open import Level open import Ordinals module cardinal {n : Level } (O : Ordinals {n}) where open import zf open import logic import OD open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open import Relation.Binary.PropositionalEquality open import Data.Nat.Properties open import Data.Empty open import Relation.Nullary open import Relation.Binary open import Relation.Binary.Core open inOrdinal O open OD O open OD.OD open _∧_ open _∨_ open Bool func : (f : Ordinal → Ordinal ) → ( dom : OD ) → OD func f dom = Replace dom ( λ x → x , (ord→od (f (od→ord x) ))) record _⊗_ (A B : Ordinal) : Set n where field π1 : Ordinal π2 : Ordinal A∋π1 : def (ord→od A) π1 B∋π2 : def (ord→od B) π2 Func : ( A B : OD ) → OD Func A B = record { def = λ x → (od→ord A) ⊗ (od→ord B) } π1 : { A B x : OD } → Func A B ∋ x → OD π1 {A} {B} {x} p = ord→od (_⊗_.π1 p) π2 : { A B x : OD } → Func A B ∋ x → OD π2 {A} {B} {x} p = ord→od (_⊗_.π2 p) Func→func : { dom cod : OD } → (f : OD ) → Func dom cod ∋ f → (Ordinal → Ordinal ) Func→func {dom} {cod} f lt x = sup-o ( λ y → lemma y ) where lemma : Ordinal → Ordinal lemma y with p∨¬p ( _⊗_.π1 lt ≡ x ) lemma y | case1 refl = _⊗_.π2 lt lemma y | case2 not = o∅ -- contra position of sup-o< -- record Sup ( ψ : Ordinal → Ordinal ) : Set n where field sup-x : Ordinal sup-lb : {z : Ordinal } → z o< sup-o ψ → z o< osuc (ψ sup-x ) sup-o> : ( ψ : Ordinal → Ordinal ) → Sup ψ sup-o> ψ = record { sup-x = od→ord ( minimul (Ord (osuc (sup-o ψ))) lemma ) ; sup-lb = λ {z} z ¬a ¬b c = ⊥-elim (¬x<0 c) lemma : ¬ (Ord (osuc (sup-o ψ)) == od∅) lemma record { eq→ = eq→ ; eq← = eq← } = ¬x<0 {o∅} ( eq→ lemma0 ) lemma1 : {z : Ordinal} → z o< sup-o ψ → z o< osuc (ψ (od→ord (minimul (Ord (osuc (sup-o ψ))) lemma))) lemma1 {z} lt with trio< z (ψ (od→ord (minimul (Ord (osuc (sup-o ψ))) lemma))) lemma1 {z} lt | tri< a ¬b ¬c = ordtrans a <-osuc lemma1 {z} lt | tri≈ ¬a refl ¬c = <-osuc lemma1 {z} lt | tri> ¬a ¬b c = ⊥-elim (o<> c lemma2 ) where lemma2 : z o< ψ (od→ord (minimul (Ord (osuc (sup-o ψ))) lemma)) lemma2 = ordtrans sup-o< ( o<-subst (x∋minimul (Ord (osuc (sup-o ψ))) lemma ) ? ?) ------------ -- -- Onto map -- def X x -> xmap -- X ---------------------------> Y -- ymap <- def Y y -- record Onto (X Y : OD ) : Set n where field xmap : Ordinal ymap : Ordinal xfunc : def (Func X Y) xmap yfunc : def (Func Y X) ymap onto-iso : {y : Ordinal } → (lty : def Y y ) → Func→func (ord→od xmap) xfunc ( Func→func (ord→od ymap) yfunc y ) ≡ y record Cardinal (X : OD ) : Set n where field cardinal : Ordinal conto : Onto (Ord cardinal) X cmax : ( y : Ordinal ) → cardinal o< y → ¬ Onto (Ord y) X cardinal : (X : OD ) → Cardinal X cardinal X = record { cardinal = sup-o ( λ x → proj1 ( cardinal-p x) ) ; conto = onto ; cmax = cmax } where cardinal-p : (x : Ordinal ) → ( Ordinal ∧ Dec (Onto (Ord x) X) ) cardinal-p x with p∨¬p ( Onto (Ord x) X ) cardinal-p x | case1 True = record { proj1 = x ; proj2 = yes True } cardinal-p x | case2 False = record { proj1 = o∅ ; proj2 = no False } onto : Onto (Ord (sup-o (λ x → proj1 (cardinal-p x)))) X onto = {!!} cmax : (y : Ordinal) → sup-o (λ x → proj1 (cardinal-p x)) o< y → ¬ Onto (Ord y) X cmax y lt ontoy = o<> lt (o<-subst {_} {_} {y} {sup-o (λ x → proj1 (cardinal-p x))} (sup-o< {λ x → proj1 ( cardinal-p x)}{y} ) lemma refl ) where lemma : proj1 (cardinal-p y) ≡ y lemma with p∨¬p ( Onto (Ord y) X ) lemma | case1 x = refl lemma | case2 not = ⊥-elim ( not ontoy ) ----- -- All cardinal is ℵ0, since we are working on Countable Ordinal, -- Power ω is larger than ℵ0, so it has no cardinal.