open import Level open import Ordinals open import logic open import Relation.Nullary module LEMC {n : Level } (O : Ordinals {n} ) (p∨¬p : ( p : Set n) → p ∨ ( ¬ p )) where open import zf open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open import Relation.Binary.PropositionalEquality open import Data.Nat.Properties open import Data.Empty open import Relation.Binary open import Relation.Binary.Core open import nat import OD open inOrdinal O open OD O open OD.OD open OD._==_ open ODAxiom odAxiom open import zfc open HOD open _⊆_ decp : ( p : Set n ) → Dec p -- assuming axiom of choice decp p with p∨¬p p decp p | case1 x = yes x decp p | case2 x = no x ∋-p : (A x : HOD ) → Dec ( A ∋ x ) ∋-p A x with p∨¬p ( A ∋ x) -- LEM ∋-p A x | case1 t = yes t ∋-p A x | case2 t = no (λ x → t x) double-neg-eilm : {A : Set n} → ¬ ¬ A → A -- we don't have this in intutionistic logic double-neg-eilm {A} notnot with decp A -- assuming axiom of choice ... | yes p = p ... | no ¬p = ⊥-elim ( notnot ¬p ) power→⊆ : ( A t : HOD) → Power A ∋ t → t ⊆ A power→⊆ A t PA∋t = record { incl = λ {x} t∋x → double-neg-eilm (λ not → t1 t∋x (λ x → not x) ) } where t1 : {x : HOD } → t ∋ x → ¬ ¬ (A ∋ x) t1 = power→ A t PA∋t --- With assuption of HOD is ordered, p ∨ ( ¬ p ) <=> axiom of choice --- record choiced ( X : Ordinal ) : Set n where field a-choice : Ordinal is-in : odef (ord→od X) a-choice open choiced -- ∋→d : ( a : HOD ) { x : HOD } → ord→od (od→ord a) ∋ x → X ∋ ord→od (a-choice (choice-func X not)) -- ∋→d a lt = subst₂ (λ j k → odef j k) oiso (sym diso) lt oo∋ : { a : HOD} { x : Ordinal } → odef (ord→od (od→ord a)) x → a ∋ ord→od x oo∋ lt = subst₂ (λ j k → odef j k) oiso (sym diso) lt ∋oo : { a : HOD} { x : Ordinal } → a ∋ ord→od x → odef (ord→od (od→ord a)) x ∋oo lt = subst₂ (λ j k → odef j k ) (sym oiso) diso lt OD→ZFC : ZFC OD→ZFC = record { ZFSet = HOD ; _∋_ = _∋_ ; _≈_ = _=h=_ ; ∅ = od∅ ; Select = Select ; isZFC = isZFC } where -- infixr 200 _∈_ -- infixr 230 _∩_ _∪_ isZFC : IsZFC (HOD ) _∋_ _=h=_ od∅ Select isZFC = record { choice-func = λ A {X} not A∋X → ord→od (a-choice (choice-func X not) ); choice = λ A {X} A∋X not → oo∋ (is-in (choice-func X not)) } where -- -- the axiom choice from LEM and OD ordering -- choice-func : (X : HOD ) → ¬ ( X =h= od∅ ) → choiced (od→ord X) choice-func X not = have_to_find where ψ : ( ox : Ordinal ) → Set n ψ ox = (( x : Ordinal ) → x o< ox → ( ¬ odef X x )) ∨ choiced (od→ord X) lemma-ord : ( ox : Ordinal ) → ψ ox lemma-ord ox = TransFinite {ψ} induction ox where -- ∋-p : (A x : HOD ) → Dec ( A ∋ x ) -- ∋-p A x with p∨¬p (Lift (suc n) ( A ∋ x )) -- LEM -- ∋-p A x | case1 (lift t) = yes t -- ∋-p A x | case2 t = no (λ x → t (lift x )) ∀-imply-or : {A : Ordinal → Set n } {B : Set n } → ((x : Ordinal ) → A x ∨ B) → ((x : Ordinal ) → A x) ∨ B ∀-imply-or {A} {B} ∀AB with p∨¬p ((x : Ordinal ) → A x) -- LEM ∀-imply-or {A} {B} ∀AB | case1 t = case1 t ∀-imply-or {A} {B} ∀AB | case2 x = case2 (lemma (λ not → x not )) where lemma : ¬ ((x : Ordinal ) → A x) → B lemma not with p∨¬p B lemma not | case1 b = b lemma not | case2 ¬b = ⊥-elim (not (λ x → dont-orb (∀AB x) ¬b )) induction : (x : Ordinal) → ((y : Ordinal) → y o< x → ψ y) → ψ x induction x prev with ∋-p X ( ord→od x) ... | yes p = case2 ( record { a-choice = x ; is-in = ∋oo p } ) ... | no ¬p = lemma where lemma1 : (y : Ordinal) → (y o< x → odef X y → ⊥) ∨ choiced (od→ord X) lemma1 y with ∋-p X (ord→od y) lemma1 y | yes y