2 ) uxxx-union : {x : HOD {suc n}} → Union (x , (x , x)) ≡ record { def = λ z → osuc z o< osuc (osuc (od→ord x)) } uxxx-union {x} = cong ( λ k → record { def = λ z → osuc z o< k ; otrans = {!!} } ) lemma where lemma : od→ord (x , (x , x)) ≡ osuc (osuc (od→ord x)) lemma = trans ( cong ( λ k → od→ord k ) xxx-union ) {!!} uxxx-2 : {x : HOD {suc n}} → record { def = λ z → osuc z o< osuc (osuc (od→ord x)) } == record { def = λ z → z o< osuc (od→ord x) } eq→ ( uxxx-2 {x} ) {m} lt = proj1 (osuc2 m (od→ord x)) lt eq← ( uxxx-2 {x} ) {m} lt = proj2 (osuc2 m (od→ord x)) lt uxxx-ord : {x : HOD {suc n}} → od→ord (Union (x , (x , x))) ≡ osuc (od→ord x) uxxx-ord {x} = trans (cong (λ k → od→ord k ) uxxx-union) {!!} infinite : HOD {suc n} infinite = Ord omega infinity∅ : Ord omega ∋ od∅ {suc n} infinity∅ = {!!} infinity : (x : HOD) → infinite ∋ x → infinite ∋ Union (x , (x , x )) infinity x lt = {!!} where lemma : (ox : Ordinal {suc n} ) → ox o< omega → osuc ox o< omega lemma record { lv = Zero ; ord = (Φ .0) } (case1 (s≤s x)) = case1 (s≤s z≤n) lemma record { lv = Zero ; ord = (OSuc .0 ord₁) } (case1 (s≤s x)) = case1 (s≤s z≤n) lemma record { lv = (Suc lv₁) ; ord = (Φ .(Suc lv₁)) } (case1 (s≤s ())) lemma record { lv = (Suc lv₁) ; ord = (OSuc .(Suc lv₁) ord₁) } (case1 (s≤s ())) lemma record { lv = 1 ; ord = (Φ 1) } (case2 c2) with d<→lv c2 lemma record { lv = (Suc Zero) ; ord = (Φ .1) } (case2 ()) | refl -- ∀ X [ ∅ ∉ X → (∃ f : X → ⋃ X ) → ∀ A ∈ X ( f ( A ) ∈ A ) ] -- this form is no good since X is a transitive set -- ∀ z [ ∀ x ( x ∈ z → ¬ ( x ≈ ∅ ) ) ∧ ∀ x ∀ y ( x , y ∈ z ∧ ¬ ( x ≈ y ) → x ∩ y ≈ ∅ ) → ∃ u ∀ x ( x ∈ z → ∃ t ( u ∩ x) ≈ { t }) ] record Choice (z : HOD {suc n}) : Set (suc (suc n)) where field u : {x : HOD {suc n}} ( x∈z : x ∈ z ) → HOD {suc n} t : {x : HOD {suc n}} ( x∈z : x ∈ z ) → (x : HOD {suc n} ) → HOD {suc n} choice : { x : HOD {suc n} } → ( x∈z : x ∈ z ) → ( u x∈z ∩ x) == { t x∈z x } -- choice : {x : HOD {suc n}} ( x ∈ z → ¬ ( x ≈ ∅ ) ) → -- axiom-of-choice : { X : HOD } → ( ¬x∅ : ¬ ( X == od∅ ) ) → { A : HOD } → (A∈X : A ∈ X ) → choice ¬x∅ A∈X ∈ A -- axiom-of-choice {X} nx {A} lt = ¬∅=→∅∈ {!!}