open import Level module HOD where open import zf open import ordinal open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open import Relation.Binary.PropositionalEquality open import Data.Nat.Properties open import Data.Empty open import Relation.Nullary open import Relation.Binary open import Relation.Binary.Core -- Ordinal Definable Set record OD {n : Level} : Set (suc n) where field def : (x : Ordinal {n} ) → Set n open OD open import Data.Unit open Ordinal open _∧_ record _==_ {n : Level} ( a b : OD {n} ) : Set n where field eq→ : ∀ { x : Ordinal {n} } → def a x → def b x eq← : ∀ { x : Ordinal {n} } → def b x → def a x id : {n : Level} {A : Set n} → A → A id x = x eq-refl : {n : Level} { x : OD {n} } → x == x eq-refl {n} {x} = record { eq→ = id ; eq← = id } open _==_ eq-sym : {n : Level} { x y : OD {n} } → x == y → y == x eq-sym eq = record { eq→ = eq← eq ; eq← = eq→ eq } eq-trans : {n : Level} { x y z : OD {n} } → x == y → y == z → x == z eq-trans x=y y=z = record { eq→ = λ t → eq→ y=z ( eq→ x=y t) ; eq← = λ t → eq← x=y ( eq← y=z t) } ⇔→== : {n : Level} { x y : OD {suc n} } → ( {z : Ordinal {suc n}} → def x z ⇔ def y z) → x == y eq→ ( ⇔→== {n} {x} {y} eq ) {z} m = proj1 eq m eq← ( ⇔→== {n} {x} {y} eq ) {z} m = proj2 eq m -- Ordinal in OD ( and ZFSet ) Ord : { n : Level } → ( a : Ordinal {n} ) → OD {n} Ord {n} a = record { def = λ y → y o< a } od∅ : {n : Level} → OD {n} od∅ {n} = Ord o∅ postulate -- OD can be iso to a subset of Ordinal ( by means of Godel Set ) od→ord : {n : Level} → OD {n} → Ordinal {n} ord→od : {n : Level} → Ordinal {n} → OD {n} c<→o< : {n : Level} {x y : OD {n} } → def y ( od→ord x ) → od→ord x o< od→ord y oiso : {n : Level} {x : OD {n}} → ord→od ( od→ord x ) ≡ x diso : {n : Level} {x : Ordinal {n}} → od→ord ( ord→od x ) ≡ x -- we should prove this in agda, but simply put here ==→o≡ : {n : Level} → { x y : OD {suc n} } → (x == y) → x ≡ y -- next assumption causes ∀ x ∋ ∅ . It menas only an ordinal becomes a set -- o<→c< : {n : Level} {x y : Ordinal {n} } → x o< y → def (ord→od y) x -- supermum as Replacement Axiom sup-o : {n : Level } → ( Ordinal {n} → Ordinal {n}) → Ordinal {n} sup-o< : {n : Level } → { ψ : Ordinal {n} → Ordinal {n}} → ∀ {x : Ordinal {n}} → ψ x o< sup-o ψ -- contra-position of mimimulity of supermum required in Power Set Axiom sup-x : {n : Level } → ( Ordinal {n} → Ordinal {n}) → Ordinal {n} sup-lb : {n : Level } → { ψ : Ordinal {n} → Ordinal {n}} → {z : Ordinal {n}} → z o< sup-o ψ → z o< osuc (ψ (sup-x ψ)) -- sup-lb : {n : Level } → ( ψ : Ordinal {n} → Ordinal {n}) → ( ∀ {x : Ordinal {n}} → ψx o< z ) → z o< osuc ( sup-o ψ ) minimul : {n : Level } → (x : OD {suc n} ) → ¬ (x == od∅ )→ OD {suc n} -- this should be ¬ (x == od∅ )→ ∃ ox → x ∋ Ord ox ( minimum of x ) x∋minimul : {n : Level } → (x : OD {suc n} ) → ( ne : ¬ (x == od∅ ) ) → def x ( od→ord ( minimul x ne ) ) minimul-1 : {n : Level } → (x : OD {suc n} ) → ( ne : ¬ (x == od∅ ) ) → (y : OD {suc n}) → ¬ ( def (minimul x ne) (od→ord y)) ∧ (def x (od→ord y) ) _∋_ : { n : Level } → ( a x : OD {n} ) → Set n _∋_ {n} a x = def a ( od→ord x ) _c<_ : { n : Level } → ( x a : OD {n} ) → Set n x c< a = a ∋ x _c≤_ : {n : Level} → OD {n} → OD {n} → Set (suc n) a c≤ b = (a ≡ b) ∨ ( b ∋ a ) cseq : {n : Level} → OD {n} → OD {n} cseq x = record { def = λ y → def x (osuc y) } where def-subst : {n : Level } {Z : OD {n}} {X : Ordinal {n} }{z : OD {n}} {x : Ordinal {n} }→ def Z X → Z ≡ z → X ≡ x → def z x def-subst df refl refl = df sup-od : {n : Level } → ( OD {n} → OD {n}) → OD {n} sup-od ψ = Ord ( sup-o ( λ x → od→ord (ψ (ord→od x ))) ) sup-c< : {n : Level } → ( ψ : OD {n} → OD {n}) → ∀ {x : OD {n}} → def ( sup-od ψ ) (od→ord ( ψ x )) sup-c< {n} ψ {x} = def-subst {n} {_} {_} {Ord ( sup-o ( λ x → od→ord (ψ (ord→od x ))) )} {od→ord ( ψ x )} lemma refl (cong ( λ k → od→ord (ψ k) ) oiso) where lemma : od→ord (ψ (ord→od (od→ord x))) o< sup-o (λ x → od→ord (ψ (ord→od x))) lemma = subst₂ (λ j k → j o< k ) refl diso (o<-subst sup-o< refl (sym diso) ) otrans : {n : Level} {a x : Ordinal {n} } → def (Ord a) x → { y : Ordinal {n} } → y o< x → def (Ord a) y otrans {n} {a} {x} x→¬< : {x y : Nat } → (x < y ) → ¬ ( y < x ) >→¬< (s≤s x→¬< x : {n : Level} → { x y : OD {n} } → (od→ord x ) o< ( od→ord y) → ¬ (y c< x ) o<→¬c> {n} {x} {y} olt clt = o<> olt (c<→o< clt ) where o≡→¬c< : {n : Level} → { x y : OD {n} } → (od→ord x ) ≡ ( od→ord y) → ¬ x c< y o≡→¬c< {n} {x} {y} oeq lt = o<¬≡ (orefl oeq ) (c<→o< lt) ∅0 : {n : Level} → record { def = λ x → Lift n ⊥ } == od∅ {n} eq→ ∅0 {w} (lift ()) eq← ∅0 {w} (case1 ()) eq← ∅0 {w} (case2 ()) ∅< : {n : Level} → { x y : OD {n} } → def x (od→ord y ) → ¬ ( x == od∅ {n} ) ∅< {n} {x} {y} d eq with eq→ (eq-trans eq (eq-sym ∅0) ) d ∅< {n} {x} {y} d eq | lift () ∅6 : {n : Level} → { x : OD {suc n} } → ¬ ( x ∋ x ) -- no Russel paradox ∅6 {n} {x} x∋x = o<¬≡ refl ( c<→o< {suc n} {x} {x} x∋x ) def-iso : {n : Level} {A B : OD {n}} {x y : Ordinal {n}} → x ≡ y → (def A y → def B y) → def A x → def B x def-iso refl t = t is-o∅ : {n : Level} → ( x : Ordinal {suc n} ) → Dec ( x ≡ o∅ {suc n} ) is-o∅ {n} record { lv = Zero ; ord = (Φ .0) } = yes refl is-o∅ {n} record { lv = Zero ; ord = (OSuc .0 ord₁) } = no ( λ () ) is-o∅ {n} record { lv = (Suc lv₁) ; ord = ord } = no (λ()) -- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) -- postulate f-extensionality : { n : Level} → Relation.Binary.PropositionalEquality.Extensionality (suc n) (suc (suc n)) in-codomain : {n : Level} → (X : OD {suc n} ) → ( ψ : OD {suc n} → OD {suc n} ) → OD {suc n} in-codomain {n} X ψ = record { def = λ x → ¬ ( (y : Ordinal {suc n}) → ¬ ( def X y ∧ ( x ≡ od→ord (ψ (ord→od y ))))) } -- Power Set of X ( or constructible by λ y → def X (od→ord y ) ZFSubset : {n : Level} → (A x : OD {suc n} ) → OD {suc n} ZFSubset A x = record { def = λ y → def A y ∧ def x y } where Def : {n : Level} → (A : OD {suc n}) → OD {suc n} Def {n} A = Ord ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )) ) ) OrdSubset : {n : Level} → (A x : Ordinal {suc n} ) → ZFSubset (Ord A) (Ord x) ≡ Ord ( minα A x ) OrdSubset {n} A x = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where lemma1 : {y : Ordinal} → def (ZFSubset (Ord A) (Ord x)) y → def (Ord (minα A x)) y lemma1 {y} s with trio< A x lemma1 {y} s | tri< a ¬b ¬c = proj1 s lemma1 {y} s | tri≈ ¬a refl ¬c = proj1 s lemma1 {y} s | tri> ¬a ¬b c = proj2 s lemma2 : {y : Ordinal} → def (Ord (minα A x)) y → def (ZFSubset (Ord A) (Ord x)) y lemma2 {y} lt with trio< A x lemma2 {y} lt | tri< a ¬b ¬c = record { proj1 = lt ; proj2 = ordtrans lt a } lemma2 {y} lt | tri≈ ¬a refl ¬c = record { proj1 = lt ; proj2 = lt } lemma2 {y} lt | tri> ¬a ¬b c = record { proj1 = ordtrans lt c ; proj2 = lt } -- Constructible Set on α -- Def X = record { def = λ y → ∀ (x : OD ) → y < X ∧ y < od→ord x } -- L (Φ 0) = Φ -- L (OSuc lv n) = { Def ( L n ) } -- L (Φ (Suc n)) = Union (L α) (α < Φ (Suc n) ) L : {n : Level} → (α : Ordinal {suc n}) → OD {suc n} L {n} record { lv = Zero ; ord = (Φ .0) } = od∅ L {n} record { lv = lx ; ord = (OSuc lv ox) } = Def ( L {n} ( record { lv = lx ; ord = ox } ) ) L {n} record { lv = (Suc lx) ; ord = (Φ (Suc lx)) } = -- Union ( L α ) cseq ( Ord (od→ord (L {n} (record { lv = lx ; ord = Φ lx })))) -- L0 : {n : Level} → (α : Ordinal {suc n}) → α o< β → L (osuc α) ∋ L α -- L1 : {n : Level} → (α β : Ordinal {suc n}) → α o< β → ∀ (x : OD {suc n}) → L α ∋ x → L β ∋ x omega : { n : Level } → Ordinal {n} omega = record { lv = Suc Zero ; ord = Φ 1 } OD→ZF : {n : Level} → ZF {suc (suc n)} {suc n} OD→ZF {n} = record { ZFSet = OD {suc n} ; _∋_ = _∋_ ; _≈_ = _==_ ; ∅ = od∅ ; _,_ = _,_ ; Union = Union ; Power = Power ; Select = Select ; Replace = Replace ; infinite = Ord omega ; isZF = isZF } where ZFSet = OD {suc n} Select : (X : OD {suc n} ) → ((x : OD {suc n} ) → Set (suc n) ) → OD {suc n} Select X ψ = record { def = λ x → ( def X x ∧ ψ ( ord→od x )) } Replace : OD {suc n} → (OD {suc n} → OD {suc n} ) → OD {suc n} Replace X ψ = record { def = λ x → (x o< sup-o ( λ x → od→ord (ψ (ord→od x )))) ∧ def (in-codomain X ψ) x } _,_ : OD {suc n} → OD {suc n} → OD {suc n} x , y = Ord (omax (od→ord x) (od→ord y)) _∩_ : ( A B : ZFSet ) → ZFSet A ∩ B = record { def = λ x → def A x ∧ def B x } Union : OD {suc n} → OD {suc n} Union U = record { def = λ y → def U (osuc y) } _∈_ : ( A B : ZFSet ) → Set (suc n) A ∈ B = B ∋ A _⊆_ : ( A B : ZFSet ) → ∀{ x : ZFSet } → Set (suc n) _⊆_ A B {x} = A ∋ x → B ∋ x Power : OD {suc n} → OD {suc n} Power A = Replace (Def (Ord (od→ord A))) ( λ x → A ∩ x ) {_} : ZFSet → ZFSet { x } = ( x , x ) infixr 200 _∈_ -- infixr 230 _∩_ _∪_ infixr 220 _⊆_ isZF : IsZF (OD {suc n}) _∋_ _==_ od∅ _,_ Union Power Select Replace (Ord omega) isZF = record { isEquivalence = record { refl = eq-refl ; sym = eq-sym; trans = eq-trans } ; pair = pair ; union-u = λ X z UX∋z → union-u {X} {z} UX∋z ; union→ = union→ ; union← = union← ; empty = empty ; power→ = power→ ; power← = power← ; extensionality = extensionality ; minimul = minimul ; regularity = regularity ; infinity∅ = infinity∅ ; infinity = λ _ → infinity ; selection = λ {X} {ψ} {y} → selection {X} {ψ} {y} ; replacement← = replacement← ; replacement→ = replacement→ } where pair : (A B : OD {suc n} ) → ((A , B) ∋ A) ∧ ((A , B) ∋ B) proj1 (pair A B ) = omax-x {n} (od→ord A) (od→ord B) proj2 (pair A B ) = omax-y {n} (od→ord A) (od→ord B) empty : (x : OD {suc n} ) → ¬ (od∅ ∋ x) empty x (case1 ()) empty x (case2 ()) ord-⊆ : ( t x : OD {suc n} ) → _⊆_ t (Ord (od→ord t )) {x} ord-⊆ t x lt = c<→o< lt union-d : (X : OD {suc n}) → OD {suc n} union-d X = record { def = λ y → def X (osuc y) } union-u : {X z : OD {suc n}} → (U>z : Union X ∋ z ) → OD {suc n} union-u {X} {z} U>z = Ord ( osuc ( od→ord z ) ) union→ : (X z u : OD) → (X ∋ u) ∧ (u ∋ z) → Union X ∋ z union→ X z u xx with trio< ( od→ord u ) ( osuc ( od→ord z )) union→ X z u xx | tri< a ¬b ¬c with osuc-< a (c<→o< (proj2 xx)) union→ X z u xx | tri< a ¬b ¬c | () union→ X z u xx | tri≈ ¬a b ¬c = def-subst {suc n} {_} {_} {X} {osuc (od→ord z)} (proj1 xx) refl b union→ X z u xx | tri> ¬a ¬b c = def-subst lemma1 (sym lemma0) diso where lemma0 : X ≡ Ord (od→ord X) lemma0 = sym {!!} lemma : osuc (od→ord z) o< od→ord X lemma = ordtrans c ( c<→o< ( proj1 xx ) ) lemma1 : Ord ( od→ord X) ∋ ord→od (osuc (od→ord z) ) lemma1 = o<-subst lemma (sym diso) refl union← : (X z : OD) (X∋z : Union X ∋ z) → (X ∋ union-u {X} {z} X∋z ) ∧ (union-u {X} {z} X∋z ∋ z ) union← X z UX∋z = record { proj1 = lemma ; proj2 = <-osuc } where lemma : X ∋ union-u {X} {z} UX∋z lemma = def-subst {suc n} {_} {_} {X} {od→ord (Ord (osuc ( od→ord z )))} UX∋z refl {!!} ψiso : {ψ : OD {suc n} → Set (suc n)} {x y : OD {suc n}} → ψ x → x ≡ y → ψ y ψiso {ψ} t refl = t selection : {ψ : OD → Set (suc n)} {X y : OD} → ((X ∋ y) ∧ ψ y) ⇔ (Select X ψ ∋ y) selection {ψ} {X} {y} = record { proj1 = λ cond → record { proj1 = proj1 cond ; proj2 = ψiso {ψ} (proj2 cond) (sym oiso) } ; proj2 = λ select → record { proj1 = proj1 select ; proj2 = ψiso {ψ} (proj2 select) oiso } } replacement← : {ψ : OD → OD} (X x : OD) → X ∋ x → Replace X ψ ∋ ψ x replacement← {ψ} X x lt = record { proj1 = sup-c< ψ {x} ; proj2 = lemma } where lemma : def (in-codomain X ψ) (od→ord (ψ x)) lemma not = ⊥-elim ( not ( od→ord x ) (record { proj1 = lt ; proj2 = cong (λ k → od→ord (ψ k)) (sym oiso)} )) replacement→ : {ψ : OD → OD} (X x : OD) → (lt : Replace X ψ ∋ x) → ¬ ( (y : OD) → ¬ (x == ψ y)) replacement→ {ψ} X x lt = contra-position lemma (lemma2 (proj2 lt)) where lemma2 : ¬ ((y : Ordinal) → ¬ def X y ∧ ((od→ord x) ≡ od→ord (ψ (ord→od y)))) → ¬ ((y : Ordinal) → ¬ def X y ∧ (ord→od (od→ord x) == ψ (ord→od y))) lemma2 not not2 = not ( λ y d → not2 y (record { proj1 = proj1 d ; proj2 = lemma3 (proj2 d)})) where lemma3 : {y : Ordinal } → (od→ord x ≡ od→ord (ψ (ord→od y))) → (ord→od (od→ord x) == ψ (ord→od y)) lemma3 {y} eq = subst (λ k → ord→od (od→ord x) == k ) oiso (o≡→== eq ) lemma : ( (y : OD) → ¬ (x == ψ y)) → ( (y : Ordinal) → ¬ def X y ∧ (ord→od (od→ord x) == ψ (ord→od y)) ) lemma not y not2 = not (ord→od y) (subst (λ k → k == ψ (ord→od y)) oiso ( proj2 not2 )) --- --- Power Set --- --- First consider ordinals in OD --- --- ZFSubset A x = record { def = λ y → def A y ∧ def x y } subset of A --- Power X = ord→od ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )) ) ) Power X is a sup of all subset of A -- -- if Power A ∋ t, from a propertiy of minimum sup there is osuc ZFSubset A ∋ t -- then ZFSubset A ≡ t or ZFSubset A ∋ t. In the former case ZFSubset A ∋ x implies A ∋ x -- In case of later, ZFSubset A ∋ t and t ∋ x implies A ∋ x by transitivity of Ordinals -- ∩-≡ : { a b : OD {suc n} } → ({x : OD {suc n} } → (a ∋ x → b ∋ x)) → a == ( b ∩ a ) ∩-≡ {a} {b} inc = record { eq→ = λ {x} x