open import Level open import Ordinals module cardinal {n : Level } (O : Ordinals {n}) where open import zf open import logic import OD import ODC import OPair open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open import Relation.Binary.PropositionalEquality open import Data.Nat.Properties open import Data.Empty open import Relation.Nullary open import Relation.Binary open import Relation.Binary.Core open inOrdinal O open OD O open OD.OD open OPair O open ODAxiom odAxiom open _∧_ open _∨_ open Bool open _==_ -- we have to work on Ordinal to keep OD Level n -- since we use p∨¬p which works only on Level n ∋-p : (A x : HOD ) → Dec ( A ∋ x ) ∋-p A x with ODC.p∨¬p O ( A ∋ x ) ∋-p A x | case1 t = yes t ∋-p A x | case2 t = no t --_⊗_ : (A B : HOD) → HOD --A ⊗ B = record { od = record { def = λ x → def ZFProduct x ∧ ( { x : Ordinal } → (p : def ZFProduct x ) → checkAB p ) } } where -- checkAB : { p : Ordinal } → def ZFProduct p → Set n -- checkAB (pair x y) = odef A x ∧ odef B y func→od0 : (f : Ordinal → Ordinal ) → HOD func→od0 f = record { od = record { def = λ x → def ZFProduct x ∧ ( { x : Ordinal } → (p : def ZFProduct x ) → checkfunc p ) }} where checkfunc : { p : Ordinal } → def ZFProduct p → Set n checkfunc (pair x y) = f x ≡ y -- Power (Power ( A ∪ B )) ∋ ( A ⊗ B ) Func : ( A B : HOD ) → HOD Func A B = record { od = record { def = λ x → odef (Power (A ⊗ B)) x } } -- power→ : ( A t : OD) → Power A ∋ t → {x : OD} → t ∋ x → ¬ ¬ (A ∋ x) func→od : (f : Ordinal → Ordinal ) → ( dom : HOD ) → HOD func→od f dom = Replace dom ( λ x → < x , ord→od (f (od→ord x)) > ) record Func←cd { dom cod : HOD } {f : Ordinal } : Set n where field func-1 : Ordinal → Ordinal func→od∈Func-1 : Func dom cod ∋ func→od func-1 dom od→func : { dom cod : HOD } → {f : Ordinal } → odef (Func dom cod ) f → Func←cd {dom} {cod} {f} od→func {dom} {cod} {f} lt = record { func-1 = λ x → sup-o {!!} ( λ y lt → lemma x {!!} ) ; func→od∈Func-1 = record { proj1 = {!!} ; proj2 = {!!} } } where lemma : Ordinal → Ordinal → Ordinal lemma x y with IsZF.power→ isZF (dom ⊗ cod) (ord→od f) (subst (λ k → odef (Power (dom ⊗ cod)) k ) (sym diso) lt ) | ∋-p (ord→od f) (ord→od y) lemma x y | p | no n = o∅ lemma x y | p | yes f∋y = lemma2 {!!} where -- (ODC.double-neg-eilm O ( p {ord→od y} f∋y ))) where -- p : {y : OD} → f ∋ y → ¬ ¬ (dom ⊗ cod ∋ y) lemma2 : {p : Ordinal} → ord-pair p → Ordinal lemma2 (pair x1 y1) with ODC.decp O ( x1 ≡ x) lemma2 (pair x1 y1) | yes p = y1 lemma2 (pair x1 y1) | no ¬p = o∅ fod : HOD fod = Replace dom ( λ x → < x , ord→od (sup-o {!!} ( λ y lt → lemma (od→ord x) {!!} )) > ) open Func←cd -- contra position of sup-o< -- -- postulate -- -- contra-position of mimimulity of supermum required in Cardinal -- sup-x : ( Ordinal → Ordinal ) → Ordinal -- sup-lb : { ψ : Ordinal → Ordinal } → {z : Ordinal } → z o< sup-o ψ → z o< osuc (ψ (sup-x ψ)) ------------ -- -- Onto map -- def X x -> xmap -- X ---------------------------> Y -- ymap <- def Y y -- record Onto (X Y : HOD ) : Set n where field xmap : Ordinal ymap : Ordinal xfunc : odef (Func X Y) xmap yfunc : odef (Func Y X) ymap onto-iso : {y : Ordinal } → (lty : odef Y y ) → func-1 ( od→func {X} {Y} {xmap} xfunc ) ( func-1 (od→func yfunc) y ) ≡ y open Onto onto-restrict : {X Y Z : HOD} → Onto X Y → Z ⊆ Y → Onto X Z onto-restrict {X} {Y} {Z} onto Z⊆Y = record { xmap = xmap1 ; ymap = zmap ; xfunc = xfunc1 ; yfunc = zfunc ; onto-iso = onto-iso1 } where xmap1 : Ordinal xmap1 = od→ord (Select (ord→od (xmap onto)) {!!} ) zmap : Ordinal zmap = {!!} xfunc1 : odef (Func X Z) xmap1 xfunc1 = {!!} zfunc : odef (Func Z X) zmap zfunc = {!!} onto-iso1 : {z : Ordinal } → (ltz : odef Z z ) → func-1 (od→func xfunc1 ) (func-1 (od→func zfunc ) z ) ≡ z onto-iso1 = {!!} record Cardinal (X : HOD ) : Set n where field cardinal : Ordinal conto : Onto X (Ord cardinal) cmax : ( y : Ordinal ) → cardinal o< y → ¬ Onto X (Ord y) cardinal : (X : HOD ) → Cardinal X cardinal X = record { cardinal = sup-o {!!} ( λ x lt → proj1 ( cardinal-p {!!}) ) ; conto = onto ; cmax = cmax } where cardinal-p : (x : Ordinal ) → ( Ordinal ∧ Dec (Onto X (Ord x) ) ) cardinal-p x with ODC.p∨¬p O ( Onto X (Ord x) ) cardinal-p x | case1 True = record { proj1 = x ; proj2 = yes True } cardinal-p x | case2 False = record { proj1 = o∅ ; proj2 = no False } S = sup-o {!!} (λ x lt → proj1 (cardinal-p {!!})) lemma1 : (x : Ordinal) → ((y : Ordinal) → y o< x → (y o< (osuc S) → Onto X (Ord y))) → (x o< (osuc S) → Onto X (Ord x) ) lemma1 x prev with trio< x (osuc S) lemma1 x prev | tri< a ¬b ¬c with osuc-≡< a lemma1 x prev | tri< a ¬b ¬c | case1 x=S = ( λ lt → {!!} ) lemma1 x prev | tri< a ¬b ¬c | case2 x ¬a ¬b c = ( λ lt → ⊥-elim ( o<> c lt )) onto : Onto X (Ord S) onto with TransFinite {λ x → ( x o< osuc S → Onto X (Ord x) ) } lemma1 S ... | t = t <-osuc cmax : (y : Ordinal) → S o< y → ¬ Onto X (Ord y) cmax y lt ontoy = o<> lt (o<-subst {_} {_} {y} {S} {!!} lemma refl ) where -- (sup-o< ? {λ x lt → proj1 ( cardinal-p {!!})}{{!!}} ) lemma refl ) where lemma : proj1 (cardinal-p y) ≡ y lemma with ODC.p∨¬p O ( Onto X (Ord y) ) lemma | case1 x = refl lemma | case2 not = ⊥-elim ( not ontoy ) ----- -- All cardinal is ℵ0, since we are working on Countable Ordinal, -- Power ω is larger than ℵ0, so it has no cardinal.