module set-of-agda where open import Level infix 50 _∧_ record _∧_ {n m : Level} (A : Set n) ( B : Set m ) : Set (n ⊔ m) where constructor _×_ field proj1 : A proj2 : B open _∧_ infix 50 _∨_ data _∨_ {n m : Level} (A : Set n) ( B : Set m ) : Set (n ⊔ m) where case1 : A → A ∨ B case2 : B → A ∨ B infix 60 _∋_ _∈_ data _∋_ {n : Level} ( A : Set n ) : (a : A ) → Set n where elem : (a : A) → A ∋ a _∈_ : {n : Level} { A : Set n } → (a : A ) → Set n → Set n _∈_ {_} {A} a _ = A ∋ a infix 40 _⇔_ _⇔_ : {n : Level} (A B : Set n) → Set n A ⇔ B = ( ∀ {x : A } → x ∈ B ) ∧ ( ∀ {x : B } → x ∈ A ) -- Axiom of extentionality -- ∀ x ∀ y [ ∀ z ( z ∈ x ⇔ z ∈ y ) ⇒ ∀ w ( x ∈ w ⇔ y ∈ w ) ] set-extentionality : {n : Level } {x y : Set n } → { z : x } → ( z ∈ x ⇔ z ∈ y ) → ∀ (w : Set (suc n)) → ( x ∈ w ⇔ y ∈ w ) proj1 (set-extentionality {n} {x} {y} {z} (z∈x→z∈y × z∈x←z∈y) w) {elem .x} = elem ( elem x ) proj2 (set-extentionality {n} {x} {y} {z} (z∈x→z∈y × z∈x←z∈y) w) {elem .y} = elem ( elem y ) -- Axiom of regularity -- ∀ x ( x ≠ ∅ → ∃ y ∈ x ( y ∩ x = ∅ ) ) open import Relation.Nullary open import Data.Empty data ∅ : Set where infix 50 _∩_ record _∩_ {n m : Level} (A : Set n) ( B : Set m) : Set (n ⊔ m) where field inL : {x : A } → x ∈ A inR : {x : B } → x ∈ B open _∩_ -- lemma : {n m : Level} (A : Set n) ( B : Set m) → (a : A ) → a ∈ (A ∩ B) -- lemma A B a A∩B = inL A∩B -- set-regularity : {n : Level } → ( x : Set n) → ( ¬ ( x ⇔ ∅ ) ) → { y : x } → ( y ∩ x ⇔ ∅ ) -- set-regularity = {!!}